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Abstract: Clustering methods unequivocally show considerable influence on many recent algorithms
and play an important role in hyperspectral data analysis. Here, we challenge the clustering for
mineral identification using two different strategies in hyperspectral long wave infrared (LWIR,
7.7–11.8 µm). For that, we compare two algorithms to perform the mineral identification in a
unique dataset. The first algorithm uses spectral comparison techniques for all the pixel-spectra
and creates RGB false color composites (FCC). Then, a color based clustering is used to group
the regions (called FCC-clustering). The second algorithm clusters all the pixel-spectra to directly
group the spectra. Then, the first rank of non-negative matrix factorization (NMF) extracts the
representative of each cluster and compares results with the spectral library of JPL/NASA. These
techniques give the comparison values as features which convert into RGB-FCC as the results (called
clustering rank1-NMF). We applied K-means as clustering approach, which can be modified in
any other similar clustering approach. The results of the clustering-rank1-NMF algorithm indicate
significant computational efficiency (more than 20 times faster than the previous approach) and
promising performance for mineral identification having up to 75.8% and 84.8% average accuracies
for FCC-clustering and clustering-rank1 NMF algorithms (using spectral angle mapper (SAM)),
respectively. Furthermore, several spectral comparison techniques are used also such as adaptive
matched subspace detector (AMSD), orthogonal subspace projection (OSP) algorithm, principal
component analysis (PCA), local matched filter (PLMF), SAM, and normalized cross correlation
(NCC) for both algorithms and most of them show a similar range in accuracy. However, SAM
and NCC are preferred due to their computational simplicity. Our algorithms strive to identify
eleven different mineral grains (biotite, diopside, epidote, goethite, kyanite, scheelite, smithsonite,
tourmaline, pyrope, olivine, and quartz).

Keywords: long-wave infrared hyperspectral imaging; mineral identification; clustering of hyper-
spectral data; spectral comparison method

1. Introduction

Hyperspectral infrared imagery provides the spectral and spatial information
from the material’s surface and has many applications in different fields including in
geology [1–5]. The proposed approach challenges clustering strategies for the purpose of
mineral identification in a unique hyperspectral infrared imagery dataset, which increases
the novelty of this research.
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For several past decades [6], the spectral analysis technology has showed considerable
interest in airborne [6–12], portable instruments, and core logging [1,2]. The need for
an automatic system to analyze hyperspectral imagery led to many investigations in the
field of datamining (i.e., a Spectral Image Processing System (SIPS) [13], expert system for
mineral mapping in [14], or many other similar examples [15–20]). Classification methods
(e.g., support vector machine (SVM) [21–27], neural networks [28–30]) are supervised learn-
ing techniques that involve manually annotated examples in a training step. Supervised
learning highly depends on the quality of the training set (number of training examples,
labeling samples [27,28,31–36]), besides a tedious task of annotating data by a human. On
the other hand, clustering approaches do not need training to ultimately label samples, by
techniques such as K-means clustering [23,31,37–40], Fuzzy C-means [41–45], and other
types of clustering [21,33,46]. However, clustering schemes are important in terms of com-
putation requirements and similarity measurements. Here, the strategy to use clustering
is investigated for ground-based spectra (laboratory conditions) to identify the minerals
for portable instrument applications. We present in this paper a brief overview of the
application of the hyperspectral imagery for the purpose of portable instruments with
applications in geology. One very good example of using hyperspectral thermal infrared
(TIR) for core logging was presented by Kruse in 1994 which was called Portable Infrared
Mineral Analyzer II (PIMA II) and was functioned in a Short Wave Infrared spectrometer
(SWIR-1.3–2.5 /mum). It used a Spectral Angle Mapper (SAM) for split drill core at the size
of 1 cm intervals in both the cross- and along-core directions [1]. Two other comparable
approaches were presented by Yajima et al. for POSAM (Portable Spectroradiometer for
Mineral identification), which has been developed by the Metal Mining Agency of Japan
(former organization of JOGMEC [2]) in 1993 [3,4] and Coulter et al. that reviewed the
airborne hyperspectral system from visible infrared spectroscopy [5].

Hecker et al. (2008) analyzed the influence of reference spectra on classification of min-
erals (i.e., kaolinite) using SAM, and used synthetic images of three mineral endmembers
to try to classify them applying reference libraries derived from ground spectra (portable
infrared analyzer), United States Geologic Survey and airborne imagery; this led to in-
creasing the classification accuracy. Moreover, Hecker et al. (2008) used preprocessing
methods to suppress the influence of different referencing sources such as two types of
continuum removal (hull subtraction, hull quotient), and a combination thereof [47]. The
classification of this approach was efficient, but it was more a matching process between
the targeted and reference spectra rather than relying on any type of clustering or machine
learning approaches. The similarity of this approach to the proposed approach is due to the
ground based spectra and the matching algorithm used in the method. Continuous Wavelet
Analysis (CWA) is one of the feature extraction algorithms that is known to increase the
processing time during the identification process in spectral imagery. Bruce & Li (2001)
used wavelet analysis into hyperspectral data [48] and was followed by Rivard et al. (2008)
to create a better representation of spectral libraries and to minimize the viewing and
illumination measurement disparities [49]. Moreover, the estimation of oil sands was done
applying Gaussian singlets and derivative of Gaussian wavelets [50]. The CWA used for
hyperspectral long-wave infrared (3–14 µm) for rock encrusting lichens using airborne SE-
BASS (spatially enhanced broadband array spectrograph system, aerospace corp.) imagery
was performed based on finding the display peaks in reflectance (maximum reflectance)
in the mineral’s spectra [51]. These approaches increased the level of processing, whereas
they do not transform the process into an automatic identification system. Another re-
search effort on portable instruments which function for shortwave infrared (SWIR) and
visible near-infrared (VNIR) wavelength was proposed for spectropolarimetric imaging.
This system was based on acousto-optic tunable filter (AOTF) technology for desert soils
analysis (Grupta (2014)). The wavelength band covered 450–800 nm and 1000–1600 nm and
enabled a tuned optical wavelength and Radio Frequency (RF) (for piezoelectric transducer
of AOTFs) along with the spectral band [52].
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Unsupervised classification (clustering) methods are used in the hyperspectral field
due to their simplicity and avoiding the labeling into the learning procedure, which
often exists in supervised learning approaches. Moreover, clustering offers the ability to
group the spectra into adjustable initial class numbers (common property with supervised
learning approaches). This provides a better performance versus spectral dependent
approaches such as specific wavelength bands (e.g., [14]).

Clustering was employed for various purposes such as improving matched
filter [22,37], mixed agriculture and forestry application [53], anomaly finding in tar-
get detection [54], endmember identification [55], and urban area [56] for Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) data [21,24,38,42,43,57,58]. A semi-supervised
band clustering on AVIRIS Indian pines [31] with Non-Negative Least Squares (NNLS)
was used for endmember estimation in Hyperion and AVIRIS data [59], which was a
supervised classification approach (a combination of Hyperion and Landsat for leaf area
index estimation in SWIR, and NIR is presented in [60]). A color based clustering was used
for mapping Kaolinite and was presented by Tyo et al. (2003) [61]. A Gustafson–Kessel
clustering and fuzzy clustering [41] with Multi-Objective Particle Swarm Optimization
(MOPSO) framework was used for AVIRIS and ROSIS sensor data [39]. Clustering Signal
Subspace Projection (CSSP) and Maximum Correlation Band Clustering (MCBC) were
employed based on PCA for AVIRIS data [46]. A Neighborhood Homogeneity Index (NHI)
for spectral-spatial clustering [62] and Spectral Angle Mapper (SAM) based clustering
were used employing k-means, CLUES, and SVM analysis for AVIRIS [23]. The proposed
approach, unlike previously proposed hybrid methods, deploys comparison clustering
analysis by changing the hierarchy of grouping in the mineral identification algorithm and
strives to increase this efficacy.

The applications of spectral comparison techniques such as SAM [1,47,63] or matched
filter (for target detection application [22,37,64]) and can be combined with machine
learning approaches [22,23,37,64] to increase their performance. Another way is to com-
bine them with other preprocessing approaches such as Continuous Wavelet Analysis
(CWA) [48–51,65,66] in order to increase the performance and efficiency of decision-making
processes (and deployed in supervised or unsupervised ways [22,23,64,65]). A Dynamic
Self-Organizing Maps (DSOM) and Fuzzy ART algorithm combination approach has
been presented for Sonar images segmentation [33] for ocean research and mineral map-
ping based on a blind spectral unmixing method and on sparse component analysis
(BSUSCA) [67]. These approaches are considered as more advanced approaches in terms of
datamining analysis.

An application of RGB false color composites (FCC) with wavelet transform used for
noise and continuum separation combined with PCA was employed for natural oil seepages
identification of the concentration due to the effects that oil in the soil causes on the spectral
signatures of vegetation [65] (also eigenvector application for anomaly detection [68]
or unmixing in Single-Pixel Independent Component Analysis SP-ICA [69]). This last
approach has similarity with our approach in terms of using RGB-FCC in the mapping.

Here, we comparatively propose two algorithms to perform the mineral identification.
The first algorithm uses spectral comparison techniques first for all the pixel-spectra and
creates RGB false color composites (FCC). Then, a color based clustering is used to group
the regions. The second algorithm clusters all the pixel-spectra to directly group the spectra.
Then, the first rank of Non-negative Matrix Factorization (NMF) extracts the representative
of each cluster and compares results with the spectral library of JPL/NASA. We compare
these two strategies of clustering to identify minerals in hyperspectral imagery. This is the
first time such a comparison is performed to challenge the clustering strategy and show
some road map to perform such analyses. Besides that, the proposed hyperspectral is
newly obtained for this specific purpose and is unique (in LWIR). Moreover, the methods
have considerable flexibility and can adopt any other form of clustering approach into the
algorithm. The main contributions of this paper are summarized in the following points:
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(1) Challenging clustering strategies by comparative analysis for two algorithms:
RGB-FCC and colored based clustering versus rank-one NMF based clustering.

(2) Creating a unique dataset applying hyperspectral infrared imagery in laboratory
conditions using the spectra obtained from portable instrument with adjusted lens and
compared their spectral with another dataset (NASA/JPL) as validation.

(3) We also provided a brief review summary of the similar methods and compared
their methods with the proposed strategies.

(4) We created another acquisition in different modality, Micro-XRF, to verify the
ground truth and our quantitative assessments.

Figures 1 and 2 depict the block-diagram of each algorithm to illustrate the comparison
between the two. Table 1 describes comparison of the proposed approach with the state-of-
the-art methods.

The rest of this paper is organized as follows: in the next section (Section 2), the
methodology of the approach is briefly described with different spectral comparison
approaches and the two algorithms are presented. The experimental and computational
results, as well as the discussion are presented afterward in Sections 3 and 4, respectively.
The conclusions (Section 5) finally state that the automatic mineral identification in LWIR
through the Clustering-rank1 NMF algorithm has lower computational complexity but
considerable better accuracy as compared to the FCC-Clustering algorithm and that fulfills
the objectives of this research.
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Figure 1. The block-diagram of proposed approach.
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Table 1. A comparison of the proposed approach to state-of-the-art methods.

Contributions versus Prevalent State-of-the-Art Approaches

Approach Topic of the Approach Comparison to the Proposed Research

Kruse (1996) Identification and mapping of minerals PIMA II with limited absorption band-depth mapping and spectral classification.
Yajima (2004) Mineral mapping using the POSAM method Spectral correction, normalize (spectral enhancement), and Hull (base line correction).
Zhang et al. (2014) Subpixel target detection metric learning Supervised metric learning approach with labeling.
Kruse et al. (1993) Spectral Image Processing System (SIPS) SAM without any machine learning technique.
Kruse et al. (1993) Expert system-based mineral mapping Application specific band false color mapping.
Gillespie et al. (1986) Color-based correlation analysis FCC-PCA, which is relatively sensitive to outliers and noise.
Tuia et al. (2011) multiscale cluster kernels Applied SVM, a supervised learning approach with labeling process.
Pompilio et al. (2014) Informational clustering of hyperspectral data A combination of SAM and SVM techniques.
Verdiguier et al. (2014) Semisupervised kernel feature extraction Semi-supervised learning method kernel partial least squares (KPLS) and PCA.
Khodadadzadeh et al. (2014) Subspace multinomial logistic regression (MLR) MLR considers as a supervised learning and required training and labelling.
Shao et al. (2014) Hierarchical semisupervised SVM Semi-supervised learning with training and labeling the data.
Zhang et al. (2016) Deep learning in hyperspectral imagery DL increases the dimensionality and complexity of training.
Chen et al. (2013) kernel sparse representation Correlation matrix with high dimensional training.
Su et al. (2011) Semisupervised dimensionality reduction Semi-supervised method still requires training.
Ma et al. (2016) Semisupervised classification Semi-supervised approach with partially training.
Chabane et al. (2017) Incremental clustering fuzzy SOM Dynamic SOM (DSOM) segmentation with dependency to weight updating.
Dopido et al. (2013) Semisupervised self-learning Semi-supervised approach with labelling of data.
Funk et al. (2001) Clustering based matched filter A modified K-means matched filter.
Zhong et al. (2006) An unsupervised artificial immune classifier Clustering and SAM.
Paoli et al. (2009) Multi-objective PSO clustering MOPSO modified K-mean clustering with dependency on the prior probability distribution.
Zhang et al. (2006) Feature learning with k-means Clustering is limited by PCA application.
Bilgin et al. (2008) Unsupervised fuzzy classification Fuzzy based clustering (Gustafson–Kessel) and adaptive distance norm.
Kowkabi et al. (2017) Hybrid preprocessing algorithm with clustering Supervised approach with training and labelling difficulties.
Ghaffarian et al. (2014) Histogram-based fuzzy c-means clustering Fuzzy C-means SVM, which needs labelling.
Chang et al. (2011) Signal subspace projection and band clustering The comparison of two clustering methods.
Jia et al. (2003) Cluster-space representation This method has training data for calculation of membership function.
Tarabalka et al. (2012) Hierarchical image segmentation This method is basically a supervised learning algorithm.
Tyo et al. (2003) Principal components-based spectral analysis Channel-driven PCA transform for classification.
Li et al. (2003) Clustering with neighborhood constraints Increasing constraints for clustering without any explicit comparative clustering analysis.
Zhong et al. (2016) Sparse component analysis This is more of a supervised approach.
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2. Methods

The methodology is summarized by comparing two algorithms for the identification of
minerals. Both of them involve spectral comparison techniques and clustering approaches.
They both compare the targeted minerals spectra to the ASTER-JPL NASA spectral library
(as reference spectra). The difference between these two algorithms is when clustering
is applied (Figure 2). Here, a brief summary of the spectral techniques used for both
algorithms is provided.

2.1. Spectral Comparison Techniques
2.1.1. Matched Filter

Matched Filter (MF) is a technique used for spectral mapping between the targeted
and reference spectra. Particularly, MF applies the maximization of the targeted spectrum
responses that theoretically suppress the cluttered background [70]. One feature of the
MF is that it normalizes every component in the space of principal component analysis
(PCA), applying the maximum between the global and local eigenvalue to the pixels. The
MF algorithm regularization normalizes every component of the PCA space through local
and global covariance eigenvalue linear combinations. In addition, two other forms of this

combination were involved by summation of the local and global MF = ∑i
TT

i yi
λlocal ,λGlobal

or

average of the local eigenvalue MF = ∑i
TT

i yi
avg(λlocal)

. The condition of regularization effects
on the matched filter is called the regularized matched filter (RMF) [71].

2.1.2. Orthogonal Subspace Projection (OSP) Algorithm

Orthogonal subspace projection (OSP) considers, as the first design, a method for
projection of an orthogonal subspace to eliminate the non-target response, and then a
matched filter is used to match the designed target from the data. OSP is a method that
applies a structured subspace model to describe spectral variability [72,73]. The original
OSP is described as TOSP(x) = dT P⊥U x. This form of OSP is appropriate for the purpose
of classification, but is not suitable regarding spectral unmixing and abundance map
estimation. Thus, another form of OSP has been introduced which is a scaled version
of the OSP classifier and can estimate an abundance map. Let P⊥U = IL×L −UU∗ be the
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projector of orthogonal subspace, x is the pixel spectrum, and d is the target spectrum. U
is the spectra matrix for non-target, U∗ = (UTU)−1UT is the pseudo-inverse of U, and
L is the bands number. OSP needs the spectra matrix of non-targeted area (region in the
image) and the spectral signatures of the non-targeted can directly be extracted through
the endmember, from the hyperspectral image [72,73].

2.1.3. Adaptive Matched Subspace Detector (AMSD) Algorithm

Based on the assumption of a linear mixing model for a pixel and its endmembers and
their abundance, the endmembers are representative of materials spectrally present in the
HIS. Thus, the mathematical concept follows:

x = Ea, ai ≥ 0 ∀i,
M

∑
i=1

ai = 1 (1)

where M is the image number of endmembers, E is an L×M matrix and its columns signify
the ith endmember, and a is an M× 1 vector where the ith entry reveals the abundance
value ai, and x is the vector of current pixel spectral signature L× 1. It is assumed that the
linear mixing model also involves the abundance values with two constraints: sum-to-one
and non-negativity. Considering the interaction of the spectra within a pixel (or the region
in this study), a hypotheses set can be made to discriminate those pixels holding targeted
pixels that entirely include background spectra. The hypotheses are

H0 : x = Bab + n (2)

H1 : x = Tat + Bab + n (3)

where T is an interested endmembers matrix of the target, B is a matrix representing
those endmembers that are considered as background, n is considered zeromean, white
Gaussian noise with variance σ2ab for the abundances of those endmembers (here, targeted
minerals), x is the pixel under test (targeted pixel-spectrum). The AMSD algorithm uses
the GLRT as a statistical test [74], but the sum-to-one constraints and non-negativity on the
abundance estimation is not satisfied. Thus, the AMSD leads to a solution of a closed-form
approach having the advantages of Constant False Alarm Rate (CFAR) property. Since the
AMSD algorithm follows GLRT, the first stage is the calculation of the unknown parameters
through Maximum Likelihood Estimates (MLE) employing log-likelihood and solving
every unknown parameter that gives the abundance estimation of MLE âb = (BT B)−1BTx
and the noise variance estimation of MLE σ2 = 1

L (x − Bâb)
T(x − Bâb). The GLRT then

considers the ratio of the hypothesis functions:

f1

f0
⇒ xT(I − B(BT B)−1BT)x

xT(I − E(ETE)−1ET)x
=

XT P⊥B x
XT P⊥Z x

(4)

As B and E are associated, it is not easy to identify this detection statistic distribution;
consequently, a new detection statistic is used

DAMSD =
XT(P⊥B − P⊥Z )x

XT P⊥Z x
(5)

This provides independency to the denominator and numerator. Moreover, it does not
depend on the estimation of the variance and abundance under the null hypothesis so the
detection possesses the property of CFAR [74,75].
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2.2. Clustering and Proposed Algorithms

Clustering is a term used for an unsupervised learning approach (unlike classifica-
tion, which is a supervised learning approach), to discriminate the spectra for the mineral
identification in hyperspectral imagery. A clustering method provides a fast performance
and reduces the typical difficulties of supervised approaches such as training and label-
ing that particularly occur when the number of mineral samples are limited [30]. The
proposed approach applies the K-means clustering for both algorithms. However, the
FCC-Clustering algorithm used HSV [76] (color) based clustering to group the RGB-FCC,
and the clustering-rank1 NMF algorithm directly groups the spectra. FCC-clustering and
clustering-rank1 NMF algorithms are presented in Tables 2 and 3, respectively. The spectral
comparison techniques used in these two algorithms are referred to as Mj(x, y), and it
changes for comparison assessment in both algorithms following different techniques used
for comparison assessment.

Parameters involved in the clustering in the proposed approach:
(1) The main concern to use the clustering algorithm involves the initial number of

the clusters. Here, this number strictly depends on the number of targeted minerals. In
addition, there are several ways to perform clustering without initialization cluster number
(e.g., Elbow method [77]) that is far from the subject of this manuscript.

(2) In the case of direct clustering of spectra, the hyperspectral acquisition param-
eters were fixed for all samples (and remained unchanged) to have no variation in the
grouping result.

Table 2. The FCC-clustering algorithm works by applying the clustering of false colors.

FCC-K-Means ALGORITHM
Given Input data I(x,y,z) ∈ RN×M×Z is a continuum removed

spectral data where I(x,y) ∈ RN×M is the spatial dimension
for RoI (in pixel unit), z is the spectral resolution.

Step 1 Calculation of the spectral comparison techniques:
Mj(x, y) = STj(I(x, y), Φi)
STj represents the spectral techniques corresponding to j
(e.g., j = 1→ M1 = NCC). Φi ∈ Rz denotes the reference
spectra (i.e., ASTER/JPL) with targeted mineral i.

Step 2 Generating FCC, ΨRGB, using Mj (for every j)
applying thresholding.

Step 3 Let ΨHSV a representation of FCC in HSV color system,
ΨHSV(x, y, 3) = ΨRGB(x, y, 3). K-means method Clusters
ΨHSV(p, 3), p ∈ RN×Minto k categories.
Jk = ∑K

k=1 ∑3
i=1‖ΨHSV i − Ψ̄k‖2

2
Output Jk represents the segmented mineral grains in different color.
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Table 3. The clustering-rank1 NMF algorithm for directly grouping the spectra.

K-Means-Rank1 NMF ALGORITHM
Given Input data I(x,y,z) ∈ RN×M×Z is a continuum removed

spectral data where I(x,y) ∈ RN×M is the spatial dimension
for RoI (in pixel unit), z is the spectral resolution.

Step 1 Clustering X(p, z), p ∈ RN×M into k categories. The clustering
is based on the spectral difference among the clusters (0 ≤ J ≤ k).
Jk = ∑K

k=1 ∑C(i)=k ‖Xi − X̄k‖2
2

Step 2 hq
1 is the rank one NMF (i = 1) of each cluster Cq

i after clustering
application.
∀q | 1 < q < k, Cq

i = W × hi, i = 1⇒ hq
1, q = 1, . . . , k

Step 3 Calculate spectral comparison techniques:
Mj(x, y) = STj(h

q
1, Φi)

STj represents the spectral techniques corresponding to j
(e.g., j = 1→ M1 = NCC). Φi ∈ Rz denotes the reference
spectra (i.e., ASTER/JPL) with targeted mineral i.

Output Generating FCC, ΨRGB, using Mj (for every j)
through thresholding.

2.3. FCC-Clustering

The FCC-Clustering algorithm is presented in Table 2. The input data of the algorithm,
I(x, y, z) ∈ RN×M×Z, is continuum removed spectral data [78,79] where I(x, y) ∈ RN×M

is the spatial dimension for selected RoI (contains targeted pixels), and z is the spectral
resolution. Calculation of the spectral comparison techniques is shown by the following for-
mulation:

Mj(x, y) = STj(Ij(x, y), Φi). (6)

STj represents the spectral techniques and j reveals the number of techniques exploited
(e.g., j = 1 −→ M1 = NCC). Φi ∈ Rz denotes the reference spectra (i.e., ASTER/JPL) and
i is the number of spectra corresponds to number of targeted minerals. The generation
of FCC, ΨRGB, depends on the amount of Mj (for every j). The three lowest Mj create
the (R,G,B) applying thresholding criterion. The output will be ΨRGB, an image where
the materials have been marked by different colors. Let ΨHSV be a representation of
FCC in the HSV color system, ΨHSV(x, y, 3) = ΨRGB(x, y, 3). Clustering method groups
ΨHSV(p, 3), p ∈ RN×M into k categories. Here, a K-means clustering technique has been
used; hence, we have:

Jk =
K

∑
k=1

3

∑
i=1
||ΨHSVi −Ψk||22 (7)

where Jk represents the targeted mineral grains clustered from other minerals by different
colors:

Jk =
K

∑
k=1

3

∑
i=1
||Xi − Xk||22 (8)

2.4. Clustering-Rank1 NMF

In the Clustering-rank1, the NMF algorithm is presented in Table 3. The input data of
the algorithm, I(x, y, z) ∈ RN×M×Z, is continuum removed spectral data where I(x, y) ∈
RN×M is the spatial dimension for selected RoI (contains targeted pixels), and z is the
spectral resolution. Clustering x(p, z), p ∈ RN×M into k categories, the clustering is based
on the spectral difference among the clusters (0 ≤ J ≤ k):
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Jk =
K

∑
k=1

∑
c(i)=k

||Xi − Xk||22 (9)

hq
1 is the rank one NMF (i = 1) of each cluster Cq

i after clustering application;
∀q|1 < q < k, Cq

i = W × hi, i = 1 ⇒ hq
1, q = 1, ..., k. Calculation of the spectral com-

parison techniques is as follows:

Mj(x, y) = STj(h
q
1, Φi) (10)

STj represents the spectral techniques and j reveals the number of techniques exploited
(e.g., j = 1 −→ M1 = NCCSAM). Φi ∈ Rz denotes the reference spectra (i.e., ASTER/JPL)
and i is the number of spectra that corresponds to the number of targeted minerals. The
generation of FCC, ΨRGB, depends on the amount of Mj (for every j). By thresholding, the
three lowest Mj create (R, G, B). The output will be ΨRGB, an image where the materials
have been marked by different colors.

2.5. Accuracy of the Proposed Approach

The accuracy of the algorithms is based on counting the correct detected pixels in the
hyperspectral images (Tables 4 and 5). For that, a ground truth is used following the rigid
manual labeling of the known location of the mineral grains in the samples and verified by
the results of µX-ray fluorescence (µXRF (Figure 3). The number of ground truth pixels
in each cases is also mentioned for all the samples with spatial resolution of ROI. For
every case of mineral mixture, the targeted mineral grains are mixed with quartz grains;
hence, for each mixed sample, accuracy is estimated through the accuracy of discrimination
between these two types of grains. Two types of errors are shown by false positives that
represent wrong mineral identification (one mineral instead of other) and a false negative
that reveals misidentification of the mineral grains, and both are calculated in each case.
Total accuracy of each algorithm is calculated by subtraction of the correct identification
and two errors for every sample:

Total accuracy = ACC(%)− FN(%)− FP(%) (11)

where local accuracy (ACC) is calculated by:

ACC(%) =
Correct detected pixels

Total pixels o f mineral(ROI)
∗ 100 (12)

Let FN stands for the false negative error and estimate it using below mentioned formulas:

FN(%) =
Total ROI − Correct detected pixels

Total ROI
∗ 100 (13)

The False Positive (FP) error is the wrong classified pixels and calculates by:

FP(%) =
Wrong classi f ied pixels

Total ROI
∗ 100 (14)
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Diopside & Quartz mixture - NCC

Biotite & Quartz mixture - NCC

Kynite & Quartz mixture - NCC

Epidote & Quartz mixture - NCC

Scheelite & Quartz mixture - NCC

Pyrope & Quartz mixture - NCC

Quartz

Pyrope

Original Hyperspectral image False color image Cluster contains Quartz Cluster contains Pyrope

Original Hyperspectral image

Original Hyperspectral image False color image Cluster contains Biotite Cluster contains Quartz

Original Hyperspectral image False color image Cluster contains Epidote Cluster contains Quartz

Original Hyperspectral image False color image Cluster contains Kynite Cluster contains Quartz

Original Hyperspectral image False color image Cluster contains Scheelite Cluster contains Quartz

QuartzBiotite
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Figure 3. Qualitative presentation of mineral grains segmentation after applying the clustering using an FCC-clustering
algorithm is showed. The left hand-side column shows the hyperspectral image (rows a–f, column 1), the second left column
presents FCC images using NCC (it can be any other spectral comparison techniques) before applying the clustering (rows
a–f, column 2), and the two right hand-side columns show the results of segmented grains (rows a–f, columns 3 and 4).
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Table 4. The quantitative accuracy of the two algorithms.

Accuracy
FCC-Clustering Rank1 NMFRigid GT NCC SAM NCC SAMMineral Spatial Resolution

Mineral Quartz Acc (%) Acc (%) Acc (%) Acc (%)
Biotite 123 × 138 496 885 52.45 68.79 78.58 78.58
Diopside 126 × 143 299 888 40.21 71.59 70.17 59.906
Epidote 123 × 148 260 890 48.64 70.54 81.66 81.66
Geothite 118 × 141 235 718 33.76 64.36 55.94 55.94
Kyanite 123 × 144 88 659 37.44 69.54 81.48 81.48
Scheelite 123 × 158 168 1006 48.69 56.51 84.87 59.29
Smithsonite 119 × 160 402 1117 28.39 47.24 50.91 67.15
Tourmaline 58 × 80 122 14 75.81 49.73 57.77 68.08
Pyrope 159 × 159 259 1654 <1 8.67 61.07 11.63
Olivine 172 × 142 435 2649 6.53 18.49 <1 7.028
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Table 5. The computational time of the two algorithms.

Computational Time (s)
FCC-Clustering Rank1 NMF Algorithm

MF MF
RMF RMF

Minerals
RoI NCC SAM OSP AMSD PLMF Sum µLocal µGlobal

RoI NCC SAM OSP AMSD PLMF Sum µLocal µGlobal
Biotite 131 × 143 310.39 273.74 808.21 865.07 609.35 376.20 376.36 383.67 377.87 123 × 141 15.25 15.23 15.63 15.69 15.36 15.20 15.19 15.20 15.63
Diopside 128 × 145 288.62 254.89 717.27 792.97 619.64 421.45 447.48 405.89 380.92 124 × 125 14.78 14.76 15.23 15.02 14.89 14.74 14.73 14.74 15.23
Epidote 125 × 157 332.82 320.90 863.70 907.06 608.15 433.59 440.40 459.21 468.72 125 × 157 22.12 22.11 22.49 23.1 22.23 22.08 22.08 22.08 22.49
Geothite 124 × 144 298.09 261.75 751.28 794.36 545.00 374.33 374.12 381.94 376.25 120 × 149 21.72 21.69 22.06 23.18 21.81 21.67 21.67 21.69 22.07
Kyanite 129 × 144 304.68 264.29 609.55 657.05 609.36 487.18 664.28 394.87 386.91 126 × 147 24.34 24.33 24.74 24.89 24.46 24.31 24.31 24.31 24.74
Scheelite 136 × 172 514.34 462.17 834.13 886.73 846.71 582.24 621.27 658.24 634.79 125 × 160 22.99 22.96 23.36 23.92 23.07 22.95 22.95 22.94 23.36
Smithsonite 120 × 163 384.92 293.94 783.89 826.86 641.74 409.60 411.54 417.70 410.70 119 × 160 22.37 22.35 22.89 23.51 22.51 22.35 22.35 22.34 22.88
Tourmaline 50 × 55 211.01 205.60 269.15 289.13 252.78 213.70 213.57 214.16 213.51 56 × 62 7.79 7.78 8.12 8.83 7.89 7.75 7.75 7.75 8.12
Pyrope 144 × 152 362.38 325.40 674.05 693.06 652.95 349.78 346.04 356.81 347.67 159 × 170 18.75 18.73 19.14 19.94 18.83 18.70 18.70 18.70 19.14
Olivine 157 × 139 497.70 331.28 1.0067 ×103 841.98 627.43 7.8214 × 103 369.47 356.42 1.2252 × 103 159 × 173 22.14 22.11 22.58 23.27 22.21 22.07 22.07 22.06 22.58
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3. Mineral Grains and Experimental Set Up

The experiment was conducted in a laboratory environment with a lightweight Hyper-
Camera imaging spectroradiometer (HYPER-CAM LW) [80] operating in the long-wave
infrared (LWIR) band (from 7.7 to 11.8 µm). It has spatial resolution of 320 × 256 with
a LWIR PV-MCT focal plane array detector. It has a spectral resolution of 4 cm−1 which
gives the spectra from 868 to 1270 cm−1. The individual spectra are gathered using the
Fourier-Transform Infrared Spectrometer (FT-IR) for every pixel with an instantaneous
field-of-view of 0.35 mrad [80]. There is a heating source between the hyperspectral camera,
and the grain samples (Figure 4 depict the experimental setup) to closely and uniformly
radiate the samples. Having the heating source located to the side of the sample and the
camera enables radiating the heat more uniformly. There are eight mineral grains targeted
to be automatically identified using the spectral analysis. Figure 5 shows the spectra from
mineral grains used in the experiments together with the spectra from ASTER JPL-NASA
spectral library to demonstrate the qualitative similarity among experimental and reference
spectra. A brief description of targeted minerals is presented in Table 6.

Experimental setup

Hyper-Cam (MWIR)
Hyper-Cam’s aperture + Macro lense

Heating source
Lense aperture in heating source

Grains sample
Carbon surface

InfraGold plate

InfraGold plate

Hyper-Cam’s aperture 
+ Macro lense

Hyper-Cam (MWIR)

Heating source

Figure 4. Experimental setup and mineral grains are shown in the figure. The experiments in the 7.7 µm to 11.8 µm
wavelength took place twice with the heating source turned on and switched off to calculate the continuum removed
spectra [78]. The image shows the experimental setup that depicts the location of the hyper-camera, heating source, infragold
plate, and mineral grains in the experiment.
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Number of cluster

Biotite

Number of cluster
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Number of cluster

Epidote

Number of cluster

Geothite

Number of cluster

Kyanite

Number of cluster

Scheelite

Number of cluster

Smithsonite

Number of cluster

Tourmaline

Figure 5. The box plot of the spectral angle (SAM) between the spectra in every cluster and their first rank NMF for every
mineral segmentation using the clustering rank1 NMF algorithm (similarity per cluster by spectral angle difference). The
Whisker and box plots are representing the similarity between the best representation of each cluster using NMF and the
entire spectra of the cluster itself (to show the NMF functioning). The higher the median line in the whisker plot, the more it
shows the number of spectral similarity in the clusters. In general, the bigger box and Whisker plots represent the higher
variation of similarity between the best representative spectrum in every mineral and spectra of the cluster.

Table 6. Characteristic of minerals studied by LWIR.

Minerals Chemical Formula
Biotite K(Mg, Fe)2−3 Al1−2Si2−3O10(OH, F)2
Diopside MgCaSi2O6
Epidote Ca2(Al2, Fe)(SiO4)(Si2O7)O(OH)
Goethite (FeO(OH))
Kyanite Al2SiO5
Scheelite CaWO4
Smithsonite (ZnCO3)
Tourmaline ((Na, Ca)(Mg, Li, Al, Fe2+)3 Al6(BO3)3Si6O18(OH)4)
Olivine (Mg+2, Fe+2)2SiO4
Pyrope Mg3 Al2(SiO4)3
Quartz SiO2

Properties of Hyperspectral Image

The image acquisitions have been performed while the minerals were attached to a
carbon substrate (shown in Figure 3a–e) and had an infragold plate in the background.
The infragold plate reflects all the radiation and is used to calculate the overall radia-
tion’s amount for Continuum Removal (CR) [78]. The experiment was performed while
the heating source was first on and then off. It is required to perform CR and avoid
calculation of the black-body’s temperature [78,79]. The size of hyperspectral images is
180× 300 pixels in the spatial resolution and 122 channels of spectral resolution.

Mineral identification using hyperspectral technology depends on spectral comparison
techniques and mineral spectral signature. The spectra for some of these minerals (e.g.,
Figure 5) are represented by maximum or minimum in particular wavelength. The location
and types of these particular features within the wavelength band play an important role
in the identification’s accuracy. The minerals for this research have reasonable signatures
in the 7.7–11.8 µm band. Smithsonite, scheelite, and goethite have more similar spectra
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to each other in terms of spectral shape (location of extrema). This causes a problem for
identification of the minerals once they are combined in a mixture form as their spectral
features would be similar. In this example, only scheelite has a maximum peak before
11.8 µm, and it makes scheelite detectable. In contrast, goethite and smithsonite have
a peak after a 11.8 µm band (not in the range of our hyper-camera), and this makes
them undetectable for both algorithms (geothite example in Figures 3c and 5) with the
used system.

4. Results
4.1. The Results of Spectral Comparison Techniques

The results are shown for the FCC-clustering proposed algorithm using the RGB-
FCC (Figures 5 and 6). This provides a better visualization of the spectral differences
among the minerals by placing each mineral target as a certain weight amount in colors.
FCC provides a good difference criterion that can easily be discriminated by a clustering
approach (the results of the FCC-clustering algorithm are shown in Figure 6). Some of
the spectral techniques applied to the images are not necessarily for spectral comparison
approaches such as NCC or SAM. However, these techniques have been used to investigate
the strength of the method with respect to the extraction of spectral differences. In order to
apply these techniques, a MATLAB hyperspectral image index analysis toolbox [81] was
used. The quantitative results of the FCC-clustering algorithm are shown in Table 2.

4.2. Results of the Two Algorithms

The results of the spectral comparison technique were presented in the previous
section; in this section, the clustering results are shown in Figures 5 and 6. This includes
the clustering approach for both algorithms. The results of the FCC-clustering strategy are
presented in comparison with the second hyperspectral method. Applying the clustering
in a different hierarchy with spectral analysis techniques creates two approaches that
have two similar outcomes. Figure 6 shows the performance of the color based clustering
approach for the algorithms. Besides the computational load which is considered as
significantly different between these methods (Table 5), clustering after using spectral
analysis (in the FCC-clustering algorithm) is considered as a more sensitive algorithm, and
this is caused by the dependency of the clustering to the generated color (RGB-FCC). A low
performance in spectral comparison techniques creates misclassification in the algorithm,
for instance: diopside applying NCC has lower performance than SAM, and it created
more false negatives after clustering (Table 2).

However, the sensitivity of the clustering-rank1 NMF algorithm lies under the applica-
tion of clustering techniques. The same example of diopside that has more false negatives
because of clustering poor performance (Table 4). Sometimes, due to the spectral curve that
does not have significant extrema in the band of the hyperspectral information, the cluster-
ing method cannot discriminate the clusters from each other (i.e., in the case of goethite
and smithsonite minerals). In such a situation, increasing the number of groups in the
clustering initialization partially solves the problem. Even though this solves the problem
in the clustering, the clusters selected as different categories might have similar content
materials. This is corrected by the application of the spectral comparison techniques that
categorize all of this similar grouping into one category. However, in the case of similar
mineral spectra or unspecified spectral exterma in minerals, the problem remains unsolved.
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Figure 6. Some examples of clustering rank1 NMF algorithm results are shown in the figure. Column a shows the original
hyperspectral images of minerals. Columns b,c represent the rank one NMF of clustering on spectra and d are the mineral
signatures from JPL-ASTER spectral library in 7.7–11.8 µm. FCC results of the algorithm using SAM are shown in column e.
In each mixed sample mineral, two different mineral signatures are present because the targeted grains are mixed with
quartz grains. In 4c, there is no signature shown for geothite because the clustering was not able to detect the signatures
of goethite.
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Applying these algorithms provides an opportunity to compare them through the
mineral identification task and resulting computational load. The FCC-clustering algo-
rithm seems heavier in computation time when compared to the clustering-rank1 NMF
algorithm due to the application of the spectral analysis for each spectrum. Furthermore,
the clustering-rank1 NMF algorithm clusters all the spectra that result in heavy computa-
tions as well. Table 4 presents the accuracy of both algorithms, and Table 5 indicates the
computational load for each algorithm with different spectral analysis. Averaging and
factor analysis can provide better outcomes, particularly the factor analysis provides more
statistical information for the selection of the spectral representative in the algorithm. We
applied NMF to select a spectral representative for each cluster. Figures 5 and 7 show some
examples of NMF results and box-plots for different categories of minerals and present the
qualitative and quantitative representation for the application of such techniques, respec-
tively. A higher number of initialization for the clustering allows a re-selection of the same
spectral mineral in two or more different categories. This difficulty can also be solved in
the latter hierarchy by applying spectral analysis, which means that this analysis selects
the same mineral categories for these selections.

It is noticeable that the location of the detected pixels is vital to identify the mineral
grains. In other words, we would like to have correctly detected pixels located on the
surface of mineral grains and even one or two pixels detected on the surface of minerals
indicate the grain content and ultimately could yield to an accurate identification (grain-
based identification). We also provide pixel-based accuracy percentages (at Table 4 or
Table 7). For example, kyanite and scheelite have been detected with a very limited number
of pixels but very accurately because these pixels are in the grain’s surface. In terms of
spectral comparison technique accuracy of the algorithms, the SAM and NCC provided
better accuracy as compared to OSA and AMSD that required the background spectra in
their calculations. Matching filter (PLMF) did not succeed with detecting the minerals
and was omitted from the accuracy calculations. Table 4 shows the accuracy of spectral
comparison techniques using the clustering-rank1 NMF algorithm. The accuracy of biotite
& quartz, epidote and quartz, geothite and quartz, and kyanite and quartz are the same for
NCC and SAM, and this indicates the dependency of the clustering-rank1 NMF algorithm
to the clustering. This is also shown in Table 3 for the clustering-rank1 NMF algorithm.
However, the accuracy of NCC and SAM in the FCC-clustering algorithm is not similar
and indicates that the identification process in the FCC-clustering algorithm depends more
on the performance of the spectral comparison techniques than on clustering.
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Figure 7. Some example of binocular images from the grains of biotite a,b, diopside c,d, tourmaline e,f and mixed with
quartz grains are shown. In addition, the/µXRF image of the samples are also shown in the image to verify the ground truth
images and labeling. g1–g3 and h1–h3 depict the images of diopside-quartz and epidote-quartz samples using Micro X-ray
fluorescence (µXRF), respectively. The presence of magnesium and aluminum elements in diposide and epidote is shown in
g4 and h4, respectively. g5,h5 represent mapping diposide and epidote binocular images to the automatic identification
results using ArcGIS. i1–i4 show a point in the grains of diopside and epidote. Moreover, the lower raw in the figure shows
SEM images of diopside, epidote, tourmaline, and pyrope to indicate the surface of these grains.
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Table 7. The quantitative accuracy for spectral comparison techniques in the second algorithm.

Accuracy of Spectral Comparison Techniques

Minerals Mixture NCC (%) SAM (%) OSP (%) AMSD (%)
ACC FN FP ACC FN FP ACC FN FP ACC FN FP

Biotite & Quartz 96.81 14.85 3.37 96.81 14.85 3.37 55.43 34.94 0.84 77.52 11.93 4.11
Diopside & Quartz 87.02 13.67 3.18 82.42 4.33 18.18 80.57 52.61 1.87 71.25 26.05 1.08
Epidote & Quartz 92.01 6.99 3.36 92.01 6.99 3.36 97.14 34.38 7.12 79.49 21.59 4.83
Geothite & Quartz 80.86 21.77 3.15 80.86 21.77 3.15 79.01 55.36 1.25 67.39 17.66 1.92
Kyanite & Quartz 90.86 5.66 3.72 90.86 5.66 3.72 71.84 24.30 1.39 86.29 6.01 7.04
Scheelite & Quartz 96.60 7.58 4.19 81.24 2.30 19.64 95.76 30.19 1.43 90.25 8.49 2.51
Smithsonite & Quartz 78.72 23.96 0 93.96 21.50 5.31 69.85 37.07 1.44 66.37 31.96 0.98
Tourmaline & Quartz 73.76 12.96 4.31 86.28 15.16 3.03 75.32 22.55 2.26 86.24 21.56 2.36
Pyrope & Quartz 72.13 4.28 6.78 81.74 0.68 69.43 86.83 12.54 2.07 51.08 6.65 5.17
Olivine & Quartz 62.69 60.83 1.42 84.78 5.85 71.90 83.96 5.57 3.64 73.17 10.67 8.88

5. Discussion
5.1. Automatic Identification Process

Mineral identification has been studied and researched for several decades, and most
of these approaches have been categorized under the hyperspectral remote sensing, air-
borne, portable instruments [82], and core logging [83] applications. The proposed research
addressed the application of hyperspectral infrared in the LWIR (7.7–11.8 µm) for the
purpose of automated mineral identification applying two algorithms that involved unsu-
pervised segmentation and spectral comparison techniques. It has been previously shown
that clustering techniques are more suitable for categorizing the minerals as compared
to classification (supervised) approaches. This is because of not having enough data to
properly train the classifier and expensive labeling [30,78]. Applying spectral comparison
techniques and clustering approaches gave the opportunity to identify the minerals using
two algorithms. The difference between these two approaches lies in the utilization of these
techniques in different hierarchies. Applying clustering or spectral comparison approaches
for all data spectral points in these two algorithms is considered as the bottle neck for both
algorithms due to the categorization task. Each of these algorithms, for all the data points,
can lead the entire algorithm to a high or low computational complexity. The algorithms
have reasonable performance for the identification of the minerals. Some minerals such as
goethite and smithsonite have no specific extrema in their LWIR spectra and their identi-
fication failed, regardless of which algorithm is applied (it is shown in Figure 5 and also
Table 4). In contrast, biotite, diopside, epidote, tourmaline, scheelite, quartz, and kyanite
have been identified more clearly due to their distinctive spectral signature in the LWIR.

5.2. Computational Complexity of the Algorithms

We analyzed two different algorithms using spectral comparison and clustering tech-
niques applied in different hierarchies. The FCC-clustering algorithm calculates the spectral
techniques for all the pixels of hyperspectral image spectra and gave false colors to these
features and ultimately segmented these false color regions by applying clustering. On
the contrary, the clustering-rank1 NMF algorithm directly applies the clustering to all
the pixels in the hyperspectral image. Then, the first rank of NMF is selected as the
spectral representative for each cluster (the statistical relationship among the clusters are
shown by box-plots in Figure 7). These spectra were compared with the reference spectra
(ASTER spectral library) and this led to finalizing the segmentation process. Selecting the
representative of each group using low-rank NMF (here rank-1 NMF) from each group
alleviates the influence of miss-classification (occurred by clustering) in the final spectral
comparison ([79,84] and showed that averaging of spectra would not be effective as far as
decomposition/factorization methods work). Moreover, NMF shows better performance
than the PCA, which might suffer from sensitivity to outliers and noise).
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The FCC-clustering algorithm shows itself to be more computationally costly as com-
pared to the clustering-rank1 NMF algorithm because of the application of the spectral
comparison approaches to the entire pixel’s spectra of the hyperspectral images. Neverthe-
less, the results presented in Table 4 indicate that the clustering-rank1 NMF algorithm is
also computationally costly due to direct clustering for the whole spectral pixel points. The
computational complexity of the clustering (here K-means) algorithm for the fixed k and d
(dimension) is O(n(dk+1) log n), where n is the number of entities to be clustered [85]. Some
heuristic algorithms such as Lloyds algorithm have the complexity of O(nkdi), where k is
the number of clusters, i is the number of iteration, and n is the number of d-dimensional
vectors [86]. On the other hand, some algorithms such as SAM have a cosine function
and have approximately a computational complexity of cosine which is O(M(n) log n) (for
the algorithm of Arithmetic-geometric mean iteration), where M(n) stands for the chosen
multiplication algorithm complexity [87]. Due to the division into the cosine function in
the SAM, the complexity of O(n2) corresponds to the division itself which increases the
whole complexity of the SAM function. The different computational complexity between
clustering and spectral comparison techniques is the reason why calculation of the spectra
for the clustering-rank1 NMF algorithm shows considerably lower complexity as compared
to the FCC-clustering algorithm.

The sensitivity of each algorithm depends on the spectral difference calculations. For
example, the FCC-clustering algorithm is sensitive to spectral techniques used for extraction
of the RGB-FCC to finally clustering them. However, there are many other better alternative
approaches that exist for visualization of spectra in the hyperspectral imagery (i.e., [88–91])
that can replace the current FCC method. In the clustering-rank1 NMF algorithm, the
sensitivity of the system lies in the clustering approach and, in particular, the number of
initialization in clustering. Besides this, there are other factors nominally involved in the
sensitivity of the proposed approaches such as the initialization of the clustering for the
FCC-clustering approach and the spectral analysis in the clustering-rank1 NMF method.
In the clustering-rank1 NMF algorithm, a spectrum from each selected cluster should
be compared to reference spectra from the ASTER JPL-NASA spectral library. Several
methods can be applied to select the best representative spectrum from each cluster such
as randomly selecting one spectrum, spectral averaging, or using factor analysis. Random
or averaging selection of the spectrum might not be an efficient way to select the spectral
representative in each cluster because of averaging and random calculation sensitivity
against bad spectra (wrongly grouped spectra or noisy spectra) that may occur in the
process. Some noisy spectra might be clustered into the different category of minerals and
random (or averaging) selection may not be a good option to suppress this effect, and this
ultimately influences the mineral identification.

6. Conclusions

The proposed approach presented a geological hyperspectral infrared imagery (in
the 7.7–11.8 µm-LWIR range) in laboratory conditions. This paper addressed quantitative
and qualitative assessments of two algorithms for the identification of several minerals
and challenged the application of clustering. The FCC-clustering algorithm applied the
spectral comparison techniques on the entire pixel-spectra of the input data cube and
spectral library of JPL/NASA. It generated the spectral difference that was presented
in RGB-FCC form, and a clustering grouped the different composites. The clustering-
rank1 NMF algorithm clustered all the pixel-spectra into different categories. Then, rank1

extracted from NMF as representative for each cluster were compared to the spectral
library of JPL/NASA through spectral comparison techniques that generated RGB-FCC
results. The results of the clustering-rank1 NMF algorithm indicated more significant
computational efficiency (more than 20 times faster) than the FCC-clustering algorithm.
The clustering-rank1 NMF algorithm showed more dependency on clustering rather than
the FCC-clustering algorithm that was more sensitive to spectral comparison techniques.
Both algorithms had promising performance for mineral identification having even more
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than 90% accuracy (using) a clustering-rank1 NMF algorithm. Several spectral techniques
were used such as AMSD, OSP, PLMF, SAM, and NCC, but most of them showed a similar
accuracy range (although PLMF exhibited a lower accuracy). Eleven different mineral
grains (biotite, diopside, epidote, goethite, kyanite, scheelite, smithsonite, tourmaline,
pyrope, olivine, and quartz) were studied. Future work can be more focused on clustering
approaches and the noise effect in mineral identification to increase the performance of
the system. The study of minerals with poorly shaped spectra is another important future
research avenue.
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