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Abstract: The Interferometric Synthetic Aperture Radar (InSAR) technique has been widely used to
obtain the ground surface deformation of geohazards (e.g., mining subsidence and landslides). As
one of the inherent errors in the interferometric phase, the digital elevation model (DEM) error is
usually estimated with the help of an a priori deformation model. However, it is difficult to determine
an a priori deformation model that can fit the deformation time series well, leading to possible bias
in the estimation of DEM error and the deformation time series. In this paper, we propose a method
that can construct an adaptive deformation model, based on a set of predefined functions and the
hypothesis testing theory in the framework of the small baseline subset InSAR (SBAS-InSAR) method.
Since it is difficult to fit the deformation time series over a long time span by using only one function,
the phase time series is first divided into several groups with overlapping regions. In each group, the
hypothesis testing theory is employed to adaptively select the optimal deformation model from the
predefined functions. The parameters of adaptive deformation models and the DEM error can be
modeled with the phase time series and solved by a least square method. Simulations and real data
experiments in the Pingchuan mining area, Gaunsu Province, China, demonstrate that, compared
to the state-of-the-art deformation modeling strategy (e.g., the linear deformation model and the
function group deformation model), the proposed method can significantly improve the accuracy of
DEM error estimation and can benefit the estimation of deformation time series.

Keywords: SBAS-InSAR; DEM error; adaptive deformation model; hypothesis testing

1. Introduction

In recent decades, the interferometric synthetic aperture radar (SAR, InSAR) technique
has been greatly developed and widely used to serve geohazard monitoring processes,
such as those for mining subsidence [1–3], landslides [4–6], earthquakes [7–9], and volcano
eruptions [10–12]. Especially when integrating multi-temporal SAR images with advanced
time series InSAR (TS-InSAR) methods (e.g., persistent scatter (PS), small baseline subset
(SBAS), and mixed PS/SBAS methods) [13–17], the inherent errors in a single interfero-
gram (e.g., decorrelation noise and atmospheric delay) can be effectively mitigated, and
simultaneously, the deformation time series of the study area can be obtained, which is of
great significance for understanding the evolution process and mechanism of geohazards.

It is acknowledged that the interferometric phase includes not only the interested
deformation component, but also undesirable noise components (e.g., decorrelation noise,
atmospheric delay, and digital elevation model (DEM) error) [18]. Although the specific
implementation process of different TS-InSAR methods is different, they should all first
correct or weaken these noises before obtaining reliable deformation results. For example,
decorrelation noise can be suppressed by multi-looking operation or the spatial filter [15];
stratified atmospheric delay can be mitigated by an elevation-dependent model [19,20]
and turbulence atmospheric delay is generally reduced by a spatial-temporal filter or
external meteorological datasets [14,21,22]; long-wavelength orbit error can be effectively
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alleviated by fitting second-order polynomials [23,24]. As for DEM error, it is an undesired
component for deformation estimation. However, if the DEM error can be precisely
estimated, it can be added back to the existing DEM data to generate a more accurate
version of DEM data [25,26]. The DEM error-related interferometric phase is proportional
to the spatial baseline of the interferogram [27–30]. In this case, the DEM error can be
theoretically estimated by mathematical modeling. Generally, the deformation time series
can be assumed to satisfy an a priori time-dependent deformation model, and the DEM
error and model parameters can be simultaneously solved. In state-of-the-art deformation
modeling strategies, a linear deformation model [13,31,32] is one of the most used a priori
deformation models, which has been employed to obtain the deformation parameters
associated with tectonic movement, ground subsidence, and so on. For specific deforming
situations (e.g., permafrost and active caldera), we can employ the period model [33], cubic
model [15], or even the function group deformation model [34]. Note that the accuracies of
the DEM error and the final deformation time-series are both dependent on the reliability
of the a priori deformation model. However, in reality it is impracticable to understand
the real deformation evolution beforehand, and it is difficult to find a reliable model that
can fit the long time-span deformations. Although the DEM error can also be estimated by
a nonparametric estimator (e.g., independent component analysis [35]), the performance
of this estimator may be degraded in some situations when only a small number of
observations in space are available or high-level noise and outliers exist in observations [36].

To tackle the aforementioned problem, relative to the deformation model, we propose
a method to construct adaptive deformation models for estimating DEM error based on
hypothesis testing in the framework of the SBAS-InSAR method. The basis of this method
is that the natural ground deformation is usually a time-dependent smooth process [37],
and the increasing temporal sampling of SAR images (e.g., Sentinel-1 SAR images) will
make the deformations at adjacent acquisitions more consistent with this smooth process.
Under these circumstances, if the whole time span is divided into several small time
spans, a set of time-dependent functions (e.g., cubic polynomials and periodic function)
can be used to fit the deformation time series in each small time span. However, too
many time-dependent functions easily induce the overfitting of deformation time series,
resulting in possible biases in the estimation of parameters. Hypothesis testing is an
inferential statistical process that uses sample data to assess the plausibility of established
null hypotheses, which has been used to adaptively determine the influencing factors of the
deformation model [38–40]. Therefore, we employed hypothesis testing here to statistically
test the parameter significance of the predefined functions, and then those significant
parameters were adaptively selected to construct the final deformation model used to assist
the estimation of DEM error. This self-adaptive deformation model not only avoids the
error induced by the simple model that cannot effectively fit the true deformation, but also
reduces the possible overfitting error of the too complex function group.

To validate the superiority of the proposed method, both simulations and real data
experiments over the Pingchuan mining area were conducted. The Pingchuan mining area
belongs to the Jingyuan coal field, which is one of the most important coal bases in the
Gansu Province, China. Coal mining began in this area in as early as the 1970s, and the
ground deformations time series are significant and nonlinear, as a result of the continuous
mining activities.

The rest of this paper is structured as follows: Section 2 presents the proposed method
of constructing adaptive deformation models based on hypothesis testing; then, the valida-
tion of the proposed method with simulated experiments and real data experiments in the
Pingchuan mining area, Gaunsu, China, is shown in Section 3. Finally, some discussions
are given and conclusions drawn in Sections 4 and 5, respectively.
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2. Methodology

Since the proposed method is based on the framework of the SBAS-InSAR method, we
first introduce the basic idea of the SBAS-InSAR method in Section 2.1; then, details about
the proposed method for constructing adaptive deformation models, based on hypothesis
testing, are subsequentially presented in Sections 2.2–2.4.

2.1. Basic Idea of the SBAS-InSAR Method

In the SBAS-InSAR method, multi-prime interferograms with short spatial–temporal
baselines are used for the estimation of deformations, which can significantly suppress the
decorrelation noise in the vegetation area, compared to single-prime interferograms. Gener-
ally, the interferometric phase between two SAR images for a pixel can be expressed as [18]:

δϕ = δϕde f + δϕtopo + δϕorb + δϕatm + δϕnoise (1)

where δϕ represents the observed interferometric phase, δϕde f represents the surface
deformation phase along the line-of-sight (LOS) direction during two acquisitions, δϕtopo
represents the topographic residuals phase due to the DEM error, δϕorb represents the orbit
error-related phase and can be modeled by second-order polynomials, δϕatm represents
the difference in atmospheric delay between two acquisitions, and δϕnoise represents the
random noise.

Assuming that the orbit error phase is mostly removed by existing methods and
the atmospheric delay can be regarded as random noise in the temporal domain, the
interferometric phase can be written as:

δϕ = δϕde f + δϕtopo + δϕnoise (2)

where the topographic residuals phase can be modeled as [27]:

δϕtopo = −
4π

λ

B⊥
rsinθ

dz (3)

where B⊥ is the perpendicular spatial baseline between the two acquisitions, r is the slant
range between the SAR antenna and ground surface, θ is the looking angle, and dz rep-
resents the DEM error. Since the observation system that includes both the deformation
time series and the DEM error is underdetermined, an a priori deformation model is com-
monly employed in the SBAS-InSAR method before the estimation of the final deformation
time series. In the SBAS-InSAR method, a linear model is generally employed to fit the
deformation time series [15,41]:

δϕde f = −
4π∆t

λ
v (4)

where λ is the radar wavelength, ∆t is the temporal baseline of the interferogram, and v is
the unknown deformation model parameter.

Given that there are M interferograms obtained from N SAR images based on the
spatial–temporal baseline thresholds, the DEM error and the deformation model parame-
ters can be solved with Equation (2) in a least-squares sense. Then, the DEM error phase
components are removed from the M interferograms, after which the interferogram resid-
uals are used to estimate the N deformation time series by taking the first acquisition as
the reference.

In this paper, the innovation lies in the adaptive construction of the deformation
model (i.e., Equation (4)). To this aim, phase time series were firstly estimated from the
multi-prime unwrapped interferograms, which is more appropriate for the conduction of
hypothesis testing compared to interferograms (Section 2.2). Secondly, hypothesis testing
was employed to adaptively choose the deformation models from a set of time-dependent
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functions (Section 2.3). Finally, the adaptive deformation model parameters and the DEM
error were simultaneously estimated based on a least-squares method (Section 2.4).

2.2. Derivation of Phase Time Series from Multi-Prime Interferograms

Before constructing the adaptive deformation model based on hypothesis testing,
multi-prime unwrapped interferograms are used to obtain the phase time series, which
can decrease the sensitivity of parameter estimation to the interferogram network [30].
The relationship between the M unwrapped phases δϕ = [δϕ1, δϕ2, . . . , δϕM]T and the N
phase time series ϕ = [ϕ1, ϕ2, . . . , ϕN ]

T can be modeled as

δϕ = Bϕ (5)

where B denotes the design matrix between the interferograms and the phase time series. If
the M interferograms belong to a single baseline subset, Equation (5) can be directly solved
by the least-squares method (i.e., Equation (6)).

ϕ = (BT B)
−1

BTδϕ (6)

However, if not, the singular value decomposition (SVD) or the iteratively reweighted
least-squares (IRLS) methods can used to estimate the unknowns.

Since the characteristics of real ground deformation are complex and changeable, it is
difficult to fit the deformations by only one model for long time series. To choose a model
that is closer to the real deformation, the observations are divided into different groups
according to a fixed time span. Moreover, the adjacent groups have 20% overlapping
observations to allow different groups to constrain one another. Supposing there are J
groups, the number of observations in each group is nj, and the number of overlapping
observations is l. Generally, the time series in one year are taken as a group, and details
about the determination of the time span for one group are presented in Section 4.1.

2.3. Construction of the Adaptive Deformation Model Based on Hypothesis Testing

In this paper, the functions in Equation (7) are used as the original deformation models:

ϕj = kj + vjtj + ajtj2 + ∆ajtj3 + sj × sin
(

2π

T
× tj

)
+ cj × cos

(
2π

T
× tj

)
(7)

where kj is the constant term, vj is the mean velocity, aj is the acceleration, ∆aj is the
acceleration variation, sj and cj are the coefficients of the sine and cosine functions, T is

defined as 365 days, ϕj = [ϕ
j
1, ϕ

j
2, . . . , ϕ

j
nj ]

T
represents the phase values of the nj phase

time series in the jth group, tj = [tj
1, tj

2, . . . , tj
nj ]

T
represents the corresponding time of ϕj,

and j = 1, 2, · · · , J. Let bj
1 = tj, bj

2 = tj2, bj
3 = tj3, bj

4 = sin
( 2π

T × tj), bj
5 = cos

( 2π
T × tj);

Equation (7) can be written as:

ϕj = kj + vj × bj
1 + aj × bj

2 + ∆aj × bj
3 + sj × bj

4 + cj × bj
5 (8)

where kj, vj, aj, ∆aj, sj, cj are the unknown deformation model parameters;

bj
u =

[
bj

u1, bj
u2, . . . , bj

unj

]T
is the coefficient of the unknown parameter. To make it clear to

the reader, the complete form of Equation (8) is:
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ϕ

j
1

ϕ
j
2
...

ϕ
j
nj

 =


1 bj

11 bj
21 bj

31 bj
41 bj

51
1 bj

12 bj
22 bj

32 bj
42 bj

52
. . .

1 bj
1nj bj

2nj bj
3nj bj

4nj bj
5nj





kj

vj

aj

∆aj

sj

cj

 (9)

Moreover, two variables are defined for better expression of the following process.

Bj
0 =


1 bj

11 bj
21 bj

31 bj
41 bj

51
1 bj

12 bj
22 bj

32 bj
42 bj

52
. . .

1 bj
1nj bj

2nj bj
3nj bj

4nj bj
5nj

, X j
0 =



xj
0

xj
1

xj
2

xj
3

xj
4

xj
5


=



kj

vj

aj

∆aj

sj

cj


Then, hypothesis testing is conducted for each group to test the significance of the

coefficient of time-dependent variables in Equation (8) [38,39]. For generality, the process
of hypothesis testing for the jth group is illuminated as follows.

First, the significance of the original model (i.e., Equation (8)) should be tested. The
null hypothesis is:

H0 :

[
xj

1, xj
2, . . . , xj

pj
0

]T
=[0, 0, 0, 0, 0]T (10)

If H0 can be accepted, the original deformation model is considered non-significant,
and vice versa. To test the significance of the deformation model, the following statistical
variable is established [38,39]:

F =
SSR/pj

0

SSE/
(

nj − pj
0 − 1

) ∼ F
(

pj
0, nj − pj

0 − 1
)

(11)

where F(n1, n2) is the F distribution whose degree of freedom is n1 and n2,

SSR =
nj

∑
i=1

(
ϕ̂

j
i − ϕj

)2
, SSE =

nj

∑
i=1

(
ϕ

j
i − ϕ̂

j
i

)2
, ϕj is the mean value of ϕj, and ϕ̂

j
i is the re-

estimated value of ϕ
j
i based on the unknown estimation. The deformation model is

significant when F > Fα

(
pj

0, nj − pj
0 − 1

)
, where α is the significance level, and can usually

be set as 0.01.
However, it may happen that the model is insignificant due to the existence of severe

noise (e.g., atmospheric delay). In this case, the following hypothesis testing process would
not be conducted, and the null hypothesis H0 would be adopted, which means that a
constant model is used to fit the deformations.

Second, if the deformation model is significant, the significance of each deformation
model parameter, except the constant term, will be tested. The null hypothesis is:

H0 : xj
u = 0, u = 1, 2, . . . , pj

0 (12)

If H0 is accepted, xj
u is considered insignificant and the parameter xj

u should be
removed from the model, and vice versa. Similarly, the following statistical variable
is established [38,39]:

Tu =
x̂j

u/
√

quu

σ̂
∼ t
(

nj − pj
0 − 1

)
(13)

where x̂j
u is the estimation of xj

u, quu is the (u + 1)th diagonal element of Q = ((Bj)
T Bj)

−1
,

σ̂ =

√
1

nj−pj
0−1

nj

∑
i=1

(ϕ
j
i − ϕ̂

j
i)

2
, and t(n) represents the t distribution whose degree of free-
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dom is n. The corresponding parameter is significant when |Tu| > t α
2

(
nj − pj − 1

)
, where

α is the significance level, and can usually be set as 0.01.
After hypothesis testing of all model parameters, a new deformation model can be

obtained by removing the insignificant parameters from Equation (8):

ϕj = BjX j (14)

where Bj and X j can be obtained by removing the corresponding parts of the insignificant
parameters from Bj

0 and X j
0, respectively.

The deformation model of each group of phase time series can be adaptively con-
structed based on the aforementioned process (i.e., Equations (8)–(14)), and are used in the
following subsection to simultaneously estimate the deformation model parameters and
the DEM error.

2.4. Estimation of the Deformation Model Parameters and DEM Error

The DEM error-related phase is usually small in phase time series compared to the
deformation signal, and the natural ground deformation is usually a time-dependent
smooth process. In this paper, the phase differences of the adjacent acquisitions are taken
as the observations to increase the proportion of the DEM error-related phase among the
observations. Since the phase time series are divided into several overlapping groups,
there are two kinds of observation equations that can be established, including (1) the
observation equations for each group related to the DEM error and their individual model
parameters of each group, and (2) the observation equations in the overlapping time span
between two adjacent groups. The deformation time series should be equal for the two
sets of model parameters of the two adjacent groups, based on which the latter kind of
observation equation can be established.

As for the first kind of observation equation, by referring to Equation (2), we can
model the jth group of observations as:

∆ϕj = ∆ϕ
j
de f o + ∆ϕ

j
topo (15)

Based on the adaptive deformation model constructed in the last subsection and the
relationship between the DEM error dz and the related phase ∆ϕ

j
topo, Equation (15) can be

rewritten as:

∆ϕj

(nj−1)×1
=

[
∆Bj

(nj−1)×pj
, cj

(nj−1)×1

][
X j

pj×1

dz

]
(16)

where:

∆ϕj =


ϕ

j
2 − ϕ

j
1

ϕ
j
3 − ϕ

j
2

...
ϕ

j
nj − ϕ

j
nj−1

, ∆Bj =


bj

12 − bj
11 bj

22 − bj
21 · · · bj

pj2
− bj

pj1

bj
13 − bj

12 bj
23 − bj

22 · · · bj
pj3
− bj

pj2
. . .

bj
1nj − bj

1(nj−1)
bj

2nj − bj
2(nj−1)

· · · bj
pjnj − bj

pj(nj−1)



cj =



4π
λ

B⊥
(

tj
2

)
−B⊥

(
tj
1

)
r sin θ

4π
λ

B⊥
(

tj
3

)
−B⊥

(
tj
2

)
r sin θ
...

4π
λ

B⊥
(

tj

nj

)
−B⊥

(
tj

nj−1

)
r sin θ


, X j =


xj

1
xj

2
...

xj
pj
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and
[

ϕ
j
1, ϕ

j
2, . . . , ϕ

j
nj

]
is the phase time series observations in the jth group, while[

bj
1i, bj

2i, . . . , bj
pji

]
is the time-dependent coefficient (see Equation (7)) representing the re-

lationship between the deformation model parameters and the ith observation of the jth

group, [xj
1, xj

2, . . . , xj
pj ]

T
is the deformation model parameter, B⊥

(
tj
i

)
is the perpendicular

baseline of the SAR image at the ith acquisition of the jth group tj
i relative to the initial

reference SAR image, with i = 1, 2, . . . , nj, dz is the DEM error, λ is the wavelength of the
SAR signal, r is the slant distance between the sensor and the ground point, and θ is the

incident angle. In summary, the number of this first observation equation is
J

∑
j=1

(
nj − 1

)
.

In the overlapping region between two adjacent groups, the following pseudo-
observation equations can be established based on the constraint that the deformation time
series should be equal for the two sets of model parameters:

[0]
(l−1)×1

=
[
−∆Bj

overlap, ∆Bj+1
overlap

]
(l−1)×(pj+pj+1)

[
X j

X j+1

]
(pj+pj+1)×1

(17)

where:

∆Bj
overlap =


bj

1(nj−l+1)
− bj

1(nj−l)
bj

2(nj−l+1)
− bj

2(nj−l)
· · · bj

pj(nj−l+1)
− bj

pj(nj−l)

bj
1(nj−l+2)

− bj
1(nj−l+1)

bj
2(nj−l+2)

− bj
2(nj−l+1)

· · · bj
pj(nj−l+2)

− bj
pj(nj−l+1)

. . .

bj
1nj − bj

1(nj−1)
bj

2nj − bj
2(nj−1)

· · · bj
pjnj − bj

pj(nj−1)



∆Bj
overlap =


bj+1

12 − bj+1
11 bj+1

22 − bj+1
21 · · · bj+1

pj+12
− bj+1

pj+11

bj+1
13 − bj+1

12 bj+1
23 − bj+1

22 · · · bj+1
pj+13
− bj+1

pj+12
. . .

bj+1
1l − bj+1

1(l−1) bj+1
2l − bj+1

2(l−1) · · · bj+1
pj+1l
− bj+1

pj+1(l−1)


and l is the number of overlapping observations between two adjacent groups. In summary,
the number of this second observation equation is (l − 1)× (J − 1).

Combining Equations (16) and (17) the following system can be obtained, from which
the deformation model parameters and the DEM error can be simultaneously estimated
based on the least-squares method.

∆ϕ1

∆ϕ2

...
∆ϕJ−1

∆ϕJ

0
...
0


=



∆B1 0 · · · 0 0 c1

0 ∆B2 · · · 0 0 c2

. . .
0 0 · · · ∆BJ−1 0 cJ−1

0
−∆B1

overlap

0

0
∆B2

overlap

0

· · ·
· · ·
. . .
· · ·

0
0

−∆BJ−1
overlap

∆BJ

0

∆BJ
overlap

cJ

0

0





X1

X2

...
X J−1

X J

dz


(18)

After the correction of the DEM error from the phase time series, deformation time
series can be obtained. In addition, if the deformation residuals are still severely affected
by atmospheric delays, a step to mitigate the atmospheric delays is necessary [14,22]. The
overall processing chain of the proposed method for constructing an adaptive deformation
model based on hypothesis testing is shown in Figure 1.
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Figure 1. Flow chart of the proposed method.

3. Results
3.1. Simulated Experiments

In the simulation, 159 interferograms were generated from 52 SLCs according to the
real spatial–temporal baselines of the Sentinel-1A SAR data acquired over the Pingchuan
mining area, Gansu Province, China, which were used in the real data experiment. The
spatial pattern of the deformation field (200 × 200 pixels) was simulated based on the
fractional volumetric change of the subsurface fluid [42] (see Figure 2). The temporal
deformation patterns were simulated by four kinds of functions, i.e., linear, periodic,
logistic, and complex functions, and the simulated deformation time series at the central
point of Figure 2 are shown in Figure 3. The simulated deformation time series at each point
can be obtained by multiplying the pixel value (Figure 2) and the temporal deformation
patterns (Figure 3). The DEM error is the difference between Shuttle Radar Topography
Mission (SRTM) DEM and TanDEM-X DEM (see Figure 4). The atmospheric delays were
simulated using a fractal surface with the fractal dimension being 2.2 and the maximum
value being 1.0 rad for each SAR image [43]. The decorrelation noise was modeled as a
zero-mean Gaussian random process with the standard deviation σ =

√
(1− γ2)/2/γ2,

where γ = exp(−∆t/T) is the coherence simulation based on the temporal baseline ∆t
and a time constant T (T = 60 days in this paper to let γ > 0.5) [37]. Figure 5 shows these
simulated components of one interferogram.
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Figure 5. (a) The DEM error-related phase, (b) deformation, (c) atmospheric delay, (d) decorrelation
noise, and (e) final interferogram of one simulated interferogram with a perpendicular baseline of
128 m and a temporal baseline of 36 days.

For comparison, the traditional SBAS-InSAR method with the linear deformation
model (Model 1), the traditional SBAS-InSAR method with function group (i.e.,
Equation (7)) (Model 2), and the proposed method (Model 3) were used to estimate the
DEM error and the final deformation time series in the four temporal patterns of deforma-
tions. Note that the Model 1 and Model 2 are applied to the whole time series. The accuracy
of the estimation is quantitatively described by the root-mean-square error (RMSE), which
can be calculated by:

RMSE =

√
∑NUM

i=1 (êi − ei)
2

NUM
(19)

where êi and ei are the parameter estimation and simulated true value, respectively, and
NUM is the number of samples. Note that NUM equals the number of pixels in the
calculation of the RMSE of DEM error, and equals the production of the number of pixels
and the number of SAR images in the calculation the RMSE of deformation.

As shown in Figure 6, the DEM errors estimated by Models 1 and 2 are seriously
affected by deformation signals, which is expected, since the deformation model used by
these two methods cannot well describe the deformation evolution. On the contrary, the
proposed method can achieve a higher accuracy of DEM error estimation due to the adap-
tive deformation model and the grouping strategy. For linear deformations (Figure 6a–c),
all three methods can obtain very similar DEM error results, since the linear deformation
can be well fitted by the linear model, the function group model, and the proposed adaptive
deformation model. For periodic (Figure 6d–f) and logistic deformations (Figure 6g–i), the
proposed method can obtain more reasonable DEM error results compared to the other
two methods. For complex deformations (Figure 6j–l), although it is difficult to fit the
deformation evolution with these common functions, the proposed method still performs
much better than the other two methods. It should be noted that, for the complex model,
the location of the discontinuity concerns the accuracy of the results. If the discontinuity
is located in the overlapping area of two adjacent groups, the fitting reliability of both of
these groups would be influenced. Otherwise, only one group would be influenced. In
real situations, the moment of deformation jump can usually be known before the data
processing. In this case, the grouping strategy can be modified based on deformation jump
moment to suppress this influence on the result.
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Furthermore, the accuracy of the final deformation time series was also investigated,
and the residual histograms of the deformation time series with respect to different methods
are shown in Figure 7. As can be seen, the accuracy of the deformation time series is
consistent with the accuracy of the DEM error estimation, i.e., the proposed method can
achieve better deformation results than the other two methods. This indicates that the
deformation model involved in the SBAS-InSAR process has a nonnegligible effect on final
deformation time series.

For determining the adaptive deformation model, the phase time series without the
correction of atmospheric delay were used as the observation. In this case, the existence of
atmospheric delay was not conducive to the construction of adaptive deformation model.
Therefore, we conducted a series of simulated experiments with the maximum atmospheric
delay value ranging from 0.0 to 2.0 rad to investigate the effect of atmospheric delay on the
estimation of DEM error. As shown in Figure 8, the RMSEs of the DEM error estimation
increase with an increase in the atmospheric delay magnitude for all kinds of deformations
and all three methods. Nevertheless, the proposed adaptive deformation model achieved
higher accuracy for different magnitudes of atmospheric delay compared to the other two
methods, demonstrating the superiority of the proposed adaptive deformation model.
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3.2. Real Data Experiments in the Pingchuan Mining Area

The Pingchuan mining area belongs to the Jingyuan coal field, which is one of the
important coal bases in Gansu Province, China (see Figure 9). The Pingchuan mining area is
rich in coal reserves, and coal mining began in this area as early as the 1970s [44]. With the
continuous mining of underground coal, the ground surface suffers serious deformation,
which has a negative impact on the safety of people’s lives and property. The SBAS-
InSAR method can be used to monitor such deformation, therefore providing a reliable
database for policy decisions. However, the classical SBAS-InSAR method is vulnerable
to the unreliable a priori deformation model, which is especially important for the case of
highly nonlinear deformation time series in the mining area. Therefore, in this paper, the
proposed method was employed to obtain more reliable estimations of the DEM error and
deformation for the Pingchuan mining area.

Fifty-two Sentinel-1A SAR images were acquired over the Pingchuan mining area
from 27 March 2017 to 15 July 2019 (see Figure 9a), and 158 interferograms were generated
with the maximum temporal and spatial baselines of 36 days and 200 m, respectively
(Figure 9b). To ensure all interferograms belong to a single set, we manually connected
the SAR images acquired on 5 October 2017 and 22 November 2017 to generate the 159th
interferogram (see the red line in Figure 9b). During the InSAR processing, the topo-
graphic phase was removed based on the Shuttle Radar Topography Mission (SRTM)
1 arc-second DEM [45].
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Figure 9. (a) Shaded relief map of the study area. The purple dashed rectangle is the area covered by the ascending
Sentinel-1A images (Track 55, Frame 117). The blue solid box is the scope of Figure 10. The insert map shows the location of
the study area in China. (b) Distribution of spatial–temporal baselines for the selected interferograms. The dots and lines
represent the SAR acquisitons and interferometric pairs, respectively. The red line is the manually selected interferogram
whose baseline excedes the predifined threshold.

Figure 10a–c show the DEM error estimation by the traditional SBAS-InSAR method
with the linear deformation model (Model 1), the traditional SBAS-InSAR method with
the function group model (Model 2), and the proposed method (Model 3), respectively.
Compared to the deformation rate map (Figure 10d), it is easy to see that the spatial pattern
of the DEM error estimation by Models 1 and 2 is somewhat similar to the spatial pattern
of the deformation rate, indicating that the deformation and the DEM error are not well
distinguished in these two methods. On the contrary, the DEM error estimated by Model 3
seems more reasonable and shows less correlation with the deformation. Furthermore, the
deformation time series of eight points (i.e., P1–P8 in Figure 10) are presented in Figure 11.
The deformations at P1, P3, P5, P6, and P7 show an obvious nonlinear pattern. Compared
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to Figure 10a,b, it can be found that the DEM error signals at these points are all very
large, indicating that these DEM error signals may be caused by the inaccurate deformation
models used in Models 1 and 2. As for the points P2, P4, and P8, at which the deformation
time series are not as nonlinear as the deformation at P1, P3, P5, P6, and P7, the magnitude
of the DEM error estimation is not so correlated with the deformation rate.
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Figure 10. DEM error estimation by (a) the traditional SBAS-InSAR method with the linear defor-
mation model, (b) the traditional SBAS-InSAR method with a function group, and (c) the proposed
method. (d) Deformation rate along the line-of-sight (LOS) direction estimated by the proposed
method. The negative value in (d) indicates the ground moving away from the satellite. P1–P8 are
the selected points.
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The deformation time series at P3 were taken as an example to show the difference
between the different methods (see Figure 11b). As can be seen, the differences in the
deformation time series obtained by the different methods are much smaller compared to
the long-term accumulated deformation. Nevertheless, the deformation varies as much
as several millimeters in some moments between the different methods (Figure 11c). This
magnitude of deformation cannot be negligible when millimeter-level precision is expected
in the monitoring of ground deformation. Figure 12 shows the deformation time series
retrieved from the proposed method, in which only one deformation map per month is
illustrated. The maximum cumulate deformation along the LOS direction, which occurred
around the vicinity of P6, was approximately −88.5 cm, where the negative value indicates
the ground moving away from the satellite.
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4. Discussion
4.1. Determining the Time Span of Each Group in the Grouping Process

Since one of the key steps of the proposed method is to group observations, we verified
the rationality of this grouping strategy based on the simulation of four kinds of mining
subsidence deformations (see Figure 13a) and simultaneously determined the time span of
each group in the grouping process. The mining subsidence was simulated based on the
logistic function [46]:

d(t) =
d0

1 + a exp(−bt)
(20)

where d(t) denotes the cumulative subsidence at time t, d0 represents the maximum
subsidence value, a and b are the shape parameters of the logistic function. Here,
d0 = −0.8 m, and the values of (a, b) are (2400, 0.015), (2400, 0.030), (1200, 0.015), and
(1200, 0.030), respectively. Similar to the Sentinel-1 SAR satellite, we simulated 70 acquisi-
tions with a 12-day sampling interval across two and half years, and the time span of the
observations in each group varied from six months to two and a half years. As shown in
Figure 13b, the RMSEs of the fitting deformations by grouping increase with the increase
in the observation time span in a group for the four kinds of deformations, indicating
that the shorter the time span in each group (i.e., the more groups), the higher the fitting
accuracy of the deformation model. However, the short time span decreases the number of
independent time series observations, and would increase the risk of model overfitting.
Therefore, a one-year time span in a group was preferred in this paper to obtain a tradeoff
between the accuracy of deformation and the possibility of overfitting, and this grouping
strategy was adopted in both the simulated and the real data experiments.
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Figure 13. (a) Four kinds of mining subsidence deformation. (b) The fitting deformation accuracy for
the different time spans of one group under the four kinds of deformation.

4.2. Decreasing Correlation between the Deformation Rate and the DEM Error Estimation Based
on the Proposed Method

In order to further demonstrate the superiority of the proposed method, we calculated
the correlation coefficients between the deformation rate and the DEM error estimations of
the different methods at the vicinity of P1–P8 (see Table 1).
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Table 1. The correlation coefficients between the deformation rate and the DEM error estimations of
the different methods at the vicinity of P1–P8.

Points Model 1 Model 2 Model 3

P1 0.66 0.62 0.13
P2 0.15 0.14 0.14
P3 0.73 0.60 0.24
P4 −0.01 −0.02 −0.01
P5 0.69 0.65 0.23
P6 0.54 0.35 0.14
P7 −0.51 0.39 0.18
P8 0.15 0.15 0.13

As shown in Table 1, the DEM error estimations at the points whose deformation
patterns are roughly linear (P2, P4, and P8) show low correlation with the deformation
rate for all three deformation models. However, at those points, with obviously nonlinear
deformations (P1, P3, P5, P6, and P7), the DEM error estimation shows a strong correlation
with the deformation rate for Model 1, with correlation coefficients greater than 0.5; this
correlation is decreased for Model 2 compared to Model 1, since the function group in
Model 2 can better fit nonlinear deformation than the linear function in Model 1. For
Model 3, the DEM error estimations show the slightest correlation with the deformation
rate compared to the results of Models 1 and 2, indicating that the proposed method
can construct a more reliable deformation model and then obtain more reasonable DEM
error estimation.

5. Conclusions

DEM error is one of the components in the InSAR phase and is usually estimated
with the help of an a priori deformation model. However, since the temporal deformation
evolution is usually unknown, it is difficult to use a definite function to fit temporal
deformation, which is not conducive to the estimation of DEM error and deformation time
series. In this paper, we proposed a method to construct adaptive deformation models
in the SBAS-InSAR framework based on the hypothesis testing theory. In particular, the
phase time series were first divided into several groups with overlapping regions. In each
group, we used a set of predefined functions to fit the deformation time series. In order
to prevent the occurrence of overfitting, the hypothesis testing theory was introduced
to adaptively select the optimal deformation model from the predefined functions, after
which the parameters of the adaptive deformation models in each group and the DEM
error were simultaneously solved by a least-squares method. Both simulated and real data
experiments in the Pingchuan mining area were conducted. The results show that the
proposed method can effectively improve the accuracy of DEM error estimation and can
also benefit the accuracy of deformation time series.

It should be noted that the proposed method can also be embedded in other state-of-
the-art TS-InSAR techniques to construct more suitable deformation models and to obtain
more reliable DEM error, as well as deformation. Moreover, the proposed method can be
further improved by adjusting the original deformation model functions (i.e., Equation
(7)) based on a priori information about the deformation evolution process. For example,
a time-related jump function (e.g., the Heaviside function [47]) can be used if there is an
abrupt event.
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