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Abstract: Peatlands play an important role in the global carbon cycle due to the high carbon storage 

in the substrate. Ecosystem production depends, for example, on the solar energy amount that 

reaches the vegetation, however the diffuse component of this flux can substantially increase 

ecosystem net productivity. This phenomenon is observed in different ecosystems, but the study of 

the atmosphere optical properties on peatland production is lacking. In this paper, the presented 

methodology allowed us to disentangle the diffuse radiation impact on the net ecosystem 

production (NEP) of Rzecin peatland, Poland. It allowed us to assess the impact of the atmospheric 

scattering process determined by the aerosol presence in the air mass. An application of atmospheric 

radiation transfer (ART) and ecosystem production (EP) models showed that the increase of aerosol 

optical thickness from 0.09 to 0.17 caused NEP to rise by 3.4–5.7%. An increase of the diffusion index 

(DI) by 0.1 resulted in an NEP increase of 6.1–42.3%, while a DI decrease of 0.1 determined an NEP 

reduction of −49.0 to −10.5%. These results show that low peatland vegetation responds to changes 

in light scattering. This phenomenon should be taken into account when calculating the global CO2 

uptake estimation of such ecosystems. 

Keywords: AOT; ecosystem production; peatland; diffuse radiation; radiation transfer model;  

carbon absorption; climate change 

 

1. Introduction 

The interaction between terrestrial ecosystems and the Earth’s atmosphere is one of 

the most critical ecological issues, since the properties of the atmosphere determine each 

ecosystem’s sustainability, development, or extinction [1]. The water and carbon dioxide 

balances of the biosphere are determined by both biotic and abiotic factors, and their 

global cycles are efficiently controlled by the solar energy that flows throughout the 

Earth’s system. Thus, physical parameters of the atmosphere such as temperature and 

transmissivity determine the global carbon cycle. Changes in the physical properties of 

the atmosphere determine the fate of the ecosystems, and their carbon balance are 

important issues in the context of the greenhouse effect phenomenon. Earth surface-

atmosphere CO2 exchange is strongly related to photosynthesis and respiration rates. Both 
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processes depend directly and indirectly on the total (SWin) solar radiation (the sum of 

direct (SWdir) and diffuse (SWdif) radiation) [2]. Thus, research into the optical 

parameters of the atmosphere is a basis for the assessment of one of the most fundamental 

controls of CO2 exchange. 

In the short time scale, the ecosystem’s C balance consists of the net ecosystem 

production (NEP) which is the result of two key processes: gross primary production 

(GPP) and ecosystem respiration (ER) (Equation (1)) [3]: 

NEP = GPP − ER, (1)

Where GPP represents the vegetation’s CO2 uptake through photosynthesis, while 

ER is the release of CO2 into the atmosphere through autotrophic and heterotrophic 

respiration processes. 

Since peatlands play one of the most important roles in the global carbon cycle, as an 

ecosystem with significant potential for a highly positive impact on the climate system 

(net cooling effect over centuries) [4–6], the study of the CO2 exchange between these 

ecosystems and the atmosphere is crucial for the prediction of the functioning of this huge 

natural soil carbon stock under global warming that appears in all climate zones [7–10]. 

This C storage has been formed through the photosynthetic fixation of carbon dioxide by 

vegetation, which in the long term has been larger than the release of C through plant 

respiration and peat decomposition [11]. Thus, the transformation of peatlands into 

carbon sources as the result of global warming is currently one of the biggest threats that 

may contribute substantially to the instability of the Earth-atmosphere thermodynamic 

system. Simultaneously, these ecosystems may prevent the loss of stability caused by 

crossing the planetary threshold. In other words, they have the potential to stop the 

independent process of increasing the greenhouse gas concentration and significantly 

slowing down or even reversing these couplings [12]. 

The canopy net photosynthesis is found to be dependent not only on the quantity but 

also on the degree of scattering of solar radiation, which has been confirmed by numerous 

simulations [13–15]. The increased production under more diffuse radiation is explained 

inter alia, as diffuse radiation more effectively penetrates the plant canopy [16–18]. This 

improves the photosynthetic activity of the lower located leaves in the canopy [2]. Long-

term observations show that in the last several decades, both positive (dimming - until 

mid-1990s) and negative (brightening) trends of diffuse irradiance have been observed on 

the Earth’s surface [19–22]. The trends of total solar radiation have been found as well [21], 

and their significance and direction are often related to local circumstances, e.g., 

urbanization [23–25]. Light scattering processes in the atmosphere are mainly determined 

by the presence of suspended components in the air, e.g., gases and different sized 

particles in the solid and liquid phases [26]. The presence of atmospheric aerosols, both at 

their height of occurrence in the air column [27] and the aerosol type [28,29], can affect the 

climate system due to their impact on the heat and water balances at both local and global 

scales [30]. Since aerosols also play an important role in the scattering process of the 

atmosphere [31,32], atmospheric radiative transfer (ART) models have been developed 

(e.g., [33]) in order to effectively simulate the radiation processes in the atmosphere [34]. 

The calculation of the solar irradiance with this model is realized on the basis of the 

parameters that integrate the effect of the presence of the aerosol on air properties. The 

aerosol optical thickness (AOT) is defined as the parameter that represents the airborne 

aerosol loading in the atmospheric column [35]. This measure can be effectively used for 

the assessment of the radiation transfer processes in the atmosphere [36]. AOT values 

measured on the ground are usually realized with sun photometers, which are often 

deployed within networks that provide technical support in terms of calibration and data 

processing, e.g., aerosol robotic networks (AERONET) [37]. 

The impact of diffuse solar radiation on ecosystem production was initially analyzed 

for agricultural areas, e.g., soybean, maize, peanut, and sugar beet crops [38–41]. Later 

studies were extended to other types of ecosystems, mainly deciduous and coniferous 
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forests, tundra, grassland, and the Canadian peatlands [14,16,42–50], but there is still a 

lack of such analyses for central European peatlands. The scattering process that 

determines the diffuse radiation amount is the result of the presence of both clouds and 

aerosols in the atmosphere. However, in a recently published study of diffuse radiation 

impact on peatland productivity, the separate effects of cloud and aerosol presence in the 

air column were not presented. In the case of the Canadian peatland studies, the analyses 

were focused on the impact of cloudiness on ecosystem production using a clearness index 

[50] or light use efficiency models [15,51], while New Zealand bog studies were based on 

different light response functions [52]. Thus, the main goal of the study was a quantitative 

estimation of the impact of optical parameter changes, determined by the aerosol presence 

in the atmosphere, on peatland net CO2 uptake in cloudless conditions. 

2. Materials and Methods 

2.1. Site Description 

Data presented in this paper were obtained at Rzecin peatland, located in the north-

western part of the Greater Poland Region, Poland, in Rzecin village (52°45′N; 16°18′E; 54 

m a.s.l) (Figure 1) [53]. The peatland is located around 70 km northwest of Poznań city in 

the Notecka Primeval Forest complex. This peatland is classified as fen and the vegetation 

is comprised of typical peatland species, e.g., roundleaf sundew (Drosera rotundifolia), bog 

cranberry (Oxycoccus palustris), and bog sedge (Carex limosa). There are also various 

mosses found at this site with rigid bog moss (Sphagnum teres) (Schimp.) being the 

dominant species [54]. Tall vascular plants, e.g., common reed (Phragmites australis), 

broadleaf cattail (Typha latifolia), and sedges (Carex spp.) with LAI >4.8 m2·m−2 dominate 

at the edge of the peatland, while bog mosses (Sphagnum spp.), fine bogmoss (Sphagnum 

angustifolium), flat topped bog moss (S. fallax), rigid bog moss (S. teres), and short, vascular 

plants like bog cranberry (Oxycoccus palustris), bog sedge (Carex limosa), bottle sedge (C. 

rostrate), wollyfruit sedge (C. lasiocarpa), common cottongrass (Eriophorum angustifolium), 

and roundleaf sundew (Drosera rotundifolia), with LAI < 1.0 m2·m−2 dominate in the middle 

of the ecosystem [55,56]. At the eastern part of this ecosystem, there is a shallow lake 

(remnants of a larger body of water) that has been partly covered within the peat 

formation process [57]. The floating carpet of poorly degraded peat (approximately 70 cm 

thick) is a particular feature of the Rzecin peatland. This is an effect of the moss layer 

growing process that has been ongoing on the lake surface over the last 200 years [58]. 

There are cultivated fields, pastures, and pine forests located around the peatland, and 

their impact on the ecosystem has been noticeable over the last 200 years [59]. The site 

substrate water pH is 4.9, and conductivity is 52.8 S·cm−1 [60]. A Nature 2000 site was 

established at the site in 2006 due to both plant and bird species richness. 

The site is characterized by a moderately warm climate, where the annual mean air 

temperature is 8.5 °C, the annual mean precipitation is 526 mm, and there is a prevailing 

western wind [61]. 
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Figure 1. Location of the Rzecin peatland in Poland (blue star); eddy covariance tower (red star); sun radiometer tower 

(orange star). 

2.2. Meteorological Conditions 

Between 13 June and 18 September, the average 30-minute air temperature was 17.6 

°C (minimum 2.0 °C, maximum 35.3 °C), while the vapor pressure deficit ranged from 0 

to 36 hPa, and the average relative humidity over this time was 79%—with minimum and 

maximum values of 32% and 100%, respectively. The DI values varied between 0.12 and 

1.0 over the studied period. The mean value of AOT500 collected with CIMEL sun pho-

tometer was equal to 0.15234, while the minimum and maximum values were 0.03535 and 

0.56571, respectively. The sum of total solar radiation and precipitation for this period 

were 1745 MJ⋅m−2 and 286.6 mm, respectively. 

2.3. Measurement Equipment 

2.3.1. Eddy Covariance 

The eddy covariance technique (EC) is a widely used method of CO2 exchange esti-

mation [2,62] on the scale of the entire ecosystem (100–2000 meters) [63,64] without vege-

tation and soil disturbances [62,65]. This method is based on the simultaneous measure-

ment of instantaneous values (fluctuations) of mass, e.g., CO2 concentration and vertical 

wind speed component. Such a measurement strategy allows the direct observation of 

vertical mass exchange between the atmosphere and ecosystem surface [66]. EC technique 

is currently the state-of-the-art measuring method that provides the most reliable estima-

tion of gas fluxes under field conditions [62]. 

The measurements of CO2 exchange at the Rzecin site were carried out with the eddy 

covariance system installed on a 4.5 m tall tower that was located in the middle of the 

peatland [53]. The EC system consists of a sonic anemometer R3-100 (Gill Ltd., UK) and 

an enclosed CO2/H2O gas analyzer LI-7200 (LI-COR, USA), which measures the fluctua-

tions of the vertical wind speed component and CO2/H2O concentration, respectively, at 

20 Hz frequency.  
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The 30-minute values of the CO2 fluxes were calculated with EddyPro [67]. Initially, 

the quality of the raw time series statistical tests recommended by [68] were applied (am-

plitude resolution, dropout, absolute limit, skewness, and kurtosis), as well as the spike 

count/removal according to [69]. Then, the following procedures were applied: compen-

sation of the fluctuation of air density [70], correction for spectral losses [71], flagging ac-

cording to Carbo Europe standard [72], and footprint calculations [73]. The footprint anal-

ysis showed that the origin of the measured fluxes was located within a 200 meter radius 

around the tower. 

2.3.2. Sun Radiometer 

The aerosol optical thickness (AOT) was measured by the multiband automatic 

sun/sky radiometer CE318 (CIMEL Electronique, Paris, France) that has been operating at 

the study site since May 2016. This solar-powered and weather-resistant robotic device 

has 9 spectral bands [37,74] and it is installed at a dedicated tripod tower (52°45′43.2”N; 

16°18′34.4”E) (Figure 1) at a height of 4 m above the surface a short distance from EC 

tower. The data obtained with the CE318 is automatically processed and transmitted to 

the AERONET website [75]. This ground-based global monitoring system coordinated by 

NASA consists of around 900 measurement stations around the world [74–76]. The 

strength of this network relies on provision and standardization of the measurement pro-

tocol, data processing, and calibration, allowing for multiyear and large-scale compari-

sons [37]. 

2.3.3. Meteorological Measurements 

The measurements of the air temperature (Ta) and relative humidity were carried out 

using a HC2A-S humidity probe installed at a standard height of 2 m above the surface 

(RotronicMessgeräte GmbH, Ettlingen, Germany). The values of both total (It) and diffuse 

(If) photosynthetic photon flux density (PPFD) were obtained with the sunshine sensor 

BF5 (Delta-T Devices, Burwell, UK) [77]. It was installed at a height of 3.0 m, and was 

placed on the same scaffold as the EC system. The height of BF5 installation prevented the 

obstacles e.g., tall plants in the sunshine sensor field of view. The diffusion index (DI) was 

calculated on the basis of these values as the ratio of If and It [47]. The solar radiation was 

measured also with a pair of upward and downward facing CM3 pyranometers 

(Kipp&Zonen, Delft, the Netherlands) that were used for total (SWin) and reflected 

(SWref) shortwave radiation flux densities, respectively. An additional pair of Quantum 

sensors (SKP215, Skye Instruments Ltd., Powys, UK) was applied for the measurements 

of both total (It) and reflected (Iref) photosynthetic photon flux density. Both pairs of sen-

sors were installed on a steel arm at a height of 2.35 m above the Menyantho trifoliatae-

Sphagnetum teretis Warén 1926 vegetation community [78], next to EC tower. This set of 

sensors provided the data that was used for the Broad–band Normalized Difference Veg-

etation Index (NDVIb) calculation according to the following formula (Equations (2)–(4) 

[79]: 

NDVIb =
ρ�� − ρ�
ρ�� + ρ�

 (2)

where: 

ρ�� =
RSref − I���
RSin − I�

 (3)

and: 

ρ� =
I���
I�

 (4)
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where: It is total PPFD [W⋅m−2], Iref is reflected PPFD [W⋅m−2], RSin is total shortwave ra-

diation flux density [W⋅m−2], and RSref is reflected shortwave radiation flux density 

[W⋅m−2]. 

The values of NDVIb correlate well with satellite normalized difference vegetation 

index (NDVI) data, but it does not suffer from discontinuity problems that stem from the 

remotely obtained observations [80]. Thus, the NDVIb was used here as a proxy for veg-

etation CO2 uptake capacity since the relation between NDVIb and gross ecosystem pro-

duction (GEP) was found to be noticeable on the studied site [81]. Within this study, the 

gross ecosystem production (GEP) is approximated as GPP, and small discrepancies be-

tween GPP and GEP were ignored here. 

2.4. Ecosystem Productivity (EP) and Atmospheric Radiative Transfer (ART) Modeling 

There are several ecosystem production models developed for peatlands [82–85]. 

They are effective tools for CO2 uptake estimation, but the solar radiation scattering pro-

cess is not taken into account as a factor in these algorithms. There were several models 

developed for higher vegetation (usually trees) where the spatial structure is taken as a 

factor that impacts the solar radiation interception in the plant canopy [86,87]. Due to the 

limited information about the peatland canopy structure, the simplified diffuse radiation 

ecosystem production (EP) model was applied within this study, where NEP was esti-

mated on the basis of the separate impact of direct (Ir) and diffuse (If) solar radiation [87] 

(Equation (5)). This model consisted of two ecosystem CO2 balance components: GEP, 

where the rectangular hyperbola equation’s parameters � (initial quantum yield) and � 

(empirical coefficient) are estimated separately for Ir and If, while ER is estimated on the 

basis of air temperature (Ta):  

NEP = −1 ⋅ c� ⋅ exp(c� ⋅ T�) −
(α� ⋅ I� + α� ⋅ I�) ⋅ (β� ⋅ I� + β� ⋅ I�)

(β� ⋅ I� + β� ⋅ I�) + (α� ⋅ I� + α� ⋅ I�) ⋅ I
 (5)

where NEP is net ecosystem production flux [µmol⋅m−2⋅s−1], Ta is air temperature at 

2 m height [°C], If is diffuse PPFD [µmol⋅m−2⋅s−1], Ir is direct PPFD [µmol⋅m−2⋅s−1], It is total 

PPFD [µmol⋅m−2⋅s−1], and c1, c2, αf, αr, βf, and βr are empirical parameters. 

The ecosystem respiration flux density (the exponential part of the formula) is as-

sumed to be Ta dependent. A simple atmospheric radiative transfer (ART) model de-

scribed by [33] has been applied to simulate solar irradiation (Figure 2). This model is 

mostly used for renewable energy applications [88], for ecosystem productivity simula-

tions [89], and for cloud screening data of solar irradiation [90]. Some empirical formulas 

described by Justus and Paris, [33] are used to define other ATM models [91,92]. Although 

the Justus and Paris ART model is very simple and it shows relatively good agreement 

with clear-sky observations (root mean square error of 3.5%). In this study, we used the 

second class pyranometer (CM3) with an accuracy of ±10% for daily sum flux, therefore 

the use of the simple ART model is justified.  

This ART model calculates clear-sky spectral direct and diffuse irradiance, spectral 

absorption within the atmosphere, and the upward reflected spectral irradiance at the top 

of the atmosphere. The irradiance model, based on similar approaches by [93], evaluates 

the spectral irradiance between 0.29 and 4.0 µm, with a resolution that varies from 0.005 

to 0.1 µm. This empirical ART includes absorption by two uniformly mixed trace gases 

(water vapor and ozone) as well as both the scattering and absorption by aerosol and the 

scattering by molecular particles. Both molecular and aerosol optical properties are mod-

eled with a simple wavelength-dependent optical thickness described by the Angstrom 

exponent, single scattering albedo, and asymmetry parameter. In the case of ozone and 

water vapor, the total columnar values are assumed. The broadband surface albedo is 

used to estimate the multi-scattering effect of incoming and outgoing solar radiation. 

There are the following input parameters used for testing and parameterizing this model: 

Julian day, solar zenith angle, aerosol optical thickness at 500 nm, total water vapor 

[g·cm−3], single scatter albedo at 500 nm (SSA500 = 0.95), asymmetry parameter (g = 0.65), 



Remote Sens. 2021, 13, 2124 7 of 22 
 

 

Angstrom exponent, and surface albedo. The values of AOT500 were applied during all 

calculations because this wavelength is in the range of radiation used for the photosyn-

thesis process. 

The compilation of ART and EP models was performed in order to develop the model 

where NEP is determined by the AOT values. In this case, the output values of direct and 

diffuse irradiance from the ART model are used as input data for the EP model (Figure 2). 

 

Figure 2. The calculation’s chart flow. AOT—aerosol optical thickness, SSA—single scattering albedo, g—asymmetry pa-

rameter, Ta—air temperature, It—total PPFD, If—diffuse PPFD, Ir—direct PPFD, NEP—net ecosystem production. 

2.5. Data Selection 

2.5.1. Broad–band Normalized Difference Vegetation Index 

The first step of data selection consisted of the extraction of the period when the 

plant’s photosynthetic efficiency was stationary in order to avoid the canopy stage of de-

velopment impact on CO2 exchange parametrization. Thus, the NDVIb’s weekly popula-

tions collected during 2016 were analyzed with a post hoc Tukey’s test to identify the 

periods of similar NDVIb values.  

2.5.2. Vapor Pressure Deficit (VPD) 

Due to the fact that the daytime leaf stomata activity is vapor pressure deficit de-

pendent [94], its impact on NEP was analyzed within the second step of data selection. It 

was found that if VPD value exceeds a certain threshold, it determines the stomata closing 

and the gas exchange between the plant and ambient air is substantially reduced or 

stopped [95,96].  

2.5.3. Clear Sky Conditions 

In order to estimate the separate aerosol effect on the peatland productivity, the clear 

sky conditions were needed to be extracted from the previously selected data set. Since 

the AOT values collected by the sun photometer are processed using the quality assess-

ment and quality check (QAQC) algorithm by AERONET, the final AOT database con-

tains three levels of quality data: 1.0, 1.5, and 2.0. All unprocessed data obtained by the 

radiometer are stored on level 1.0, while level 1.5 is selected by the cloud-screening and 

quality control algorithm application [37,75]. The data from level 2.0 is the result of cor-

rections that are based on AERONET calibration procedures and reflect cloudless condi-

tions. The periods when AOT data from level 2.0 were available were used as the last 

criteria of the data selection. Finally, the selected set of NEP, AOT, and meteorological 

data was the basis of parametrizing EP and ART models in order to estimate the Rzecin 

peatland CO2 productivity change to the AOT modifications during clear sky conditions. 

The simulation was performed on 23 June 2016 since it was characterized by clear sky 

conditions, all necessary data availability, optimal plant development stage, and VPD val-

ues below 20 hPa. Additionally, it is one of the longest days of the year. 
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2.6. EP and ART Models Accuracy Assessment 

The models were evaluated in terms of accuracy using the following parameters: 

mean absolute error (MAE), root mean square error (RMSE) [97], and normalized root 

mean square error (NRMSE). The standard error (SE) of EP model parameters was calcu-

lated according to the following formula (Equation (6)) [98]:  

SE =
σ

√N
 (6)

where σ is population standard deviation and N is the number of elements in the sample.  

All analyses presented in this paper were performed within R software [99]. 

3. Results 

3.1. Seasonal Patterns of NDVIb 

The NDVIb populations were found to be homogeneous within the period from 

week 24 to week 39 of 2016 (Figure 3). The test indicated no statistical difference (signifi-

cance level p = 0.05) between the NDVIb population of week 24 and the populations placed 

within the weeks from 25 to 39. On the basis of this analysis, the assumption that the CO2 

uptake capacity of the plant canopy was constant over this period was done. Finally, only 

data collected during the period from 24 to 38 weeks were taken into analysis due to the 

lack of AOT observation during week 39, so the analyzed data covered the period from 

13 June to 18 September 2016. 

 

Figure 3. The seasonal run of weekly populations of broad–band normalized difference vegetation 

index (NDVIb) collected at Rzecin peatland in 2016. The grey rectangle indicates the extracted 

period (weeks 24–38). Error bars indicate minimum and maximum values, the top of the boxes 

shows 25th percentile and the bottom 75th percentile, and horizontal line is median value. 

3.2. Diurnal Patterns of VPD 

The NEP vs. SWin dependency was used during this analysis and since carbon diox-

ide uptake of the peatland has a regular diurnal pattern, the hours of day values (UTC + 

1) were used as a proxy for solar angle [100] (Figure 4, 5). At the Rzecin site, the reduction 

of NEP was found between 12PM and 15PM (Figure 4) and it is associated with VPD val-

ues higher than 20 hPa. This observation corresponds with literature findings where VPD 

threshold values between 15 and 20 hPa were reported [96,101,102].  

Thus, the data collected during the periods when VPD exceeded the threshold of 20 

hPa was excluded from further analysis. The result of this selection has been presented in 

Figure 5d. 
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Figure 4. Mean diurnal pattern of the net ecosystem production (NEP) vs. total radiation flux den-

sity (SWin), during the period from June 13th to September 18th, 2016. The mean hours of day 

(UTC + 1) are shown. 

3.3. Diurnal Patterns of Micrometeorological Parameters 

The meteorological variables of Ta, VPD, DI, and NEP were presented in the context 

of both local time (solar angle proxy) and SWin (Figure 5). The afternoon values of Ta and 

VPD are higher than those observed in the morning (Figure 5a,b). The diffusion index (DI) 

is also higher in the afternoon than in the morning (Figure 5c). There is a drop of DI values 

between the hours of 15PM and 18PM, but the values are still higher than in the analog 

time of the morning and it corresponds to slight Ta increase that will be determined by 

higher insolation during this part of the day (Figure 5a). The ecosystem was more effective 

in terms of carbon dioxide absorption (higher NEP) during the afternoon than in the 

morning hours (Figure 5d). 
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Figure 5. Mean diurnal pattern of air temperature (Ta) (a), vapor pressure deficit (VPD) (b), diffusion index (DI) (c), net 

ecosystem production (NEP) (d) vs. total radiation flux density (SWin), during the period from June 13th to September 

18th, 2016. VPD > 20 hPa data was excluded. Whiskers indicate the standard deviation. The mean hours of day (UTC + 1) 

are shown. 

3.4. ART Model Parametrization 

In order to estimate the direct and diffuse solar irradiance using photometric meas-

urements, the ART model was used. The estimated values of solar irradiance (SWmod) 

were compared with the measured ones (SWin). There were very good matches found for 

total and diffuse irradiance, where b1 = 1.06, b0 = 60.3, R2 = 0.913 (Figure 6), and b1 = 0.5948, 

b0 = 26.1594, R2 = 0.667, respectively (MAE = 39.0 W⋅m−2, RMSE = 71.4 W⋅m−2, NRMSE = 

4.75%, N = 489). 

The ART overestimates some of the shortwave flux density values (SWmod) (Figure 

6). This is probably due to the fact that the instantaneous values of AOT are applied for 

the 30-minute shortwave radiation flux estimation while pyranometer’s observations are 

carried out over the whole observation period. Additionally, both the field of view and 

measuring procedures of those sensors differ substantially and it can lead to SWmod over-

estimation during the moments when sparse clouds are present in the atmosphere. 
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Figure 6. The half-hourly values of modeled (SWmod) vs. measured (SWin) solar irradiance. 

3.5. EP Model Parametrization 

The EP model was parameterized on the basis of measured values of Ta, total (It), 

direct (Ir), and diffused (If) irradiance. Nonlinear least-squares model was applied and all 

model parameters were found to be statistically significant (MAE = 2.36 µmol·m−2·s, RMSE 

= 3.09 µmol·m−2·s, NRMSE = 8.7%, N =1 034 (Table 1). 

Table 1. Ecosystem Production (EP) model parameters. 

Parameter Estimate Standard Error 

c1 11.450 *** 2.581 

c2 −0.011 * 0.005 

αf 0.333 ** 0.117 

αr 0.0576 ** 0.020 

βf 23.686 *** 2.006 

βr 27.550 *** 2.262 

*** statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001. 

3.6. Effects of Meteorological Conditions and Optical Properties on NEP 

Three levels of DI values were used during these calculations, where the observed DI 

values were increased and decreased by 0.1 (Table 2, Figure 7). This range of DI values is 

considered typical for cloud free conditions [47]. 

Table 2. Net ecosystem production (NEP) under different values of diffusion index (DI) and total 

photosynthetic photon flux density (It). 

It DI 
NEP 

(DI − 0.1) 

NEP 

(DI) 

NEP 

(DI + 0.1) 

ΔNEP 

(DI − 0.1) − DI 

ΔNEP 

(DI + 0.1) − DI 

µmol·m−2·s−1 [-] µmol·m−2·s−1 µmol·m−2·s−1 µmol·m−2·s−1 % % 

172 0.56 0.82 1.61 2.29 −49.0 42.3 

294 0.43 3.19 4.21 5.03 −24.2 19.7 

430 0.35 4.92 6.09 6.99 −19.3 14.8 

582 0.30 6.36 7.63 8.56 −16.6 12.2 

748 0.26 7.48 8.85 9.80 −15.4 10.8 

900 0.23 8.17 9.63 10.61 −15.2 10.2 

SWmod=1.06·SWin+60.3 

R2=0.913 
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1045 0.21 8.87 10.36 11.32 −14.4 9.3 

1176 0.20 9.49 10.98 11.92 −13.6 8.6 

1304 0.18 9.83 11.38 12.32 −13.6 8.3 

1416 0.17 10.21 11.74 12.66 −13.1 7.8 

1513 0.18 10.69 12.14 13.00 −12.0  7.1 

1594 0.17 11.01 12.43 13.25 −11.4 6.6 

1655 0.18 11.34 12.67 13.44 −10.5 6.1 

1697 0.17 11.34 12.71 13.50 −10.8 6.2 

1719 0.16 11.26 12.70 13.53 −11.4 6.5 

ΔNEP – the NEP relative change. 

 

Figure 7. Net ecosystem production (NEP) vs. total photosynthetic photon flux density (It) of Rzecin peatland calculated 

for conditions of June 23rd, 2016 (175th day of year). There were three different values of DI applied: measured DI (as-

terixis), DI-0.1 (triangles), DI + 0.1 (circles). 

The values of the measured DI that were applied in the calculation ranged between 

0.16 and 0.57 during the analyzed day. These values are typical for sunny conditions, how-

ever, the additional turbidity virtually introduced by the modification of DI can be deter-

mined by the presence of clouds, e.g., thin cirrostratus type or increased transparency of 

air. Thus, only the simulations performed with the clear sky ART model enables the esti-

mation of the cloud free atmosphere optical parameters impact on the peatlands produc-

tion. 

The conditions from the 23rd of June 2016 were applied again as input data in the EP 

model, however the ART model was used for the calculation of the total, direct, and dif-

fused PPFD. These estimations were done for three AOT500 values: 0.09, 0.13, and 0.17 

that are the 1st quartile, median, and 3rd quartile of AOT500 population, respectively (Ta-

ble 3, Figure 8). 
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Table 3. Net ecosystem production (NEP) under different values of aerosol optical thickness at 500nm (AOT500) and total 

photosynthetic photon flux density (It). 

AOT500 = 0.09 AOT500 = 0.13 AOT500 = 0.17 
AOT500 

(0.09–0.13) 

AOT500 

(0.13–0.17) 

AOT500 

(0.09–0.17) 

It NEP It NEP It NEP ΔNEP ΔNEP ΔNEP 

µmol·m−2·s−1 µmol·m−2·s−1 µmol·m−2·s−1 % % % 

74.94 −5.45 66.51 −5.67 60.31 −5.79 −3.9 −2.1 −5.9 

220.39 0.71 204.82 0.63 191.93 0.60 −11.8 −5.4 −17.8 

358.76 3.46 341.05 3.54 325.64 3.62 2.2 2.3 4.4 

507.71 5.42 489.25 5.59 472.73 5.75 3.0 2.7 5.7 

662.25 7.00 643.79 7.22 626.95 7.42 3.1 2.6 5.6 

817.93 8.17 799.85 8.42 783.13 8.63 2.9 2.5 5.3 

968.70 9.10 951.17 9.35 934.81 9.58 2.7 2.3 5.0 

1113.58 9.87 1096.66 10.13 1080.75 10.35 2.5 2.2 4.6 

1247.64 10.46 1231.31 10.71 1215.88 10.93 2.4 2.0 4.3 

1369.18 10.91 1353.39 11.16 1338.41 11.38 2.2 1.9 4.1 

1476.54 11.24 1461.22 11.49 1446.63 11.70 2.1 1.8 3.9 

1566.64 11.54 1551.71 11.78 1537.45 11.98 2.0 1.7 3.7 

1640.73 11.76 1626.09 11.99 1612.08 12.19 1.9 1.7 3.6 

1695.88 11.90 1681.45 12.13 1667.62 12.33 1.9 1.6 3.5 

1730.58 12.02 1716.27 12.25 1702.55 12.45 1.9 1.6 3.4 

ΔNEP is the NEP relative change. 

 

Figure 8. Net ecosystem production (NEP) vs. total photosynthetic photon flux density (It) of Rze-

cin peatland calculated for conditions on June 23rd, 2016 (DOY 175). There were three different 

values of AOT500 applied: 0.09 (black circle), 0.13 (grey circle), and 0.17 (white circle). 
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The change in diffusion index (DI) caused by the addition or subtraction of 0.1 from 

the measured values induced an NEP change of 0.68–0.98 µmol⋅m−2⋅s−1 (6.1%–42.3%) and 

−1.55 to −0.79 µmol⋅m−2⋅s−1 (−49% to −10.5%) of CO2 uptake, respectively (Table 2). The 

application of the ART model allowed for the assessment of aerosol impact on peatland 

NEP. The increase of AOT500 value from 0.09 to 0.13 and 0.17 determined the rise of NEP 

in the range between 0.08 to 0.22 µmol⋅m−2⋅s−1 (1.9–3.1%) and 0.16 to 0.48 µmol⋅m−2⋅s−1 (3.4–

5.7%) of NEP, respectively (Table 3). On the basis of these results, it was found that the 

method is responsive to AOT changes and there is a potential in CO2 uptake that is no-

ticeable in the AOT increase from 0.09 to 0.17. 

Aerosols can both absorb and scatter the radiation, thus the increase of AOT attenu-

ates the total irradiance (It) and increases the share of diffuse radiation (DI) in this energy 

flux. Usually, the increase of DI determined by AOT500 increase results in ecosystem pro-

duction (NEP) rise, however during the morning period the photosynthesis reduction de-

termined by It attenuation prevails the gain obtained due to diffuse radiation impact. This 

situation is observed under low It values (<250 umol⋅m−2⋅s−1) when NEP values are close 

to zero (gross ecosystem production compensates ecosystem respiration) (Figure 8). 

4. Discussion 

Peatlands, due to their hydrogenic origin, are very sensitive to shifts of both thermal 

and hydrological conditions, but seem to be sensitive also to diffuse radiation that can 

determine their productivity rise as a result of higher light use efficiency, which is known 

as a diffuse fertilization effect [103]. The application of locally parametrized ART and EP 

models allowed the estimation of the peatland’s productivity change as a result of the 

radiation scattering modifications determined by AOT change. Such a strategy of study 

does not often appear in the context of the research of diffuse radiation impact on terres-

trial vegetation productivity [104]. 

The short-term afternoon reduction of NEP (Figure 4) was observed in Rzecin. This 

limitation of NEP is probably determined by both the high leaf/air temperature that de-

termines the heat stress, as well as the high vapor pressure deficit that reduces the gas 

exchange between leaf and ambient atmosphere [46]. This midday depression of the net 

ecosystem photosynthesis can be reduced by the aerosol presence in the atmosphere due 

to the leaf temperature decrease, which was also found in studies of terrestrial vegetation 

in East Asia [105]. 

The initial analysis of the collected data showed that NEP is noticeably reduced dur-

ing periods when high values of VPD are found. Similar strong negative sensitivity to 

VPD of the Siberian taiga NEP was found on the basis of cloud and fire events analysis 

[106]. Thus, the stepwise data elimination showed that the afternoon NEP depression was 

not observed when VPD was lower than 20 hPa. This value corresponds with the results 

obtained by other authors for spruce, semi-arid steppe, and alpine shrub vegetation 

[16,107]. The wetland plants (well-watered environment) react to VPD similarly to other 

non-aquatic plants, and this indicates that the stomata of all plants act according to a com-

mon scheme. 

The diurnal patterns of Ta and VPD have characteristic shapes where the afternoon 

values of both have been found to be higher than in the morning (analogous hours). Max-

imum values of both Ta and VPD were found around noon. The temperature rise induces 

CO2 efflux (ER). Additionally, higher air temperature results in an increased VPD that 

may inhibit photosynthesis (GEP). Thus, the higher values of Ta and VPD observed dur-

ing the afternoon seemingly negatively affect NEP. In contrast to those two parameters, 

afternoon NEP values are higher than those observed during analogous hours in the 

morning. Response of DI between 15PM and 18PM can be unexpected (Figure 5c). This 

afternoon’s DI decrease is probably the effect of the convection process disappearance that 

leads to a situation where the sun’s disc is less often obscured by the clouds during low 

solar angles. However, in general, the DI values in the afternoon are still higher than in 

the morning, and this parameter seems to be a factor that is able to compensate and even 
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surpass the reduction of NEP determined by higher Ta and VPD. The results of this anal-

ysis are in very good agreement with other authors findings in case of Beech forest [100]. 

The Canadian peatland study showed no evidence of higher net ecosystem CO2 ex-

change under diffuse light conditions; however, this study area was covered mainly by 

the vegetation characterized by noticeably lower LAI (maximum 1.3 m2·m−2) [50]. 

Typical values of DI for cloud free conditions are usually found in the range between 

0.1 and 0.3 [16]. In this analysis, real measured values (0.16–0.57) were used as an input 

for NEP estimation using the EP model. The impact of a diffusion intensity change was 

estimated by the application of both the increase and decrease of DI by 0.1. Those modifi-

cations resulted in the change of DI values and its minimum values remained in a reason-

able range from 0.06 to 0.26. For all It values, the NEP rose by 0.68–0.98 µmol⋅m−2⋅s−1 (6.1–

42.3%) for a DI increase of 0.1 and declined by 0.79–1.55 µmol⋅m−2⋅s−1 (−49.0% to −10.5%) 

for a DI decrease of 0.1 (Table 2). The decrease of DI by 0.1 results in higher NEP reduction 

(−49.0 to −10.2%) than a DI increase (6.1–42.3%). Such asymmetric reactions of the ecosys-

tem to changes of DI values can be explained by the lower radiation use efficiency of up-

per leaves that gain the radiation load under less scattered radiation. 

The same EP model was used for the estimation of NEP during the cloud free condi-

tions when the AOT500 value increased from 0.09 to 0.13 and from 0.13 to 0.17 (Table 3). 

The direct effect of AOT increase resulted in a reduction in incoming radiation, but sim-

ultaneously it determined an increase of NEP for It values higher than 300 µmol⋅m−2⋅s−1. 

The estimated NEP rises were determined by the changes in AOT500 value from 0.09 to 

0.13 and from 0.13 to 0.17 resulting in an NEP increase in the range of 0.08–0.26 

µmol⋅m−2⋅s−1 (1.9–3.1%) and 0.15–0.48 µmol⋅m−2⋅s−1 (1.6–2.7%), respectively (Table 3). In the 

case of It values below 300 µmol⋅m−2⋅s−1, a reduction of NEP was found, and under these 

conditions the increase of diffuse radiation did not compensate for the loss of NEP caused 

by It decrease. The presented results correspond with other studies (e.g., [108–110]) where 

the effects of atmospheric aerosol presence on the absorption of CO2 by terrestrial ecosys-

tems showed opposite tendencies. An upward trend under moderate aerosol concentra-

tions and cloudless conditions was found when the Mount Pinatubo eruption enhanced 

the deciduous forests photosynthesis rate by 23% and 8% in 1992 and 1993, respectively 

[44], while the increase in aerosol loading by 0.09 to 0.16 caused the boreal and hemiboreal 

forest GPP to rise by 6–14% [111]. The opposite situation was found during the significant 

reduction of total radiation determined by high AOT values, i.e., higher than 2.7 [110], 

and the forest canopy modeling study showed that crossing the AOT threshold of 1.0 re-

sulted in canopy photosynthesis rate reduction despite the continuous light use efficiency 

increase [112]. 

These results are not surprising, since the diffuse irradiance values obtained from the 

ART model (cloud free conditions) were at least 40% lower than the observed one (b1 = 

0.5948, b0 = 26.1594, R2 = 0.667). The agreement between simulated and measured diffuse 

irradiance values was also reduced (lower R2) by the possible presence of clouds on the 

sky dome (Figure 6). In other words, the disagreement between simulated and observed 

values may be rooted in uncertainty of the cloud free conditions described in the results 

section. 

The changes in NEP determined by both DI and AOT500 modifications are weaker 

for higher values of It. This result indicates that ecosystem production potential for higher 

It is usually limited due to reaching the maximum capacity of plants to capture light and 

fix CO2 [104]. However, even in these circumstances the activation of lower leaves can 

determine higher CO2 uptake of the canopy. 

These findings show that NEP of short plant canopies is sensitive to diffuse radiation. 

This indicates that a complex spatial structure of a vegetation layer is the primary feature, 

more than plant size, causing the interaction of ecosystems with diffused radiation. The 

results presented here show that aerosols can noticeably impact the peatland CO2 uptake. 

This determines the necessity of peatland-atmosphere interaction studies at larger spatial 

and temporal scales to account for aerosol variability. This extrapolation in time and space 
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can be obtained by the application of observational networks that operate at a global scale. 

The following networks, then, can be the source of data for such extrapolation: integrated 

carbon observation system (ICOS) [113], baseline surface radiation network (BSRN) [114], 

and aerosol robotic network (AERONET), [37] where the ecosystem production, solar ir-

radiance, and aerosol optical thickness are permanently measured, respectively. 

Changes in the diffuse solar radiation (SWdif) received at the Earth’s surface have 

been observed over the last several decades [18,20–22,115]. In detail, changes in SWdif 

vary over the world, depending on the geographical location and measurement period. It 

has been noticed that there was a decrease in the annual mean series of SWdif in Spain 

from 1985–2010 of 2.1 Wˑm−2 per decade [116]. These results agree with the trends reported 

since the 1980s from a rural site in Estonia [19]. However, in the period from 1955–1992, 

no significant trend of SWdif was found there. A weak tendency towards a decrease in 

diffuse solar radiation during the period 1955–2005 was obtained in Moscow [20]. The 

decline in SWdif by 2.44 Wˑm−2 has also been observed in Germany from the 1960s to the 

late 1990s. The most likely causes of increases in global irradiance are the long-term de-

crease in the number of aerosols and longer sunshine duration [116]. 

The observed decrease in SWdif is in line with the brightening period reported in 

many regions of the world, which implies less scattering due to the decrease of aerosols 

and/or cloud cover during this period [117]. In the observed trends in SWdif, there are 

some exceptions. For example, Stanhill [18] found a statistically significant increase in 

SWdif at Dublin airport station. There are also some places where positive trends of SWdif 

were observed, e.g., U.S. (1995–2005) [118] and India (1971–2005) [22]. 

The diffuse solar radiation study in Poland shows the spatial and temporal variability 

of trends, and from the early 1970s to the mid -1990s, the annual DI mean series showed 

a significant increase in Warsaw [119], Wrocław, the Upper Silesian Industrial Region, and 

the Rybnik Coal Area [120], while a decrease in SWdif was found at the beginning of the 

1980s at Wrocław station [121]. Generally, the decrease of the scattering process intensity 

prevails and the reduction of the ecosystem production due to DI decrease should be ob-

served on a global scale [14]. However, the reaction of peatlands still requires estimation 

at the global scale. There is also the question of the reaction of peatland net production to 

a substantial increase in diffuse radiation determined by stratospheric eruptions, e.g., 

Mount Pinatubo [122]. 

The applied ART model estimated total solar radiation in a very realistic way, while 

the estimation of diffuse radiation flux is underestimated. This was mainly determined by 

the assumption of cloud free conditions. The measured diffuse radiation was found to 

have higher values than the modeled one and it was the effect of cloud presence. Thus, 

the application of the ART model gave us the opportunity to estimate the diffuse radiation 

impact on the cloud free moments and allowed for a separate study of aerosol impact on 

the peatland CO2 uptake. EP model was parameterized for conditions when VPD values 

were lower than 20 hPa and it is a limitation of the presented methodology. However, this 

data selection was necessary to omit the most important non-radiative limiting factor of 

plant photosynthesis. However, the obtained results show the the aerosol observations 

[35] in the atmosphere (their lifetime, properties and long-range transport) are important 

for the peatland or other ecosystems’ CO2 uptake estimations. 

The combination of the EP and ART models enabled the impact of aerosols on Rzecin 

peatland CO2 uptake to be deconvolved. This approach provides the linkage between the 

ecosystem production and optical properties of the atmosphere, and allows for the shift 

of the scale of the study by application of remotely sensed data. The impact of diffuse 

radiation is usually considered an important factor that determines the NEP of higher 

plant canopies. This has been the primary reason that research related to diffuse radiation 

impact on ecosystem production has focused on forest ecosystems [14,16,42–48]. This 

study suggests that shorter vegetation investigations should be carried out more inten-

sively, as fewer studies have been conducted on shorter plant canopies [43,49,50]. The 

presented analyses enrich our knowledge about the impact of aerosol presence on central 
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Europe peatland CO2 exchange, which provides the basis for further and deeper consid-

erations in this context. This analysis is also interesting due to the future cloud behavior 

simulations. It is predicted that the occurrence of clouds in some regions of the world will 

decrease [123] or even that some of their types (such as marine stratocumulus) will disap-

pear [124] along with an increase in the concentration of greenhouse gases in the atmos-

phere. Moreover, even if the impact of aerosols on the peatland carbon balance is transi-

ent, further work will be required to characterize and quantify the diffuse radiation impact 

on the CO2 exchange of these valuable ecosystems. 

5. Conclusions 

The complex character of the interaction between the ecosystems and atmospheric 

conditions required the application of models that provided the basis for the deconvolv-

ing of single factors, e.g., aerosol and/or cloud impact on ecosystem production. The study 

focused only on the impact of optical parameter changes, determined by the aerosol pres-

ence in the atmosphere, on peatland net CO2 uptake during cloudless conditions. 

Presented research elucidates the interactions between the optical parameters of the 

atmosphere, (e.g., DI and AOT500) and peatland production. Moreover, it clearly indi-

cates that the scattering radiation process determined by the presence of aerosol modifies 

the amount of absorbed CO2 from the air. 

These findings indicate a non-negligible impact of the optical properties of the at-

mosphere on the peatland NEP, thus the scattering process should be taken into account 

during further mass and exchange study of sphagnum dominated peatlands. It also indi-

cates that future changes of diffuse irradiance will modify the CO2 uptake of transitional 

peatland. The study reported here is ont a ‘local’ scale. However, it indicates that more 

work needs to be done regionally and globally to better understand the influence of direct 

and diffuse solar radiation, particularly on peatland ecosystems and the accumulation or 

emission of carbon for climate change studies, if these studies are to be robust and in-

cluded in climate change models. 
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