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Abstract: The Global Ecosystem Dynamics Investigation LiDAR (GEDI) is a new full waveform
(FW) based LiDAR system that presents a new opportunity for the observation of forest structures
globally. The backscattered GEDI signals, as all FW systems, are distorted by topographic conditions
within their footprint, leading to uncertainties on the measured forest variables. In this study, we
explore how well several approaches based on waveform metrics and ancillary digital elevation
model (DEM) data perform on the estimation of stand dominant heights (Hdom) and wood volume
(V) across different sites of Eucalyptus plantations with varying terrain slopes. In total, five models
were assessed on their ability to estimate Hdom and four models for V. Results showed that the models
using the GEDI metrics, such as the height at different energy quantiles with terrain data from the
shuttle radar topography mission’s (SRTM) digital elevation model (DEM) were still dependent on
the topographic slope. For Hdom, an RMSE increase of 14% was observed for data acquired over
slopes higher than 20% in comparison to slopes between 10 and 20%. For V, a 74% increase in RMSE
was reported between GEDI data acquired over slopes between 0–10% and those acquired over
slopes higher than 10%. Next, a model relying on the height at different energy quantiles of the
entire waveform (HTn) and the height at different energy quartiles of the bare ground waveform
(HGn) was assessed. Two sets of the HGn metrics were generated, the first one was obtained using a
simulated waveform representing the echo from a bare ground, while the second one relied on the
actual ground return from the waveform by means of Gaussian fitting. Results showed that both the
simulated and fitted models provide the most accurate estimates of Hdom and V for all slope ranges.
The simulation-based model showed an RMSE that ranged between 1.39 and 1.66 m (between 26.76
and 39.26 m3·ha−1 for V) while the fitting-based method showed an RMSE that ranged between 1.26
and 1.34 m (between 26.78 and 36.29 m3·ha−1 for V). Moreover, the dependency of the GEDI metrics
on slopes was greatly reduced using the two sets of metrics. As a conclusion, the effect of slopes
on the 25-m GEDI footprints is rather low as the estimation on canopy heights from uncorrected
waveforms degraded by a maximum of 1 m for slopes between 20 and 45%. Concerning the wood
volume estimation, the effect of slopes was more pronounced, and a degradation on the accuracy
(increased RMSE) of a maximum of 20 m3·ha−1 was observed for slopes between 20 and 45%.
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1. Introduction

In the last couple of decades, due to its accurate Earth observation capabilities, remote
sensing has increasingly been used for the estimation, on local and global scales, of forest
biophysical characteristics, namely forest heights and above ground biomass (AGB). The
estimation of forest characteristics is not restricted to a particular remote sensing technique,
as it has been obtained using either passive optical sensing such as from optical imagery, or
using active sensors such as synthetic aperture radar (SAR) or light detection and ranging
(LiDAR) data. Nonetheless, LiDAR has proven to be better suited for the estimation of
AGB and canopy heights than SAR (with available wavelengths to date: L, C and X bands),
Global Navigation Satellite System Reflectometry [1], and optical imagery [2,3]. LiDAR
data show lower signal saturation with AGB than optical and radar data. In general,
the literature reports saturation thresholds with optical and radar imageries (with X, C
and L-bands for SAR data) rarely exceeding 150 Mg/ha [4,5] whereas LiDAR data have
shown AGB estimation capabilities up to 1200 t/ha [6]. Yet, the AGB estimation levels
from LiDAR data are based on canopy vertical structure metrics, and the relationship
between height structure and ABG itself may saturate at high AGB, thus sometimes a start
of under-estimation of AGB using LiDAR data is observed [7].

LiDAR systems capture vertical structures by measuring the time taken for an emitted
laser pulse to return. Over vegetated areas, the emitted pulse will start reflecting as soon
as it hits the top of canopy (given a large enough top of canopy surface), and the final
return will theoretically be from the ground (if the laser pulse can penetrate through the
gaps [8]). The representation of such vertical structures depends on the LiDAR system
used. Discrete LiDAR systems usually have small footprints (<1 m) and record multiple
returns representing different targets within the travel path. The returned laser echoes
are next recorded as a series of 3D coordinates known as point clouds. On the other
hand, full waveform (FW) LiDAR systems record all the reflected signals over a given
footprint, and not only the first one. They therefore provide a continuous vertical profile
representing the heights of the different objects within their footprints, which is usually
larger than 10 m. Therefore, FW LiDAR systems provide much richer information about
the spatial arrangement of structures within their waveforms [9]. The recorded vertical
echoes of objects within the waveform are represented as a series of multiple connected
temporal peaks. These peaks might therefore represent reflections from a single object
(e.g., top of canopy cover) or different objects with relatively the same heights (e.g., short
understory and the ground) [10]. To measure vegetation characteristics, the vegetation
and ground portion of the waveform need to be identified and separated. As such, given
the wide footprint of FW LiDAR systems, a source of uncertainty on the estimation of
forest characteristics such as canopy heights and biomass could occur based on the local
terrain morphology. For instance over terrain with a high relief, the ground return might
get mixed with the vegetation leading to an overestimation of the relevant vegetation
characteristics [11].

Over the last years, many studies were carried out on FW data acquired by the
Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud, and land Elevation
satellite (ICESat) for the estimation of forest characteristics. ICESat/GLAS was the first
spaceborne FW LiDAR system, and operated from 2003 until 2009 [12]. ICESat/GLAS
pulsed one of its three 1064 nm lasers at a time, at 40 Hz, producing ellipsoidal shaped
footprints with a diameter of ~60 m at ~170 m along-track intervals, and several kilometers
across tracks. ICESat/GLAS was used during its operational and post-operational period
in many studies for the precise estimation of forest characteristics such as canopy height
and biomass [11,13–19]. However, most of the previously mentioned studies focused on
forests with relatively flat terrain since ICESat/GLAS with its large footprint size was
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susceptible to overestimating forest characteristics (e.g., canopy heights, and AGB) over
terrains with high relief [20,21]. Nonetheless, a number of studies have been carried out
to address this particular issue, and presented several methods to minimize the effects
of slope on the waveforms. These studies can be grouped into three categories. The first
group of studies attempted to retrieve slope information from the waveforms in the form
of waveform metrics, such as the trailing edge extent (representing terrain variability)
and the leading edge extent (representing vegetation variability) [11,13,20,22] and terrain
indices (range of ground surface elevations within a sampling window) retrieved from
a digital elevation model (DEM). This technique provided increased accuracies on the
estimation of forest heights over sloping terrain [11], but the squared correlation coefficient
(R2) decreased with increased slope values, and was only viable for slopes lower than 15◦

(R2 = 0.63) [23]. The second type of studies, such as the study of Yang et al. [24], minimized
the effects of slope on large footprint LiDAR by modifying the geometric optical and
radiative transfer (GORT) vegetation LiDAR model [25] to take into account the impacts of
surface topography. Their approach showed that slope-corrected ICESat/GLAS footprints
had an accuracy on the estimation of canopy heights of 2.2 m (R2 of 0.77). More recently,
Wang et al. [26] developed a method based on new waveform metrics to minimize the
effects of slopes on the estimation of forest AGB. The developed method relies on quantile
heights (the height above ground at which n% of the waveform energy falls below) [27],
and quantile heights of the ground return only. The method developed by Wang et al. [26]
can be decomposed into three major steps. (1) A LiDAR waveform over bare grounds but
with similar slope as the studied waveform is first simulated in order to derive a ground
return. This was necessary in the study of Wang et al. [26] as they worked on ICESat/GLAS
waveforms with a ~70 m diameter footprints alongside simulated waveforms with 25 m
diameter footprints. For ICESat/GLAS, the ground return disappeared with slopes bigger
than 15◦ [28] (i.e., returns from ground and vegetation become mixed up over sloping
terrain). Next, the simulated waveform is aligned with the studied waveform at the signal
end, and finally the related metrics were derived. The methodology developed by Wang
et al. [26] gave significant increase in accuracy in comparison to previous methodologies.
Indeed, for the estimation of above ground biomass, a decrease of 20.83 Mg/ha in terms of
RMSE (32% increase in R2) was observed for slope ranges of 0–40◦.

ICESat/GLAS was succeeded in 2018 by ICESat-2 that carried the Advanced Topo-
graphic Laser Altimeter System (ATLAS) with a goal to measure ice-sheet topography,
cloud and atmospheric properties, and global vegetation. In contrast to ICESat/GLAS,
ATLAS is equipped with a single 532 nm wavelength laser that emits six beams (arranged
into three pairs). Beam pairs are separated by ~3 km across-track with a pair spacing of 90
m. The nominal footprint of ATLAS is 17 m with a spacing interval of 0.7 m along-track.
Moreover, unlike ICESat/GLAS, ATLAS uses a photon counting system rather than a full
waveform system, and has the ability to detect single echoed photons. However, given the
wavelength of the equipped laser (532 nm), ATLAS has lower reflectance over vegetation
in comparison to ice [29], coupled with the low number of reflected photons, ICESat-2
might be limited over tropical forests for direct canopy height retrievals due to the canopy
cover [29].

Recently, the Global Ecosystem Dynamics Investigation (GEDI) on board the Interna-
tional Space Station (ISS) started collecting LiDAR data globally since April 2019. GEDI’s
mission is to provide information about canopy structure, biomass and topography, and is
estimated to acquire 10 billion cloud free shots in its two years mission [30]. GEDI shows
many similarities to ICESat/GLAS, however, given GEDI’s higher sampling rate (242 vs.
40 Hz for ICESat-1), and its much smaller footprint size (~25 vs. ~60 m for ICESat-1), GEDI
will provide a highly improved coverage, and improved measurements over forested areas
with high relief in comparison to ICESat/GLAS. Nonetheless, given that GEDI is a FW
LiDAR system, it is expected to also be affected by relief. However, since GEDI has a much
smaller footprint than ICESat/GLAS while getting equivalent vertical resolution (1 ns), the
effect of slopes on the waveform should be less pronounced.
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As far as we know, no studies have yet been dedicated to analyze the effects of
slopes on GEDI data. Therefore, the objective of this study is two-fold. First, the effects
of the terrain slope on the estimation of both canopy heights and wood volume of fast-
growing Eucalyptus plantations in Brazil will be analyzed. Next, slope-effect minimization
techniques from previous literature will be used in order to determine which methodology
yields the best forest characteristics estimates over sloping terrain. The choice of the in
situ dataset was decided since the physical structure of Eucalyptus is simple enough, and
very homogeneous within the GEDI footprint, thus reducing uncertainties unrelated to the
GEDI sensor itself.

The rest of this paper is organized as follows: Section 2 describes the study area
and lists the data used. Section 3 presents a thorough description of the methods for the
estimation of canopy heights and wood volume over sloping terrain. Sections 4 and 5
present the results and the discussion, respectively. Finally, in Section 6, we summarize
and conclude our study.

2. Study Area and Dataset
2.1. Study Area

The study area is located in Brazil, in five regions across a large latitudinal gradient
(Figure 1), covering different climate and soil types. Maranhão (MA) is located in a typical
equatorial region with different intensities of monsoon rainfall (1200 to 2500 mm/year.
Bahia (BA) and Espírito Santo (ES) are located in a tropical coastal region with strong
rainfall anisotropy (800 to 1500 mm/year) that directly affects wood productivity from
the nearshore towards the hinterland. Mato Grosso do Sul (MS) is located in a tropical
region (1200 to 1500 mm/year) but with some subtropical features (rare frost), it is the most
environmentally homogeneous among the five study areas, resulting in less variation in
wood productivity within the region. São Paulo (SP) is mainly in a subtropical region (1100
to 2000 mm/year with orographic effects), heavy frost-days are frequent in the southern
part, has complex relief and a wide range of deep and shallow tropical soils, resulting in
a huge variability in wood productivity across the region. Across the five regions, clonal
seedlings of mainly E. grandis (W. Hill) and E. urophylla (S.T. Blake) and different types of
hybrids are planted in rows at a density of 1000–1667 trees/ha. The wood productivity
of the plantations was on average 40 m3/ha/year, with 80% of the stands being between
30–50 m3/ha/year and some stands could reach values as high as 60 m3/ha/year. At
harvest time, the dominant height of around 80% of the stands is in the 20–35 m range
with a stand volume between 180 and 300 m3/ha. The plantations were managed locally
by stand units (~50 ha), where the same management is applied for each stand: planting,
harvesting and weed control, genetic material, soil preparation and fertilization. The
plantations are generally characterized by a sparse understory and herbaceous strata.
Eucalyptus plantations exhibit a simple structure, with a tree crown strata of 3 to 10 m
in width above a “trunk strata” with few Eucalyptus leaves and few understories. The
“soil strata” is mainly constituted of litter accumulation of branches and leaves, with some
patches of herbaceous species. More than 82% of the Brazilian Eucalyptus plantations are
cultivated on flat to gentle slopes due to huge harvesting and logging operation costs on
high slopes [31]. In some areas, such as the states of Minas Gerais, Paraná, Santa Catarina,
and São Paulo (Paraíba Valley), high slopes are however the rule.
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Figure 1. Location of the five study sites; the zoomed-in rectangle shows an example of GEDI tracks
over some stands.

2.2. In Situ Data

A total of 168 Eucalyptus stands were selected with field inventories performed
between 1 April 2019 and 1 June 2019. The stands were selected due to the presence of
acquired GEDI shots within this period. Moreover, these stands are generally located on a
terrain with slopes of varying degrees. Specifically, 86.4% of stands are located over slopes
lower than 10%, 11.2% of stands are located on sloping terrain with slope ranges between
10 and 20%, and the remainder of the stands (2.4%) are located on a terrain with slopes
between 20 and 45%. An additional 50-m internal buffer strip from the stand borders was
used to account for any footprint geolocation errors and to avoid footprints that match
the boundary between the stand of interest and the surrounding medium. Permanent
inventory plots had an area of approximately 400 m2 and were systematically distributed
throughout the stand with a density of one plot per 10 ha. They included 30 to 100 trees
with an average of 58 trees. During a field inventory, the diameter at breast height (DBH,
1.3 m above the ground) of each tree in the inventory plot, the height of a central subsample
of 10 trees, and the height of the four largest trees in terms of DBH (dominant trees) were
measured. The mean height of these dominant trees defined the dominant height of the
plot (Hdom). Hdom, basal area and age on the inventory date were then used in local volume
equations to estimate the plot’s total and merchantable volume (the merchantable volume
is a tree’s volume up to 6 cm stem diameter with bark). Table 1 shows the distribution of
field measurements of Hdom and wood volume.

Table 1. Distribution of dominant canopy height (a) and wood volume densities (b) from field
inventories over the 168 Eucalyptus stands.

Hdom Classes (m) Stand Distribution (%) V Classes (m3·ha−1) Stand Distribution (%)

[10–15[ 10 [0–75[ 19
[15–20[ 32 [75–150[ 33
[20–25[ 28 [150–255[ 26
[25–30[ 24 [255–300[ 16
[30–35] 7 [350–450] 6

(a) (b)
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2.3. GEDI Dataset

GEDI is equipped with three 1064 nm onboard lasers designed to sample the Earth’s
surface at a ~60 m interval along the track with a cross track separation of ~600 m. One
of the lasers is split into two beams. These four beams are then dithered across track to
produce eight parallel tracks of observations. The GEDI lasers fire at a frequency of 242 Hz
and, on the ground, measure 3D structures over a 25-m wide footprint. The received
waveforms are digitized to a maximum of 1246 bins with a vertical resolution of 1 ns
(15 cm), corresponding to a maximum of 186.9 m of height ranges, with a vertical accuracy
over relatively flat, non-vegetated surfaces of ~3 cm [30].

GEDI data are already processed by the Land Processes Distributed Active Archive
Center (LP DAAC, https://lpdaac.usgs.gov/tools/data-pool/ (accessed on 27 May 2021)).
GEDI data are provided through three data products, L1B [32], L2A [33], and L2B [34]. The
L1B data product, contains among other, the geolocated (longitude, latitude, and elevation)
raw transmitted and received waveforms as well as information on mean and standard
deviation of the noise, and acquisition time. The L2A product contains data of elevation
and height metrics of the vertical structures within the waveform. These height metrics are
issued from the processing of the received waveforms from the L1B product. Finally, the
L2B data product [34] provides footprint-level vegetation metrics, such as canopy cover,
vertical profile metrics, Leaf Area Index (LAI), and foliage height diversity (FHD).

The extracted metrics from each waveform are the results of several processing
steps [32,33]. First, the raw received waveforms are smoothed to reduce the noise in
the signal, and thus permitting the determination of the useful part of the waveform
within the corresponding footprint [32]. Waveform smoothing is performed by means of a
Gaussian filter with a current width of 6.5 ns. The smoothing permits the determination of
searchstart and searchend, which are, respectively, the first and last positions in the signal
where the signal intensity is above the following threshold [32]:

threshold = mean + std.v (1)

where “mean” is the mean noise level, “std” is the standard deviation of the noise of the
smoothed waveform, and “v” is a constant currently set at 4. Inside the window delimited
by searchstart and searchend, the highest (toploc) and lowest (botloc) detectable returns are
determined (Figure 2) [32]. toploc and botloc respectively represent the highest and lowest
locations inside the waveform extent where two adjacent intensities are above a threshold.
The threshold equation used to determine toploc and botloc is the same as Equation (1), with
“v” an integer fixed at 2, 3, 4 and 6. Two values of “v” are used to determine the toploc
(“Front_threshold”) and botloc (“Back_threshold”). Finally, the location of the distinctive
peaks or modes in the waveform, such as the ground peak, or top of canopy peaks are
determined using a second Gaussian filtering of the waveform section between toploc
and botloc, and then finding all the zero crossings of the first derivative of the filtered
waveform (Figure 2) [33]. The width of the second Gaussian filter (“Smoothwidth_zcross”)
is fixed to either 3.5 or 6.5 ns. Currently, the LP DAAC provides six configurations (a1
to a6) for the estimation of the waveform metrics. The difference in these configura-
tions are the values used for the thresholds presented earlier. For studies on Eucalyp-
tus plantations, Fayad et al. [7] determined that algorithm a1 (Smoothwidth_zcross = 6.5,
Front_threshold = 3, Back_threshold = 6) provided the best metrics for the estimation of
canopy heights and wood volume.

In this study, variables from both L1B and L2A were extracted. From L1B, we extracted
the raw received waveforms, their geolocation (longitude, and latitude), as well as their ac-
quisition date and times. From the L2A data product, we extracted the following variables:
(1) the position within the waveform of toploc and botloc, and (2) the relative height met-
rics at 10% intervals from botloc (0%) to toploc (100%) (RHn, 10% ≤ n ≤ 100%, step 10%).
RHn represent the height between botloc and the location at n% of cumulative energy
(Figure 2) [33].

https://lpdaac.usgs.gov/tools/data-pool/
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Figure 2. Example of an acquired GEDI waveform (RW) over an Eucalyptus stand (Hdom = 20.4 m;
V = 129.6 m3·ha−1). The cumulative energy of the waveform (CE) between botloc and toploc and the
corresponding relative heights (RHn ) at different quantiles “n”. The left and right red dashed lines
represent, respectively, the position of the vegetation (Vloc) and ground peaks (Gloc). Note that 1 ns
corresponds to 15 cm sampling distance in the waveform. The waveform amplitudes are counts from
the analog to digital converter (ADC) on the instrument and normalized to be between 0 and 1.

Initially, 2128 GEDI shots acquired over the 168 Eucalyptus stands were selected.
These GEDI shots corresponded to acquisitions within a window of two months (before or
after) the stand inventory. The two-month window is necessary to overcome tree growth
differences that occur between inventory times and acquisition times. In fact, on these
fast-growing plantations, a 2-month difference could result in an up to 50 cm growth in
Hdom and 10 m3·ha−1 in V (depending on the genetic material, pedoclimatic conditions
and age). However, this reasonable hypothesis allows keeping a large number of stands,
including a large variability of age and growing conditions.

Finally, not all GEDI acquisitions are viable, as atmospheric conditions (e.g., clouds)
can affect them. Therefore, a waveform was not investigated further if it met any of the
following criteria:

• Waveforms with reported elevations that are significantly higher than the correspond-
ing elevations in the SRTM DEM [15]. In essence, we removed all waveforms where
the absolute difference is higher than 100 m;

• Waveforms with a difference between waveform extent (Wext, height between toploc
and botloc, [13]) and (Gloc-Vloc) higher than 400 bins (corresponding to 60 m).

After filtering, 1477 (~69.4%) GEDI shots were retained and used.

2.4. Digital Elevation Model Metrics

The Shuttle Radar Topography Mission’s (SRTM) Digital Elevation Model (DEM) with
a spatial resolution of 30 m was used is this study. Two variables were derived from the
DEM for each GEDI footprint: slope (S), and surface Roughness (ROUG). The surface
roughness map was obtained by computing the standard deviation of the elevation in a
3 × 3 pixel-moving window.

3. Methodology
3.1. Stand Scale Dominant Heights Estimation

In this section, we evaluate five models for the estimation of stand-scale dominant
heights (Hdom) from GEDI data acquired over terrain with different slopes. Two models are
based on GEDI metrics and terrain information from the SRTM DEM and Hdom is estimated
through linear regression, while the remaining three will be exclusively based on GEDI
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metrics where Hdom is estimated using random forest regression algorithms. The first tested
model is based on the formulation by Lefky et al. [13]:

Hdom = a ·Wext − b · S + c (2)

where Wext is the waveform extent (height difference between botloc and toploc) in meters,
S is the terrain slope in degrees, a is the coefficient applied to the waveform height index, b
is the coefficient applied to the slope, and c is a constant.

In the study of Fayad et al. [7], it has been shown that the relative height metric
(RH100) (Figure 2) is better correlated to in situ Hdom than the waveform extent. Therefore, a
modified version of Equation (2) will also be tested. Equation (3) will use the RH100 instead
of the Wext:

Hdom = a · RH100 − b · S + c (3)

We will also attempt to estimate Hdom through nonlinear nonparametric regressions by
means of a Random Forest regressor (RFH). Random Forests are an ensemble of machine
learning algorithms used for classification or regressing by fitting a number of decision
trees on various sub-samples of the dataset, and use averaging to improve the predictive
accuracy and control over-fitting [35]. Compared to linear models, RF is advantageous for
being able to model also nonlinear relationships (threshold effect) between the variable to
explain and the explanatory variables. The suggested model will use the relative height
metrics RHn{10% ≤ n ≤ 100%, step10%}, as well as the terrain roughness (ROUG), and
terrain slope (S).

The models integrating terrain information, such as the models provided by
Lefsky et al. [13], have been proven to increase the accuracy on Hdom estimation over
sloping terrain [11]. However, the effect of slopes is not completely eliminated. For in-
stance, in the study of Xing et al. [23], the accuracy of the method proposed by Lefsky
decreased with the increasing slope. Indeed, the RMSE increased from of 2.87 m (R2

of 0.89) for slope ranges 0–5◦ to 5.97 m (R2 of 0.08) for slope ranges 0–30◦. Therefore,
Wang et al. [26] proposed a method relying on new waveform metrics in order to reduce
the effects of slopes. The method of Wang et al. [26] comprises three steps in order to
generate the new waveform metrics. First, a waveform over bare grounds with the same
slope value as the studied waveform is simulated. The simulated waveform is based on
a Gaussian function, resembling the Laser pulse used by FW LiDARs, and thus has the
following form (assuming a nadir-viewing angle):

y = A · exp
(
−x2

2σ2

)
(4)

where σ and A are respectively the standard deviation and amplitude of simulated echoed
waveform, and x the waveform sample locations at 1 ns (15 cm) intervals. For simplicity,
the amplitude (A) is set to one. The standard deviation of the waveform, which affects its
width, is dictated by the characteristics of the LiDAR system used. Over flat bare grounds,
the standard deviation of the echoed waveform is defined as follows:

σ = σb =

√
−(c · t)2

2ln(PT)
(5)

where c is the speed of light (3 · 108 m/s), t is the pulse width of the LiDAR system
(t = 15.6 ns for GEDI [30]), and PT = 0.5 (half the amplitude points of the pulse width).

Over sloping terrain, the waveform extent will increase with the terrain slope even if
the canopy is the same, and the echoed waveform will exhibit a broadening of the ground
return (Figures 3 and 4). Therefore, the standard deviation value to simulate a bare ground
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return (Equation (5)) should be broadened in accordance to the terrain slope. The standard
deviation on a slope terrain σs is computed from σb by adding a broadening effect:

σ = σs = σb + β · γ · tanθ (6)

where σb is obtained from Equation (5), β = 0.5 for waveforms simulated over forest
stands [36], γ is the footprint diameter (γ = 25 m for GEDI), and finally, θ is the terrain
slope in degrees (◦).
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Figure 4. GEDI waveforms acquired over two Eucalyptus stands with the same Hdom (~16.75 m)
but different terrain slopes. The dashed lines represent the toploc and botloc positions. The full
width at half maximum (FWHM) is indicated for the ground peak. Both waveform amplitudes were
normalized to be between 0 and 1 for comparison purposes.

After determining the shape of the waveform over a bare ground with known slope
(Figure 5a), the simulated ground return is superposed over the studied GEDI waveform
by the position of the signal end (botloc) of both waveforms (Figure 5b). For the simulated
waveform, toploc is determined as the first position where the amplitude of the simulated
waveform is above zero, while botloc is the last position where the amplitude is above zero.
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Figure 5. (a) Overview of the methodology for the simulation of the ground return as defined by Wang et al. [26] for a GEDI
footprint acquired at 18.4◦ terrain slope. (b) The extracted canopy height metrics. CE represents the cumulative energy
(from botloc to toploc) of the original waveform. GCE represents the cumulative energy of the simulated ground waveform.
The dashed lines represent the toploc and botloc positions.

After the superposition of the original waveform and the simulated ground waveform,
the sRHTn metrics (“s” for simulated) can be generated, where sRHTn = HTn− sHGn, and
HTn is the height between botloc and the position at n% energy of the original waveform,
and s HGn is the height between botloc and the position at n% energy of the simulated
ground waveform (Figure 5b).

To estimate the AGB, Wang et al. [26] relied on a linear regression model using four
sRHTn (sRHT25, sRHT50, sRHT75, and sRHT100). However, since random forests are more
accurate than linear regression models for the estimation of forest characteristics (e.g.,
canopy heights, AGB) [7], in this study, sRHTn and sHGn will be used in a random forest
regression model using nine sRHTn and nine s HGn values (20% ≤ n ≤ 100%, step10%).

The method proposed by Wang et al. [26] relies on slope information from the SRTM
DEM which has a resolution of 30 m while the diameter of GEDI is 25 m. Therefore, in
order to analyze the pertinence of the Wang method, we propose a methodology that relies
on the same RHTn metrics, but instead of simulating a ground return, the sHGn metrics
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will be calculated from the ground return of the original waveform (henceforth referred to
as f HGn, “f ” for fitted). The original ground return will be fitted by means of an automated
Gaussian decomposition of the original waveform [37]. Figure 6 shows the difference over
the ground return between a simulated ground return, and fitted ground return.
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A summary of the models that will be tested for the estimation of Hdom are presented
in Table 2. For the random forest-based models, they are built using a set of 500 trees
(higher tree count slightly increased the model accuracy), with a tree depth equal to the
square root of the number of available factors. Model performance is assessed using a
5-fold cross validation, and the Eucalyptus stands used for training or validation were
selected randomly regardless of the terrain slope. In addition, we imposed that footprints
belonging to the same stand were assigned exclusively to one of the data partitions (train or
test) with the aim to avoid possible non-independence of the data due to spatial proximity
in the evaluation procedure. Finally, model performances are evaluated by means of the
coefficient of determination (R2), the root mean square error (RMSE), the bias (difference
between estimated and in situ variables), and the root mean squared percentage error
(RMSPE). RMSPE is defined as:

RMSPE = 100 ·

√√√√ 1
n
·

n

∑
i=1

(
Yt −Yp

Yt

)2
(7)

where Yt is the measured variable and Yp is the predicted variable.

Table 2. List of the models used for the estimation of Hdom.

ID Metrics Used Model

MH1 Wext, S Hdom = a ·Wext − b · S + c

MH2 RH100, S Hdom = a · RH100− b · S + c

RFHRH
RHn{10% ≤ n ≤ 100%, step10%}, Slope (S), and
terrain roughness (ROUG) Random Forests

sRFHRHT+HG
sRHTn{20% ≤ n ≤ 100%, step10%}
s HGn{20% ≤ n ≤ 100%, step10%} Random Forests

fRFHRHT+HG
f RHTn{20% ≤ n ≤ 100%, step10%}
f HGn{20% ≤ n ≤ 100%, step10%} Random Forests
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3.2. Wood Volume Estimation

Four models will be tested for the estimation of wood volume. The first model is
adapted from Saatchi et al. [38] and uses a power law relationship between the volume
and Lorey’s height. The model will also use the terrain slope (S) in order to compensate for
the terrain slope effect:

V = aHL
b + c · S + d (8)

where HL is Lorey’s height and S is the terrain slope. In this study, the relationship
defined in Equation (8) was used by replacing Lorey’s height with RH100 (representing the
dominant height Hdom) as both height values were similar (HL was lower than Hdom by a
maximum of 0.9 m at the end of the rotation of the Eucalyptus plantation) [15].

The second model that will be tested is based on a random forest regressor using the
relative height metrics RHn{10% ≤ n ≤ 100%, step10%}, as well as the terrain roughness
(ROUG), and terrain slope (S).

Finally, the metrics generated by Wang et al. [26] will be used in a random forest
regressor in order to estimate the wood volume. Two sets of metrics will be used: (1) the
sRHTn and sHGn as defined by Wang et al. [26], and (2) the f RHTn and f HGn which rely
on a Gaussian decomposition. A summary of the tested models for the estimation of wood
volume is presented in Table 3.

Table 3. List of the models used for the estimation of wood volume (V).

ID Metrics Used Model

MV1 RH100, S V = aRH100b + c · S + d

RFVRH
RHn{10% ≤ n ≤ 100%, step10%}, slope
(S), and terrain roughness (ROUG) Random Forests

sRFVRHT+HG
sRHTn{20% ≤ n ≤ 100%, step10%}

s HGn{20% ≤ n ≤ 100%, step10%} Random Forests

fRFVRHT+HG
f RHTn{20% ≤ n ≤ 100%, step10%}

f HGn{20% ≤ n ≤ 100%, step10%} Random Forests

4. Results
4.1. Estimation of Dominant Stand Heights (Hdom)

The results presented in Figure 7 and Table 4 show the accuracy of the estimation of
Hdom from the models presented in Table 2 over three slope ranges (0–10%, 10–20%, and
between 20 and 45%). For slope ranges 0–10%, the accuracy of the estimation of Hdom using
MH1 was the lowest with an RMSE of 2.06 m (R2 = 0.81). For the remaining models, the
RMSE of the Hdom estimates were similar and ranged between 1.35 m (R2 = 0.93,RFHRH)
and 1.42 m (R2 = 0.93, fRFHRHT+HG). For slope ranges 10–20%, the models did not show
any decrease in performance due to slope, except for the Wang model (sRFHRHT+HG) which
had a 30 cm increase in RMSE (Table 4) and a 1% increase in RMSPE. For slopes higher than
20%, all models except for (fRFHRHT+HG) had a decrease in accuracy with increased slopes.
Indeed, for slopes higher than 20%, the RMSE ranged between 1.65 m (R2 of 0.86, RFHRH)
and 3.26 m (R2 of 0.45, Model 1) (Table 4). Moreover, the bias (estimated Hdom-in situ Hdom)
was ~1.2 m using Models MH1 and MH2, and 0.65 m for (RFHRH). The (sRFHRHT+HG) and
(fRFHRHT+HG) models were the two models that did not show high sensitivity to terrain
slopes (no bias) even for slopes higher than 20% (Figure 7, Table 4). Nonetheless, the model
(fRFHRHT+HG) was slightly more accurate for slope ranges higher than 10%, where the
RMSPE on the estimation of Hdom remained 6% (RMSE of 1.26 m, R2 of 0.92), with a slight
bias of 0.11 m.
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Table 4. Model performance for the estimation of Eucalyptus stand dominant height (defined in Section 3.1). Bias =
estimated Hdom-in situ Hdom.

Slope Ranges (%)

0–10 10–20 >20

ID RMSE
(m)

RMSPE
(%) R2 Bias

(m)
RMSE

(m)
RMSPE

(%) R2 Bias
(m)

RMSE
(m)

RMSPE
(%) R2 Bias

(m)

MH1 2.06 11 0.85 0.07 2.11 11 0.87 −0.16 3.26 16 0.45 1.22
MH2 1.36 7 0.94 −0.08 1.30 7 0.95 0.15 1.93 9 0.81 1.23

RFHRH 1.35 7 0.94 −0.04 1.46 7 0.94 0.05 1.65 7 0.86 0.65
sRFHRHT+HG 1.39 6 0.93 −0.02 1.66 7 0.92 −0.01 1.53 8 0.88 −0.14
fRFHRHT+HG 1.34 6 0.94 −0.02 1.34 6 0.95 −0.2 1.26 6 0.92 0.11

An analysis of the slope effects on the accuracy of Hdom is presented in Figure 8, which
shows the variability of the difference between the estimated and in situ Hdom. The results
shown in Figure 8 indicate that the slope effect on Hdom estimates using the models (MH2)
and (RFHRH) were not completely eliminated for slopes higher than 15%. Indeed, for both
models, the median difference between estimated and in situ Hdom increased from −0.08
and −0.06 for, respectively, the models (MH2) and (RFHRH) for slope ranges ]10–15%]
to 1.2 and 0.59 m for slope ranges higher than 20% (between 20 and 45%). In contrast,
the slope effects on Hdom estimates using the Wang-based methodology (sRFHRHT+HG, or
fRFHRHT+HG) was greatly reduced, and the median difference between estimated and in
situ Hdom ranged between −0.096 and 0.0.12 m for (sRFHRHT+HG) and between −0.25 and
0.17 m for (fRFHRHT+HG).
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4.2. Estimation of Wood Volume (V)

Four models were tested for the estimation of the wood volume (V) in Eucalyp-
tus stands. The results presented in Figure 9 and Table 5 show that the models (MV1)
and (RFVRH) are sensitive to slopes with increasing RMSE on the estimation of V (de-
crease of R2) with increasing slope. For both models, the RMSE increased from about
27.5 m3·ha−1 (R2~0.9) to about 48.7 m3·ha−1 (R2~0.75) when the terrain slope increases
from [0–10%] to slope values higher than 20% (between 20 and 45%). The mean differ-
ence between estimated V and in situ V (bias, Table 5) also decreased from, respectively,
0.21 m3·ha−1 and −1.60 m3·ha−1 for MV1 and RFVRH for slopes between 0–10% to, respec-
tively, 13.95 m3·ha−1 and 11.42 m3·ha−1 for MV1 and RFVRH for slopes higher than 20%.
The Wang-based methodology (sRFHRHT+HG) did not show an increased overestimation
by increased slopes (bias between −2.66 and −5.91 m3·ha−1, Table 5). Nonetheless, the
(sRFHRHT+HG) model showed lower accuracy for slopes higher than 10%. Indeed, for
slopes between 0–10%, the RMSE of the estimation of V using the (sRFHRHT+HG) model was
27.57 m3·ha−1 (R2 of 0.91) and decreased to 53.82 m3·ha−1 (R2 of 0.79) for slopes between
10–20% and 49.12 m3·ha−1 (R2 of 0.74) for slopes higher than 20%. Finally, the modified
Wang model (fRFHRHT+HG) which relies on HGn metrics derived from the fitted ground
return of the waveforms, similarly to Hdom estimates, was the most accurate model. Indeed,
the results presented in Figure 9 and Table 5 show that the estimation of V using the model
(fRFHRHT+HG) was the most accurate in comparison to the three other models with an
RMSE ranging between 26.78 m3·ha−1 (RMSPE of 20%, R2 of 0.92) for slopes between
0–10% to 36.29 m3·ha−1 (RMSPE of 20%, R2 of 36.29 m3·ha−1) for slopes higher than 20%.
Moreover, the mean difference between the estimated V and in situ V using the model
(fRFHRHT+HG) remained relatively stable with a mean difference of 1.32 m3·ha−1 for slopes
between 0–10% to −2.65 m3·ha−1 for slopes higher than 20% (Table 5).

The variability of the difference between the estimated and in situ V for the four
tested models across five slopes ranges is presented in Figure 10. As seen previously,
MV1 and RFVRH both show sensitivity to slopes higher than 10%. This is evident by the
increased median difference between the estimated and in situ V. For the model (MV1,
Figure 10), the median difference between the estimated and in situ V increased from
−0.23 m3·ha−1 for slopes between 0–5% to 24.32 m3·ha−1 for slopes higher than 20%.
Similarly, for the model (RFVRH), the median difference between the estimated and in
situ V increased from −1.53 m3·ha−1 for slopes between 0–5% to 20.20 m3·ha−1 for slopes
higher than 20%. The models sRFVRHT+HG and fRFVRHT+HG were both insensitive to slopes
with a median difference between the estimated and in situ V ranging from 0.58 m3·ha−1

(slopes ∈ [0–5]%) and 5.42 m3·ha−1 (slopes > 20%) for the model sRFVRHT+HG and from
1.21 m3·ha−1 (slopes ∈ [0–5]%) and 2.16 m3·ha−1 (slopes > 20%) for the model fRFVRHT+HG
(Figure 10). Nonetheless, the model sRFVRHT+HG showed higher variability on the estimates
of V for slopes higher than 10% in comparison to the model fRFVRHT+HG (Figure 10).
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Figure 9. (a–l) Comparison of measured vs. estimated wood volume from the models presented in Section 3.2 using GEDI
metrics extracted using algorithm a1. RMSE is expressed in m3·ha−1.
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Table 5. Model performance for the estimation of Eucalyptus wood volume. The models are described in Section 3.2. Bias =
estimated V-in situ V.

Slope Ranges (%)

0–10 10–20 >20

ID RMSE
(m3·ha−1)

RMSPE
(%) R2 Bias

(m3·ha−1)
RMSE

(m3·ha−1)
RMSPE

(%) R2 Bias
(m3·ha−1)

RMSE
(m3·ha−1)

RMSPE
(%) R2 Bias

(m3·ha−1)

MV1 28.78 19 0.90 0.21 48.36 22 0.83 9.15 48.63 29 0.75 13.95
RFVRH 26.55 19 0.91 −1.60 46.25 23 0.85 9.45 48.86 24 0.74 11.42

sRFVRHT+HG 26.76 20 0.91 −2.57 38.05 22 0.90 −5.16 39.26 22 0.86 −1.49
fRFVRHT+HG 26.78 20 0.92 1.32 32.68 24 0.92 −2.22 36.29 20 0.86 2.65
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5. Discussion

The results presented in this study show that the models relying on the SRTM DEM
generated terrain metrics provide a limited slope-effect correction of Hdom and wood
volume (V) estimates from GEDI data, especially for high slope values (e.g., higher than
20%). Indeed, for MH2 and RFHRH the effect of the slopes was minimal for slope ranges
0–20% and increased for slopes higher than 20%, with an increase on the RMSE of 63 cm
for model 2 and 19 cm for the model RFHRH. Nonetheless, the effect of the terrain slope
was more pronounced on the estimation of V, and a decrease in accuracy (RMSE) was
observed for slopes as low as 10% (e.g., for the RFVRH model, the RMSE decreased from
26.55 m3·ha−1 for terrain slopes lower than 10% to more than 46 m3·ha−1 for terrain slopes
higher than 10%). These results indicate that the SRTM DEM with its 30-m resolution is
not adequate for the 25-m wide GEDI footprints. Therefore, a finer resolution DEM, for
example 10 m, is required for the 25-m GEDI footprints. However, the results showed that
for V, the R2 remained high and that the highest volumes were underestimated for high
values for all slope classes. The difference in RMSE between the slope classes may therefore
come from the fact that there were proportionally more data with high V for the two slope
classes 10–20% and 20–45% than for the 0–10% class.
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The methodology proposed by Wang using metrics generated from either simulated
or fitted ground returns provided the best results, as both approaches showed that the
effects of slopes were minimized for all slope classes available in this study. Indeed, among
all the generated metrics from GEDI waveforms, the sHGn and f HGn metrics were the
only metrics that were independent from the slope. Figure 11 shows that the distribution of
errors (GEDI-in situ) of RH100 (Figure 11a) and RHT100 (Figure 11b) was slope dependent,
especially for slopes higher than 10% with an intercept of, respectively, ~0.04 and ~0.07. In
contrast, the distribution of errors for sRHT100 and f RHT100 (Figure 11c,d) was constant
across all slope gradients (intercept ≈ 0.003). Nonetheless, the estimation of Hdom and V
using sRHTn and sHGn was slightly less accurate than f RHTn and f HGn. The uncertainties
on the estimation of both variables using the sRHTn and sHGn metrics could be attributed
to two factors. Firstly, the simulated ground return used to calculate the sRHTn and sHGn
is dependent on the slope of the studied waveform, which is calculated from the SRTM
DEM. Given the 30-m resolution of the SRTM DEM, and the 25-m footprint diameter,
terrain information within the footprint could not be accurately calculated. This is evident
in Figure 12 which compares the full width at half maximum (FWHM) of the simulated
and fitted ground returns. The results presented in Figure 12 show that the FWHM of
both the simulated and fitted ground returns are highly correlated for slopes lower than
10% but for slopes higher than 10%, the FWHM of the simulated ground returns are lower
than the FWHM of the fitted ground returns, leading to the uncertainties on the estimation
of Hdom and V. Secondly, in the formulation of Wang et al. [26], the ground returns were
simulated using a symmetrical Gaussian function [39,40] assuming a plane slope within
the 25-m footprint. Nevertheless, this formulation is not always satisfactory as the return
echo components recorded by FW LiDAR systems are asymmetrical. Thus, the fitting
process has lower accuracy when the echoed asymmetrical components are fitted using a
symmetrical Gaussian function. Moreover, GEDI waveforms display a sharp rising part
and a slower descending one. As such, a lognormal function, which is characterized by a
short rise time and a tailing, could be a better fit for the simulation of the ground echo than
a Gaussian.
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Finally, while the metrics proposed by Wang et al. [26] seem to greatly minimize the
effect of slopes over our study area, there are several uncertainties still unaccounted for.
First, within the Eucalyptus stands, tree heights are very homogeneous (i.e., the tree height
is evenly distributed within the footprints). However, it was reported by Hyde et al. [41]
that the uneven distribution of canopy structure could increase the uncertainty on the
estimation of canopy structure with FW LiDAR as the dominant trees at the edge of the
LiDAR footprint might not be detectable due to the lower laser energy at the edge of the
footprint in comparison to its center. Therefore, in a future work, the metrics proposed by
Wang et al. [26] should be assessed with GEDI acquisitions over natural forests. Another
source of uncertainty could be present for slopes higher than 20%. In this study, there
were very few acquisitions with slopes higher than 20%, and while the slope effects were
greatly reduced for slope ranges 0–20%, it is necessary to analyze the pertinence of the
Wang et al. [26] methodology for high slopes.

6. Conclusions

In this study, several approaches were tested in order to minimize the uncertainties due
to the presence of slopes on the estimation of forest canopy heights and wood volume from
GEDI data. The tested approaches can be classified into two groups. The first group are
methods incorporating traditional GEDI waveform metrics (e.g., Wext, RHn) and ancillary
SRTM DEM data (e.g., terrain slope S, surface roughness ROUG), while the second group
is based solely on new GEDI waveform metrics. The results showed that the methods
relying on ancillary SRTM DEM data provided limited correction capabilities for slopes
higher than 20% and this for both canopy heights and wood volume estimates. Indeed,
the random forest regression model (RFHRH) using the relative height metrics (RHn) as
well as the S and ROUG variables extracted from the SRTM DEM presented an increase
of 14% in terms of RMSE (8% decrease in R2) on the Hdom estimates for acquisitions over
terrain slopes between 10–20% and slopes higher than 20%. Moreover, the same model
when used to estimate the wood volume (RFVRH) showed a decrease in accuracy (increase
in RMSE) for slopes higher than 10%. Indeed, for the model RFVRH an RMSE increase on
the estimation of the wood volume of 74% was reported between GEDI acquisitions with
terrain slopes between 0–10% and GEDI acquisitions with terrain slopes higher than 10%.
These results indicate that the 30-m resolution SRTM DEM is not suitable for the 25-m wide
GEDI footprints.

Next, building on the model of Wang et al. [26], two sets of metrics were generated
for GEDI waveforms, the first set of metrics (sRHTn and sHGn) were generated using
a simulated ground return that varied based on the slope of the GEDI footprint. The
second set of metrics ( f RHTn and f HGn) were generated using a fitted Gaussian from
the ground return. Estimation approaches of Hdom and V using these sets of metrics and
the Random Forest technique provided the most accurate estimates of Hdom and V for all



Remote Sens. 2021, 13, 2136 20 of 22

terrain slope ranges. The (sRHTn and sHGn)-based model showed an RMSE that ranged
between 1.39 and 1.66 m (between 26.76 and 39.26 m3·ha−1 for V) while the ( f RHTn and
f HGn)-based method showed an RMSE that ranged between 1.26 and 1.34 m (between
26.78 and 36.29 m3·ha−1 for V). Moreover, the dependency of the GEDI metrics on slopes
(e.g., intercept of 0.069 for HT100) was greatly reduced for the two set of metrics (e.g.,
intercept of ≈ 0.003 for both sRHT100 and f RHT100). Nonetheless, the model based on the
(sRHTn and sHGn) performed slightly worse than the ( f RHTn and f HGn)-based model
for the estimation of both forest variables. The decrease in accuracy of the (sRHTn and
sHGn)-based model is due to the use of the 30-m SRTM DEM (the only available global
DEM) for the 25-m GEDI footprints. On the other hand, the ( f RHTn and f HGn) metrics
rely on the presence of a distinct ground return in the received waveform which might not
always be detectable over high sloping terrain. Therefore, it is recommended that for the
estimation of Hdom and V over moderately sloping terrain (i.e., presence of distinct ground
peak) the ( f RHTn and f HGn) metrics should be used, while the (sRHTn and s HGn) metrics
should be used for high sloping terrain (i.e., undetectable ground return).

Finally, the effect of slopes on the 25-m GEDI footprints is rather low as the estimation
on canopy heights degraded by a maximum of 1 m for slopes between 20 and 45%. In
regard to the wood volume estimation, the effect of slopes was more pronounced, and a
degradation on the accuracy (increased RMSE) of a maximum of 20 m3·ha−1 was observed
for slopes between 20 and 45%.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, data
Curation, visualization, writing—original draft: I.F. Conceptualization, methodology, validation,
formal analysis, data curation, writing—original draft: N.B. Conceptualization, validation, writing—
review and editing: C.A.A. Conceptualization, validation, writing—review and editing: J.L.S. Valida-
tion, writing—review and editing: J.S.B. Conceptualization, validation, writing—review and editing:
H.F.S. Validation, writing—review and editing: M.Z. Software, validation: I.R.C. Conceptualization,
methodology, validation, writing—review and editing: G.L.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received funding from the French Space Study Center (CNES, TOSCA 2021
project) and the National Research Institute for Agriculture, Food and the Environment (INRAE).
Suzano SA Company supported the forest-field data collection.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: GEDI data were downloaded free of charge from the Land Processes
Distributed Active Archive Center.

Acknowledgments: The authors would like to thank the GEDI team and the NASA LPDAAC (Land
Processes Distributed Active Archive Center) for providing GEDI data. The authors acknowledge
Suzano’s researchers, Renan Tarenta Meirelles Brasil and Carla Foster Feria for their technical support
and the CIRAD 2020 Suzano project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zribi, M.; Guyon, D.; Motte, E.; Dayau, S.; Wigneron, J.P.; Baghdadi, N.; Pierdicca, N. Performance of GNSS-R GLORI Data for

Biomass Estimation over the Landes Forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 150–158. [CrossRef]
2. Nelson, R.; Ranson, K.J.; Sun, G.; Kimes, D.S.; Kharuk, V.; Montesano, P. Estimating Siberian Timber Volume Using MODIS and

ICESat/GLAS. Remote Sens. Environ. 2009, 113, 691–701. [CrossRef]
3. Dubayah, R.O.; Sheldon, S.L.; Clark, D.B.; Hofton, M.A.; Blair, J.B.; Hurtt, G.C.; Chazdon, R.L. Estimation of Tropical Forest

Height and Biomass Dynamics Using Lidar Remote Sensing at La Selva, Costa Rica: Forest dynamics using lidar. J. Geophys. Res.
2010, 115, G2. [CrossRef]

4. Ploton, P.; Pélissier, R.; Barbier, N.; Proisy, C.; Ramesh, B.R.; Couteron, P. Canopy Texture Analysis for Large-Scale Assessments of
Tropical Forest Stand Structure and Biomass. In Treetops at Risk; Lowman, M., Devy, S., Ganesh, T., Eds.; Springer: New York, NY,
USA, 2013; pp. 237–245; ISBN 978-1-4614-7160-8.

http://doi.org/10.1016/j.jag.2018.09.010
http://doi.org/10.1016/j.rse.2008.11.010
http://doi.org/10.1029/2009JG000933


Remote Sens. 2021, 13, 2136 21 of 22

5. Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Vaglio Laurin, G.; Saah, D. Aboveground Forest Biomass
Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res. 2012, 2012, 436537.
[CrossRef]

6. Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar Remote Sensing for Ecosystem Studies. BioScience 2002, 52, 19.
[CrossRef]

7. Fayad, I.; Baghdadi, N.; Alcarde, C.; Stape, J.-L.; Bailly, J.S.; Scolforo, H.F.; Zribi, M.; le Maire, G. Assessment of GEDI’s LiDAR
Data for the Estimation of Canopy Heights and Wood Volume of Eucalyptus plantations in Brazil. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2021. (under revision).

8. Anderson, K.; Hancock, S.; Disney, M.; Gaston, K.J. Is Waveform Worth It? A Comparison of LiDAR Approaches for Vegetation
and Landscape Characterization. Remote Sens. Ecol. Conserv. 2016, 2, 5–15. [CrossRef]

9. Alexander, C.; Tansey, K.; Kaduk, J.; Holland, D.; Tate, N.J. Backscatter Coefficient as an Attribute for the Classification of
Full-Waveform Airborne Laser Scanning Data in Urban Areas. ISPRS 2010, 65, 423–432. [CrossRef]

10. Sumnall, M.J.; Hill, R.A.; Hinsley, S.A. Comparison of Small-Footprint Discrete Return and Full Waveform Airborne Lidar Data
for Estimating Multiple Forest Variables. Remote Sens. Environ. 2016, 173, 214–223. [CrossRef]

11. Chen, Q. Retrieving Vegetation Height of Forests and Woodlands over Mountainous Areas in the Pacific Coast Region Using
Satellite Laser Altimetry. Remote Sens. Environ. 2010, 114, 1610–1627. [CrossRef]

12. Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat Mission. Geophys. Res. Lett. 2005,
32, L21S01. [CrossRef]

13. Lefsky, M.A.; Harding, D.J.; Keller, M.; Cohen, W.B.; Carabajal, C.C.; Del Bom Espirito-Santo, F.; Hunter, M.O.; de Oliveira, R.
Estimates of Forest Canopy Height and Aboveground Biomass Using ICESat: ICESat estimates of canopy height. Geophys. Res.
Lett. 2005, 32. [CrossRef]

14. Fayad, I.; Baghdadi, N.; Guitet, S.; Bailly, J.-S.; Hérault, B.; Gond, V.; El Hajj, M.; Tong Minh, D.H. Aboveground Biomass Mapping
in French Guiana by Combining Remote Sensing, Forest Inventories and Environmental Data. Int. J. Appl. Earth Obs. Geoinf. 2016,
52, 502–514. [CrossRef]

15. Baghdadi, N.; le Maire, G.; Fayad, I.; Bailly, J.S.; Nouvellon, Y.; Lemos, C.; Hakamada, R. Testing Different Methods of Forest
Height and Aboveground Biomass Estimations From ICESat/GLAS Data in Eucalyptus Plantations in Brazil. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2014, 7, 290–299. [CrossRef]

16. Boudreau, J.; Nelson, R.; Margolis, H.; Beaudoin, A.; Guindon, L.; Kimes, D. Regional Aboveground Forest Biomass Using
Airborne and Spaceborne LiDAR in Québec. Remote Sens. Environ. 2008, 112, 3876–3890. [CrossRef]

17. El Hajj, M.; Baghdadi, N.; Labrière, N.; Bailly, J.-S.; Villard, L. Mapping of Aboveground Biomass in Gabon. Comptes Rendus
Geosci. 2019, 351, 321–331. [CrossRef]

18. Pourrahmati, M.R.; Baghdadi, N.N.; Darvishsefat, A.A.; Namiranian, M.; Fayad, I.; Bailly, J.-S.; Gond, V. Capability of
GLAS/ICESat Data to Estimate Forest Canopy Height and Volume in Mountainous Forests of Iran. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2015, 8, 5246–5261. [CrossRef]

19. Rajab Pourrahmati, M.; Baghdadi, N.; Darvishsefat, A.A.; Namiranian, M.; Gond, V.; Bailly, J.-S.; Zargham, N. Mapping Lorey’s
Height over Hyrcanian Forests of Iran Using Synergy of ICESat/GLAS and Optical Images. Eur. J. Remote Sens. 2018, 51, 100–115.
[CrossRef]

20. Harding, D.J. ICESat Waveform Measurements of Within-Footprint Topographic Relief and Vegetation Vertical Structure. Geophys.
Res. Lett. 2005, 32, L21S10. [CrossRef]

21. Duncanson, L.I.; Niemann, K.O.; Wulder, M.A. Estimating Forest Canopy Height and Terrain Relief from GLAS Waveform
Metrics. Remote Sens. Environ. 2010, 114, 138–154. [CrossRef]

22. Pang, Y.; Lefsky, M.; Andersen, H.-E.; Miller, M.E.; Sherrill, K. Validation of the ICEsat Vegetation Product Using Crown-
Area-Weighted Mean Height Derived Using Crown Delineation with Discrete Return Lidar Data. Can. J. Remote Sens. 2008,
34, S471–S484. [CrossRef]

23. Xing, Y.; de Gier, A.; Zhang, J.; Wang, L. An Improved Method for Estimating Forest Canopy Height Using ICESat-GLAS
Full Waveform Data over Sloping Terrain: A Case Study in Changbai Mountains, China. Int. J. Appl. Earth Obs. Geoinf. 2010,
12, 385–392. [CrossRef]

24. Yang, W.; Ni-Meister, W.; Lee, S. Assessment of the Impacts of Surface Topography, off-Nadir Pointing and Vegetation Structure
on Vegetation Lidar Waveforms Using an Extended Geometric Optical and Radiative Transfer Model. Remote Sens. Environ. 2011,
115, 2810–2822. [CrossRef]

25. Ni-Meister, W.; Jupp, D.L.; Dubayah, R. Modeling Lidar Waveforms in Heterogeneous and Discrete Canopies. IEEE Trans. Geosci.
Remote Sens. 2001, 39, 1943–1958. [CrossRef]

26. Wang, Y.; Ni, W.; Sun, G.; Chi, H.; Zhang, Z.; Guo, Z. Slope-Adaptive Waveform Metrics of Large Footprint Lidar for Estimation
of Forest Aboveground Biomass. Remote Sens. Environ. 2019, 224, 386–400. [CrossRef]

27. Næsset, E. Predicting Forest Stand Characteristics with Airborne Scanning Laser Using a Practical Two-Stage Procedure and
Field Data. Remote Sens. Environ. 2002, 80, 88–99. [CrossRef]

28. Lee, S.; Ni-Meister, W.; Yang, W.; Chen, Q. Physically Based Vertical Vegetation Structure Retrieval from ICESat Data: Validation
Using LVIS in White Mountain National Forest, New Hampshire, USA. Remote Sens. Environ. 2011, 115, 2776–2785. [CrossRef]

http://doi.org/10.1155/2012/436537
http://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
http://doi.org/10.1002/rse2.8
http://doi.org/10.1016/j.isprsjprs.2010.05.002
http://doi.org/10.1016/j.rse.2015.07.027
http://doi.org/10.1016/j.rse.2010.02.016
http://doi.org/10.1029/2005GL024009
http://doi.org/10.1029/2005GL023971
http://doi.org/10.1016/j.jag.2016.07.015
http://doi.org/10.1109/JSTARS.2013.2261978
http://doi.org/10.1016/j.rse.2008.06.003
http://doi.org/10.1016/j.crte.2019.01.001
http://doi.org/10.1109/JSTARS.2015.2478478
http://doi.org/10.1080/22797254.2017.1405717
http://doi.org/10.1029/2005GL023471
http://doi.org/10.1016/j.rse.2009.08.018
http://doi.org/10.5589/m08-074
http://doi.org/10.1016/j.jag.2010.04.010
http://doi.org/10.1016/j.rse.2010.02.021
http://doi.org/10.1109/36.951085
http://doi.org/10.1016/j.rse.2019.02.017
http://doi.org/10.1016/S0034-4257(01)00290-5
http://doi.org/10.1016/j.rse.2010.08.026


Remote Sens. 2021, 13, 2136 22 of 22

29. Neuenschwander, A.; Pitts, K. The ATL08 Land and Vegetation Product for the ICESat-2 Mission. Remote Sens. Environ. 2019,
221, 247–259. [CrossRef]

30. Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The
Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote
Sens. 2020, 1, 100002. [CrossRef]

31. Gonçalves, J.L.d.M.; Rocha, J.H.T.; Alvares, C.A. Manejo do solo em sistemas de cultivo de Eucalipto e Pinus. In Manejo e
Conservação do Solo e da Água; 2019; Volume 1, pp. 1081–1117. Available online: https://www.researchgate.net/publication/3397
82827_Manejo_do_solo_em_sistemas_de_cultivo_de_Eucalipto_e_Pinus (accessed on 28 May 2021).

32. Dubayah, S.L. GEDI L1B Geolocated Waveform Data Global Footprint Level V001. 2020. Available online: https://doi.org/10.5
067/DOC/GEDI/GEDI_WFGEO_ATBD.001 (accessed on 27 May 2021).

33. Dubayah, S.L. GEDI L2A Elevation and Height Metrics Data Global Footprint Level V001. 2020. Available online: https:
//doi.org/10.5067/DOC/GEDI/GEDI_WF_ATBD.001 (accessed on 27 May 2021).

34. Dubayah, S.L. GEDI L2B Canopy Cover and Vertical Profile Metrics Data Global Footprint Level V001. 2020. Available online:
https://doi.org/10.5067/DOC/GEDI/GEDI_FCCVPM_ATBD.001 (accessed on 27 May 2021).

35. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
36. Ranson, K.J.; Sun, G. Modeling Lidar Returns from Forest Canopies. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2617–2626.

[CrossRef]
37. Riener, M.; Kainulainen, J.; Henshaw, J.D.; Orkisz, J.H.; Murray, C.E.; Beuther, H. GAUSSPY+: A Fully Automated Gaussian

Decomposition Package for Emission Line Spectra. A&A 2019, 628, A78. [CrossRef]
38. Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen,

S.; et al. Benchmark Map of Forest Carbon Stocks in Tropical Regions across Three Continents. Proc. Natl. Acad. Sci. USA 2011,
108, 9899–9904. [CrossRef] [PubMed]

39. Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian Decomposition and Calibration of a Novel Small-Footprint
Full-Waveform Digitising Airborne Laser Scanner. ISPRS J. Photogramm. Remote Sens. 2006, 60, 100–112. [CrossRef]

40. Lin, Y.-C.; Mills, J.P.; Smith-Voysey, S. Rigorous Pulse Detection from Full-Waveform Airborne Laser Scanning Data. Int. J. Remote
Sens. 2010, 31, 1303–1324. [CrossRef]

41. Hyde, P.; Dubayah, R.; Peterson, B.; Blair, J.; Hofton, M.; Hunsaker, C.; Knox, R.; Walker, W. Mapping Forest Structure for Wildlife
Habitat Analysis Using Waveform Lidar: Validation of Montane Ecosystems. Remote Sens. Environ. 2005, 96, 427–437. [CrossRef]

http://doi.org/10.1016/j.rse.2018.11.005
http://doi.org/10.1016/j.srs.2020.100002
https://www.researchgate.net/publication/339782827_Manejo_do_solo_em_sistemas_de_cultivo_de_Eucalipto_e_Pinus
https://www.researchgate.net/publication/339782827_Manejo_do_solo_em_sistemas_de_cultivo_de_Eucalipto_e_Pinus
https://doi.org/10.5067/DOC/GEDI/GEDI_WFGEO_ATBD.001
https://doi.org/10.5067/DOC/GEDI/GEDI_WFGEO_ATBD.001
https://doi.org/10.5067/DOC/GEDI/GEDI_WF_ATBD.001
https://doi.org/10.5067/DOC/GEDI/GEDI_WF_ATBD.001
https://doi.org/10.5067/DOC/GEDI/GEDI_FCCVPM_ATBD.001
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1109/36.885208
http://doi.org/10.1051/0004-6361/201935519
http://doi.org/10.1073/pnas.1019576108
http://www.ncbi.nlm.nih.gov/pubmed/21628575
http://doi.org/10.1016/j.isprsjprs.2005.12.001
http://doi.org/10.1080/01431160903380599
http://doi.org/10.1016/j.rse.2005.03.005

	Introduction 
	Study Area and Dataset 
	Study Area 
	In Situ Data 
	GEDI Dataset 
	Digital Elevation Model Metrics 

	Methodology 
	Stand Scale Dominant Heights Estimation 
	Wood Volume Estimation 

	Results 
	Estimation of Dominant Stand Heights (Hdom ) 
	Estimation of Wood Volume (V) 

	Discussion 
	Conclusions 
	References

