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Abstract: Dam failure of tailings ponds can result in serious casualties and environmental pollution.
Therefore, timely and accurate monitoring is crucial for managing tailings ponds and preventing
damage from tailings pond accidents. Remote sensing technology facilitates the regular extraction
and monitoring of tailings pond information. However, traditional remote sensing techniques are
inefficient and have low levels of automation, which hinders the large-scale, high-frequency, and
high-precision extraction of tailings pond information. Moreover, research into the automatic and
intelligent extraction of tailings pond information from high-resolution remote sensing images is
relatively rare. However, the deep learning end-to-end model offers a solution to this problem. This
study proposes an intelligent and high-precision method for extracting tailings pond information
from high-resolution images, which improves deep learning target detection model: faster region-
based convolutional neural network (Faster R-CNN). A comparison study is conducted and the model
input size with the highest precision is selected. The feature pyramid network (FPN) is adopted to
obtain multiscale feature maps with rich context information, the attention mechanism is used to
improve the FPN, and the contribution degrees of feature channels are recalibrated. The model test
results based on GoogleEarth high-resolution remote sensing images indicate a significant increase in
the average precision (AP) and recall of tailings pond detection from that of Faster R-CNN by 5.6%
and 10.9%, reaching 85.7% and 62.9%, respectively. Considering the current rapid increase in high-
resolution remote sensing images, this method will be important for large-scale, high-precision, and
intelligent monitoring of tailings ponds, which will greatly improve the decision-making efficiency
in tailings pond management.

Keywords: tailings pond; deep learning; object detection; faster R-CNN

1. Introduction

Tailings ponds are typically storage sites enclosed by dams and located around valley
mouths or on flat terrain, where tailings or other industrial waste discharged after ore
extraction are deposited by metal and nonmetal mining companies [1]. Tailings ponds are
therefore a source of high potential environmental risk, with accidents leading to serious
damage to the surrounding environment [2]. Therefore, tailings pond monitoring has
become the focal point of environmental emergency supervision. In the past century,
the collapse of tailings dams and the resulting mud-rock flows have caused nearly 2000
deaths [3]. Moreover, there has been a high incidence of environmental emergencies caused
by tailings ponds in recent years, which have resulted in a large number of casualties and
serious environmental pollution [4]. Therefore, to improve the emergency management of
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tailings ponds and enable early warning of disasters, a rapid, accurate, and comprehensive
method for identifying the location and status of tailings ponds and providing high-
frequency, regular information updates is urgently required.

Early methods of tailings pond monitoring often relied on manpower. As tailings
ponds are typically located in remote mountainous areas, these methods suffered from
being time-consuming and labor-intensive, with low efficiency and low precision [5].
Remote sensing technology is an important data acquisition method that has the advantages
of rapid, large-scale, continuous dynamics, and is less limited by ground conditions. It
can therefore compensate for the shortcomings of traditional monitoring methods, making
it an important monitoring approach for environmental protection [6–8]. For example,
Liu et al. [9] used Thematic Mapper (TM) images for rapid and efficient monitoring of the
water pollution status of a tailings pond in the Hushan mining area. Moreover, Zhao [10]
applied remote sensing monitoring to tailings ponds in Taershan, Shanxi Province to extract
the number, area, mineral type, and other information of tailings ponds over a large area
and in a short time. Based on the composition, structure, and spectral characteristics of
tailings, Hao et al. [11] developed tailing indexes and a tailing extraction model, then
extracted mine tailing information using Landsat 8 data from Hubei Province, China. Ma
et al. [12] extracted tailings ponds data from the Changhe mining area in Hebei Province
based on the spectral and textural characteristics of Landsat 8 OLI images. Xiao et al. [13]
monitored the distribution of tailings ponds in Zhangjiakou and their environmental risks
using object-oriented image analysis technology and drone images. Furthermore, Riaza
et al. [14] mapped pyrite waste and dumps in the mining areas on the Iberian Pyrite Belt
using Hyperion and aerial Hymap hyperspectral data.

Therefore, multisource remote sensing data have already been used in the identifica-
tion and monitoring of tailings ponds. However, these methods are limited by a heavy
workload and low level of automation. Owing to relatively large disparities in the scale,
shape, background, and other aspects of tailings ponds on remote sensing images, it is
challenging to achieve large-scale, high-frequency, and intelligent identification and moni-
toring of tailings ponds. Despite rapid increases in the number of high-resolution remote
sensing images, studies on the automatic and intelligent extraction of tailings ponds are
relatively rare. However, the deep learning end-to-end model provides a solution to this
problem. Target detection technology based on deep learning can not only determine the
category of the target but also predict its location. For example, Li et al. [15] used a deep
learning-based target detection model (Single Shot Multibox Detector, SSD [16]) to extract
and analyze tailings pond distributions in the Jing–Jin–Ji (Beijing–Tianjin–Hebei) Region of
China. Their study proved the effectiveness of the deep learning method for target detec-
tion with high-resolution remote sensing images, which greatly improved the automation
level and efficiency of tailings pond identification from that of traditional methods. With
rapid development of deep learning technology in recent years, a series of convolutional
neural networks (AlexNet [17], VGGNet [18], ResNet [19], DenseNet [20]) have achieved
continuous progress and success in the ImageNet Large-scale Visual Recognition Challenge
(ILSVRC). This has established the leading position of deep learning technology in the
field of computer vision and provided pretrained feature extraction networks for the deep
learning-based target detection model.

Compared with traditional methods, the end-to-end target detection method based
on deep learning has notable advantages in terms of precision, efficiency, and automation
level [21]. Deep learning-based target detection methods can be divided into two types:
one-stage detectors and two-stage detectors. Two-stage detectors generate a series of region
proposals in the first stage, then perform category classification and accurate position
regression on region proposals in the second stage. At present, the majority of two-stage
detectors are developed and optimized based on the region-based convolutional neural
network (R-CNN) [22], including Fast R-CNN [23] and Faster R-CNN [24]. Faster R-CNN
is a classic two-stage target detection model that automatically generates region propos-
als through the region proposal network (RPN), thereby integrating feature extraction,
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region proposal generation, bounding box classification, and position regression into one
network structure, which significantly improves the precision and calculation speed of
target detection. One-stage networks regard all positions in the image as potential targets
and performs classification prediction and position regression of targets directly at each
position on the feature map. One-stage detector models in the You Only Look Once (YOLO)
series, including YOLO [25], YOLOv3 [26], and YOLO9000 [27], are extremely fast due to
their simple structures. However, their detection precision is lower than that of two-stage
detectors. The SSD model has a slower detection speed than YOLO and a detection preci-
sion between that of YOLO and two-stage detectors. In summary, compared to one-stage
detectors, two-stage detectors have high detection precision and a low false detection rate
but a relatively slow detection speed and poor real-time performance. One-stage detectors
have simple network structures and fast detection speeds but relatively low detection
precision and poor detection performance for small and dense targets, which is likely to
generate positioning errors [28]. Mask R-CNN [29] extends Faster R-CNN by adding a
branch for predicting an object mask in parallel with the existing branch for bounding
box recognition; at the same time, the performance of target detection is enhanced. Li
et al. [30] propose a novel framework based on Mask R-CNN, to extract new and old rural
buildings even when the label is scarce, achieve a much higher mean Average Precision
(mAP) than the orthodox Mask R-CNN model. Bhuiyan et al. [31] applied Mask R-CNN
to automatically detect and classify ice-wedge polygons in North Slope of Alaska, found
promising model performances for all candidate image scenes with varying tundra types.
Zhao, Kang, et al. [32] present a method combining Mask R-CNN with building bound-
ary regularization, and its performance is comparable to that of the Mask R-CNN. Mask
R-CNN is an instance segmentation model, which further improves the performance of
target detection. However, the samples that Mask R-CNN used need to mark the accurate
boundary of the target. Unlike buildings and other targets, tailings ponds have complex
boundaries, some of which are difficult to identify. It is difficult to mark the accurate
boundary of tailings pond and need a great deal of work. Therefore, the target detection
model is selected in this study and only need to mark the bounding box of tailings pond.

To detect tailings pond targets from high-resolution remote sensing images, two-
stage detectors satisfy the requirements of detection speed and exhibit better detection
precision than one-stage detectors. Therefore, a two-stage detector is adopted in this study
for the automatic identification of tailings pond targets. The Faster R-CNN model is a
two-stage detector, however, when applied to target identification via high-resolution
remote sensing images with complex backgrounds, its detection precision is relatively low
and needs to be improved to obtain better detection precision [33,34]. Therefore, further
improvement through fast-developing technologies related to deep learning is required to
enhance the detection precision of tailings ponds. This study presents an improved Faster
R-CNN model that significantly increases the detection precision of tailings ponds with
high-resolution remote sensing images. Considering the rapid increase in the number of
high-resolution remote sensing images, this method has important applications for the
large-scale, high-precision, and intelligent identification of tailings ponds. This improved
method will greatly improve the decision-making efficiency of tailings pond management.

2. Materials and Methods
2.1. Sampling Data Generation

Hebei Province, Shanxi Province, and Liaoning Province in northern China, which
have a large number of tailings ponds, were selected as the study area for sample labeling.
By selecting tailings pond samples in a relatively large area, the limitation of sample
specificity in small areas can be reduced to a certain extent, thereby enhancing the model’s
generalization ability in large-scale applications. Based on GoogleEarth high-resolution
remote sensing image data, a total of 1200 tailings ponds were labeled as sample data to
train and test the models of interest. GoogleEarth high-resolution images have a data level
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of 18, a spatial resolution of 0.5 m, including three bands of red, green, and blue and 8-bit
data bits. The geographical distribution of the tailings pond samples is shown in Figure 1.

Figure 1. Geographical distribution map of tailings pond samples.

The shape of tailings pond facilities on the ground is determined by the natural
landform features as well as artificial and engineering features [35]. Due to the influence of
topography and geomorphology, mineral resource mining, mining technology, operation
scale, and other factors, tailings ponds can be classified into four types: cross-valley, hillside,
stockpile, and cross-river [15]. Cross-valley tailings ponds are formed by building a dam at
a valley mouth. Their main characteristics are a relatively short initial dam and a relatively
long reservoir area (Figure 2a). Hillside tailings ponds are surrounded by a dam built at
the foot of a mountain slope. Their main characteristics are a relatively long initial dam and
a relatively short reservoir area (Figure 2b). Stockpile tailings ponds are formed by a dam
at the periphery of a flat area. Their characteristics are a high engineering workload for the
initial dam and subsequent dams of the tailings ponds and a relatively low tailings dam
height (Figure 2c). Cross-river tailings ponds are formed by dams built to the upstream
and downstream of the riverbed. Their main characteristics are a large upstream catchment
area and a complex tailings pond and upstream drainage system. As cross-river tailings
ponds are rarely distributed in China, the sample tailings ponds labeled in this study only
included the other three types.

Based on the characteristics of the three types of tailings pond and their remote sensing
image features, a total of 1200 tailings pond samples were labeled in this study, 80% of
which were used as training samples, with the remaining 20% used as test samples. To
improve sample labeling efficiency, the samples were first marked as the external polygon
vector of the tailings pond. Thereafter, they were uniformly processed into an external
rectangle, which was used as the final detection labeling target, based on the program.
The red boxes in Figure 2 indicate the labeled ground truth bounding boxes. Due to
computational limitations such as memory and GPU video memory, the remote sensing
image data were sliced into image blocks of appropriate sizes then resampled before being
input to the model to complete the calculation. According to a statistical analysis of the
labeled tailings pond samples, their lengths and widths typically ranged from 60 m to
1300 m, and the resolution of the image data was 0.5 m. To ensure the integrity of tailings
ponds in the image slices as much as possible, the image slice size was set to 2600 × 2600
pixels for slice processing in this study. An overlapping area of 512 pixels was set between
the image slices, and after processing, image slices without tailings pond information were
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eliminated. Thus, a total of 1697 effective training slices and 429 test slices were finally
generated. The sample set information is listed in Table 1.

Figure 2. Remote sensing image of sample tailings pond features, with the ground truth bounding
boxes shown in red: (a) cross-valley type, (b) hillside type, and (c) stockpile type.

Table 1. The sample set information.

Sample Set Spatial Resolution (m) Size (Pixels) Slices Number

Train set 0.5 2600 × 2600 1697
Test set 0.5 2600 × 2600 429
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2.2. Methodology
2.2.1. Proposed Optimized Method

Faster R-CNN is a classic deep learning-based target detection model in the field of
computer vision [36], which exhibits relatively high recognition precision and efficiency
for large target areas. With the continuous development of deep learning technology, there
is still room for improving the precision of the Faster R-CNN model for the detection of
tailings pond targets in high-resolution remote sensing images. In this study, an improved
Faster R-CNN model was developed, whose structure is shown in Figure 3. First, after
resize, the remote sensing image slices were input to ResNet-101 for feature extraction, and
multilevel features were output. Second, the multilevel features were input into the feature
pyramid network (FPN) [37] with the attention mechanism (AM) for feature fusion to
generate multiscale feature maps with rich context information. Third, the feature map was
input into the RPN to generate region proposals after predicting the category and bounding
box. Fourth, the feature maps and region proposals were input into the ROIPooling layer
to generate proposal feature maps. Finally, the proposal feature maps were sent to the
subsequent fully connected layers (FC) to determine the target category and obtain the
precise position of the target bounding box.

Figure 3. Proposed optimized network structure.

Compared with the Faster R-CNN, the proposed model exhibits the following im-
provements: (1) ResNet-101 was used as the feature extraction network to enhance the
image feature extraction capability, and the FPN was adopted to perform feature fusion on
the multilevel feature output from the ResNet-101 to obtain feature maps with rich semantic
and location information; (2) the AM was adopted to improve the FPN. The contribution
degrees of feature channels were recalibrated so that features with high contribution de-
grees were enhanced and features with low contribution degrees were suppressed, thereby
further improving FPN performance; (3) the image slice size was set according to the
statistical results of the tailings pond samples, where the integrity of the tailings ponds in
the image slices was maintained as much as possible. In addition, the model input size
with the highest precision was selected by conducting a comparison study.

Attention Mechanism (AM)

The visual AM is a brain signal processing mechanism unique to human vision. In
focus target areas, more attention resources will be allocated to obtain more detailed
information, whereas information in other areas will be suppressed. Thus, high-value
information can be acquired rapidly from a large amount of information, which greatly
improves the information processing efficiency of the brain. Therefore, the AM has become
an important concept in neural networks in recent years [38] as it can greatly improve
network performance by focusing on only processing key information or information of
interest among large amounts of input information. In normal cases, the feature layer
extracted by a deep CNN is used, where each channel represents a different feature and
also has a different contribution to network performance. The SENet [39] uses the AM to
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learn the contribution weight of each channel of the feature layer and automatically obtain
the importance of each feature channel. According to the importance level, features with
high contributions are then enhanced and those with low contributions are suppressed,
thereby improving network performance. Therefore, the channel attention mechanism
block was adopted in the design of the FPN in this study, which further improved the
detection precision for tailings pond targets.

As shown in Figure 4, the input F of the channel attention mechanism block represents
the feature map, H represents the height of the feature map, W represents the width of
the feature map, and C represents the number of channels in the feature map. First, F was
compressed into a 1 × 1 × C one-dimensional vector via Global Average Pooling (GAP).
Each value in the vector has a global receptive field, characterizing the global distribution
of responses on the feature channels. The two subsequent FC layers were used to model
the correlations between channels. The first FC reduces the number of feature channels
to C/r, where r is the scaling factor. After passing through the ReLu activation function,
the second FC increases the number of feature channels back to the original C. Then, the
Sigmoid function was used to obtain normalized weights representing the input feature
contributions. Finally, through the Scale operation, the input feature was multiplied by
the weight, which was extended to an equal dimension, to output the result A. Two FC
layers can add more nonlinearity; however, if the scaling factor r of the first layer is too
small, more parameters will be added and the calculation amount will increase; if it is too
large, more features will be lost and network performance will be reduced. After balancing
the amount of calculation and the network performance, the value of r was set to 4 in
this study.

Figure 4. Schematic of the channel attention mechanism block.

Proposed Feature Pyramid Network (FPN)

With the continuous development of deep learning technology in recent years, many
convolutional neural networks have overcome the problems of gradient dispersion and
gradient explosion caused by an increase in network depth to exhibit powerful feature
extraction capabilities, for example, ResNet and DenseNet [40]. However, for single-scale
features, although deep features have rich semantic information, there is a serious loss of
location information. In target detection applications, location information is crucial. In
comparison, shallow features have weak semantic information but are sensitive to location
information. Therefore, the FPN was used to fuse deep and shallow multiscale features
to fully exploit the feature semantics and location information, thereby further improving
the network performance. As well as using ResNet-101 to improve the feature extraction
capabilities, this study also adopted the channel attention mechanism block and designed
an improved FPN, which fused features at different levels to obtain a more informative
multiscale feature map, thereby greatly improving the detection precision of the model.
The improved FPN is shown in Figure 5.
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Figure 5. Feature pyramid network (FPN) structure. AB represents the channel attention mechanism
block, 2 × up represents two-times upsampling, 256 represents the number of output channels, and

represents element-wise addition.

As shown in Figure 5, ResNet-101 was used as the feature extraction network in this
study. C1, C2, C3, C4, and C5 in the network were used to extract different levels of features,
with C2–C5 selected for feature fusion. The number of channels was 256, 512, 1024, and
2048, respectively. Combining features of different levels via the FPN requires the same
number of feature channels. Therefore, the 1 × 1 convolution operation was used to reduce
the dimensionality of C2–C5. The corresponding outputs were CC2–CC5, and the number
of channels was 256. The channel attention mechanism block was used to calculate the
contribution weight of each channel of CC2–CC5, which were redistributed according to
their weight. Thus, the contributions of important feature channels were further enhanced.
The corresponding outputs were A2–A5, and the number of channels remained unchanged
at 256. When performing feature fusion via FPN, pixels corresponding to features of
different levels were added. In addition to the same number of feature channels, the
number of rows and columns in the feature layer must also be the same. Therefore, the
nearest interpolation method was applied in this study to perform two-times upsampling
on A5, A4, and A3. Subsequently, element-wise addition was performed with A4, A3,
and A2, respectively, to complete the level-by-level feature fusion, where the output was
AA2, AA3, and AA4 and the number of channels was 256. A 3 × 3 convolution operation
was performed on A5, where the output was P5 and the number of channels was 256.
Maximum pooling of 1 × 1 was performed on P5, the stride was set to 2, the output was
P6, and the number of channels was 256. A 3 × 3 convolution operation was performed on
AA2, AA3, and AA4, where the outputs were P2, P3, and P4 and the number of channels
was 256. The feature map output by FPN was {P2, P3, P4, P5, P6}.

Region Proposal Network (RPN)

The most prominent contribution of Faster R-CNN is the RPN, which uses a CNN
instead of the traditional selective search method to generate candidate regions, thereby
significantly improving network speed and precision. RPN is used to generate region
proposals. In this study, the multiscale feature maps {P2, P3, P4, P5, P6} output from the
FPN were used to replace the single-scale feature map to generate region proposals. The
areas of anchors for different scale features were set to {322, 642, 1282, 2562, 5122}, and the
anchor aspect ratios were set to {1:2, 1:1, 2:1}.
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In this study, feature maps input into ROIPooling with region proposals include {P2,
P3, P4, P5}, rather than a single-scale feature map. In other words, the region proposal
needs to slice the region proposal feature map from {P2, P3, P4, P5}. The following formula
was used for region proposal to select the feature map with the most appropriate scale:

k = k0 + log2(
√

wh/H) (1)

where k represents the level of feature map corresponding to the region proposal, which
is rounded off during calculation; k0 was set as the highest level of feature maps. In this
study, there were four levels of feature maps and k0 was set to four; w and h represent the
width and height of the region proposal, respectively, and H represents the model input
height (the height and width are equal in this study) after performing resize processing on
the image slices. This is a more reasonable approach because a large-size region proposal
will correspond to a high-level feature map and generate the region proposal feature map,
which can better detect large targets. Similarly, a small-size region proposal corresponds to
a low-level feature map and generates the region proposal feature map, which can better
detect small targets.

2.2.2. Accuracy Assessment

In the field of deep learning, precision and recall are the commonly used evaluation
indicators for model performance [41]. When evaluating the target detection results, the
ground truth bounding box (GT) is the true bounding box of the predicted target, whereas
the predicted bounding box (PT) is the predicted bounding box of the predicted target. The
area encompassed by both the predicted bounding box and the ground truth is denoted
as the area of union, the intersection is denoted as the area of overlap, and the calculation
formula of the intersection over union (IOU) is as follows:

IOU =
Area of Overlap
Area of Union

(2)

where TP (true positive) refers to the number of detection boxes with correct detection
results and an IOU > 0.5; FP(false positive) refers to the number of detection boxes with
incorrect detection results and an IOU ≤ 0.5; and FN (false negative) refers to the number
of GTs that are not detected. The model evaluation indicators used in this study were
precision and recall. Precision refers to the ratio of the number of correct detection boxes
to the total number of detection boxes, whereas recall refers to the ratio of the number of
correct detection boxes to the total number of true bounding boxes. Their corresponding
calculation formulas are as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

The average precision (AP) of the target, precision-recall curve (PRC), and mean
average precision (mAP) are three common indicators widely applied to evaluate the
performance of object detection methods [42]. AP is typically the area under the PRC
and mAP is the average value of AP values for all classes; the larger the mAP value, the
better the object detection performance. As this study only detects one target, namely a
tailings pond, AP was used as the main model evaluation indicator, with the recall and
time consumption of a single iteration used as reference indicators.
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2.2.3. Loss Function

The formula for the calculation of the Loss Function can be expressed as follows [24]:

Lpi, ti =
1

Ncls
∑

i
Lcls(pi, p∗i ) + α

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (5)

where Ncls represents the number of anchors in the mini batch, Nreg represents the number
of anchor locations, and α represents the weight balance parameter, which was set to 10 in
this study, and i represents the index of an anchor in a mini batch.

Furthermore, pi represents the predictive classification probability of the anchor.
Specifically, when the anchor was positive, p∗i = 1, and when it was negative, p∗i = 0.
Moreover, anchors that met the following two conditions were considered positive: (1) the
anchor has the highest intersection-over-union (IOU) overlap with a ground truth box; or
(2) the IOU overlap of the anchor with the ground truth box is > 0.7. Conversely, when the
IOU overlap of the anchor with any ground-truth box was < 0.3, the anchor was considered
negative. Anchors that were neither positive nor negative were not included in the training.

Lcls(pi, p∗i ) = −log[pi p∗i + (1− pi)(1− p∗i )] (6)

Lreg(ti, t∗i ) = ∑
i∈{x,y,w,h}

SmoothL1(ti − t∗i ) (7)

SmoothL1(x) =
{

0.5x2, i f |x| < 1
|x| − 0.5, otherwise

(8)

For the bounding box regression, we adopted the parameterization of four coordinates,
defined as follows:

tx =
(x− xa)

wa
, ty =

(y− ya)

ha

tw = log
(

w
wa

)
, th = log

(
h
ha

)
t∗x =

(x∗ − xa)

wa
, t∗y =

(y∗ − ya)

ha

t∗w = log
(

w∗

wa

)
, t∗h = log

(
h∗

ha

)
where x and y represent the coordinates of the center of the bounding box, and w and h
represent the width and height of the bounding box, respectively. Furthermore, x, xa, and
x* correspond to the predicted box, anchor box, and ground truth box, respectively, similar
to y, w, and h.

2.2.4. Training and Optimization

As Faster R-CNN was employed as the baseline network, the hyperparameters were
set according to Faster R-CNN. This study adopts the transfer learning strategy, the base
network was ResNet 101, which was initialized with its pretrained weights on ImageNet.
All new layers were initialized with kaimingnormal. The network was trained using a
64-bit Ubuntu20.04LTs operating system and a NVIDIA GeForce GTX3080, using Xeon E5
CPU and CUDA version 11.1. The model trained 70 epochs of the training set. Stochastic
gradient descent was used as the optimizer, the initial learning rate of the model was set to
0.02, momentum was set to 0.9, weight_decay was set to 0.0001, and the batch size was set
to 2. The hyperparameters settings are listed in Table 2.
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Table 2. Table for hyperparameters settings.

Hyperparameter Learning Rate Momentum Weight_Decay Batch Size

Value 0.02 0.9 0.0001 2

3. Results and Discussion

In this study, the channel attention mechanism block was adopted to design an
improved FPN on the basis of the Faster R-CNN model. The improved model exhibits a
significant improvement in the detection performance of tailings pond targets compared to
the Faster R-CNN model. Based on the data set of tailings pond samples constructed in
this study, the model input size greatly affected the detection precision; the results show
that when resize = [800, 800], the detection precision of tailings pond is the highest and
both the AP and recall of tailings pond detection increased significantly in the improved
model, by 5.6% and 10.9% to reach 85.7% and 62.9%, respectively. The results above are
analyzed in detail in the following sections.

3.1. Effect of Different Input Sizes

Based on the Faster R-CNN model, the model detection precision was compared for
different model input sizes. It was assumed that the size of the input image slice was [W,
H, C], where W, H, and C are the width of the slice, height of the slice, and number of
channels in the slice, respectively. The size of the image slice in the tailings pond sample
data set was [2600, 2600, 3]. According to the bilinear interpolation resampling method, the
image slices were used as the model input after resize processing in W and H dimensions,
during which the number of channels C remained unchanged. After downsampling, the
sizes of W and H were set to resize = [400, 400], [600, 600], [800, 800], [1000, 1000], [1200,
1200], totaling five sizes. The resize size with the highest precision was selected as the
model input size.

According to the training loss curves in Figure 6, the trends of the model loss curves
are approximately the same for different resize sizes, the loss values are similar, and all
values converge well. However, the test precision curves of the model (Figure 7) indicate
that the model exhibits the strongest generalization ability and maintains the highest test
precision when resize = [800, 800]. The model evaluation indicator results for different
resize sizes are listed in Table 3. When resize = [800, 800], the model AP reaches a maximum
of 80.1%. Compared with resize = [600, 600], the recall is slightly smaller (1%) but the
AP is 2.8% higher. However, as the resize size either increases or decreases, both the AP
and recall of the model decrease, especially for resize = [1200, 1200], where AP and recall
drop to their minimum values of 69.3% and 41.8%, respectively. According to the time
consumption of a single iteration, the calculation amount of the model increases as the
resize size increases, resulting in a longer calculation time. Compared to resize = [400,
400], when resize = [800, 800], the iteration time only increases slightly (0.081 s) but the
AP increases by 5.8% and the recall increases by 0.2%. Overall, a resize value of [800, 800]
generates optimal model performance.

Table 3. Test results for different resize sizes.

Resize AP (%) Recall (%) Iteration Time (s)

[400, 400] 74.3 51.8 0.105
[600, 600] 77.3 53.0 0.128
[800, 800] 80.1 52.0 0.186

[1000, 1000] 77.5 47.3 0.259
[1200, 1200] 69.3 41.8 0.345
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Figure 6. Training loss curves for different resize sizes.

Figure 7. Test precision curves for different resize sizes.

3.2. Analysis of Model Improvement Results

The optimal model input size was selected through a comparison study. After ob-
taining the optimal performance using the Faster R-CNN model, further improvements
were made to the model. First, the FPN was introduced, and the corresponding model
was represented by Faster R-CNN + FPN. Then, the channel attention mechanism block
was adopted to further improve the FPN, and the corresponding model was represented
by Faster R-CNN + FPN + AB. According to the loss curves, all models exhibit good
convergence (Figure 8). In addition, after improving the model with FPN and AB, the
model exhibits the best convergence and the lowest loss value. Furthermore, according to
the model test precision curves, the improved final model has the highest test precision
(Figure 9). The evaluation indicator results of each model are listed in Table 4, which show
that both the AP and recall indicators of the model are greatly improved by using the
FPN, increasing by 4.2% and 10.6%, respectively. This indicates that the model detection
capability is significantly improved by combining features of different scales, although
the increased calculation amount and number of parameters results in an increase in the
time required for a single iteration. After further adoption of AB, both the AP and recall of
the model increase by 1.4% and 0.3%, respectively, whereas the time required for a single



Remote Sens. 2021, 13, 2052 13 of 18

iteration only increases by 0.006 s. Thus, through application of the channel attention mech-
anism, the detection performance is significantly improved and the calculation amount
and iteration time are increased only by a small amount. Compared with the Faster R-CNN
model, the AP and recall of the final improved model increase by 5.6% and 10.9%, reaching
85.7% and 62.9%, respectively.

Figure 8. Loss curves of different network models.

Figure 9. Test precision curves of different network models.

Table 4. Test results of different network models.

Network AP (%) Recall (%) Iteration Time (s)

Faster R-CNN 80.1 52.0 0.186
Faster R-CNN + FPN 84.3 62.6 0.273

Faster R-CNN + FPN + AB 85.7 62.9 0.279
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In summary, the improved model exhibits a significant increase in the detection
precision of tailings ponds compared to Faster R-CNN, as well as more accurate location
positioning. Furthermore, cases of missed detection and false detection are also reduced.

As shown in Figure 10, (a) is the image of tailings pond, (b) is the feature heat map
extracted by the Faster R-CNN model, and (c) is the feature heat map extracted by the
improved model. The characteristics of tailings pond extracted from the improved model
are obviously improved in terms of shape and contour. As shown in Figures 11–13, the
green bounding box represents the tailings pond predicted by the model. Figure 11a is
the prediction result of Faster R-CNN, which has a prediction score of 0.97. However,
an error appears in the predicted bounding box position, where the upper right corner
of the tailings pond is not included. Figure 11b is the prediction result of the improved
model, where the score is increased to 1.0 and the accuracy of the bounding box position is
significantly improved. Moreover, the red arrow in Figure 12a indicates a non-detected
tailings pond, whereas the tailings pond is accurately detected by the improved model.
Additionally, the improved model exhibits a significantly better score and location accuracy
for other detected tailings pond targets than Faster R-CNN. Finally, as shown in Figure 13,
the improved model also avoids the false detection of tailings pond by Faster R-CNN.

Figure 10. Feature extraction capability improved after model improvement: (a) the image of tailings
pond, (b) feature heat map of Faster R-CNN, and (c) feature heat map of the improved model.
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4. Conclusions

This study improved the Faster R-CNN model and proposed an intelligent identifi-
cation method for tailings ponds based on high-resolution remote sensing images, which
significantly improves the detection precision of tailings pond targets. Based on the data
set of tailings pond samples constructed in this study, it was found that the model input
size greatly affected the detection precision and the results show that when resize = [800,
800], the detection precision of tailings pond is the highest. To improve the image feature
extraction capabilities of the model, using ResNet-101 as the feature extraction network,
the channel attention mechanism block was adopted and an improved FPN was designed.
This improved model recalibrated the contribution degrees of the feature channels while
fusing features at different levels, thereby enhancing features with high contribution de-
grees and suppressing features with low contribution degrees. The test results show that
both the AP and recall of tailings pond detection increased significantly in the improved
model, by 5.6% and 10.9% to reach 85.7% and 62.9%, respectively. Considering the rapid
growth in high-resolution remote sensing images, this method has important applications
for large-scale, high-precision, and intelligent identification of tailings ponds, which will
greatly improve the decision-making efficiency of tailings pond management.
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Abbreviations

ILSVRC ImageNet large-scale visual recognition challenge
CNN convolutional neural network
FC fully connected layers
RPN region proposal network
FPN feature pyramid network
AM attention mechanism
AB channel attention mechanism block
GT ground truth bounding box
PT predicted bounding box
IOU intersection over union
AP average precision
mAP mean average precision
PRC precision-recall curve
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