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Abstract: Cover crops are an increasingly popular practice to improve agroecosystem resilience to
climate change, pests, and other stressors. Despite their importance for climate mitigation and soil
health, there remains an urgent need for methods that link winter cover crops with regional-scale
climate mitigation and adaptation potential. Remote sensing is ideally suited to provide these
linkages, yet, cover cropping has not been analyzed extensively in remote sensing research. Methods
used for remote sensing of crops from satellites traditionally leverage the difference between visible
and near-infrared reflectance to isolate the signal of photosynthetically active vegetation. However,
using traditional greenness indices like the Normalized Difference Vegetation Index (NDVI) for
remotely sensing winter vegetation, such as winter cover crops, is challenging because vegetation
reflectance signals are often confounded with reflectance of bare soil and crop residues. Here,
we present new and established methods of detecting winter cover crops using remote sensing
observations. We find that remote sensing methods that incorporate thermal data in addition
to traditional reflectance metrics are best able to distinguish between winter farm management
practices. We conclude by addressing the potential of existing and upcoming hyperspectral and
thermal missions to further assess agroecosystem function in the context of global change.

Keywords: climate change; mitigation and adaptation; conservation agriculture; thermal remote sensing

1. Introduction

As one of the most intensively managed landscapes worldwide, agroecosystems
provide a crucial opportunity to mitigate greenhouse gas emissions at a global scale [1]. One
of the most promising climate mitigation and adaptation interventions in agroecosystems
is the practice of cover cropping [2], where farmers plant a non-commercial crop during
fallow periods when the soil is typically bare between cash crop harvest and the following
season’s planting. Cover cropping, alongside zero tillage and mulching, represent a set
of practices that are jointly referred to as conservation agriculture, which is practiced by
farmers worldwide [3]. In temperate climates, such as the U.S. Midwest (also known as ‘the
Corn Belt’), cover cropping occurs during winter when growing conditions for vegetation
is minimized. Winter cover crops are crucial to climate mitigation because of their potential
to dramatically increase soil carbon sequestration [2]. In addition, they offer important
climate adaptation benefits to help farmers adapt to prolonged drought and more intense
precipitation events [4,5]. Even though cover crops’ mitigation and adaptation benefits are
touted as a win-win opportunity (e.g., [6–8]), research to detect and analyze the effects of
winter cover crops at large spatial and temporal scales remains in the early stages.

Large-scale analysis of cover crops requires improving upon current multispectral
remote sensing techniques to extend our existing understanding of cover crops gained from
field-scale research. Cover crops have not been analyzed extensively in remote sensing
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research, but the field has been growing rapidly in the past decade due to both increased
availability of hyperspectral and high-resolution imagery and increased adoption of the
practice by farmers [9]. In the U.S. Midwest, cover crops stand out because so much
biomass disappears from monocultural agroecosystems after fall harvest that they are the
only remaining active vegetation on farmlands (excluding pasturelands; Figure 1). Because
of this dynamic, many studies have focused primarily on modifying traditional greenness
indices, such as NDVI, to compare different combinations of visible and infrared bands to
distinguish between active and inactive vegetation [10–17] (Table 1).
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Figure 1. Seasonal NDVI cycle for farm fields in Indiana, USA, with cover crops (green), crop
residues (blue), and conventional tillage (bare soil-red) in the fall of 2015. Each line represents the
aggregate cycle of six individual farm NDVI time series for each agricultural land use practice. The
MOD13Q1 16-day, 250 m vegetation product point samples were obtained from the Application for
Extracting and Exploring Analysis Ready Samples (AppEEARS Team, 2020).

Prabhakara et al. (2015) compared relationships between 10 different visible range
and near infrared (NIR) indices and percent ground cover and biomass of winter cover
crops [10]. They found that NDVI and the triangular vegetation index (TVI), which is
the hypothetical triangle created by green peak reflectance, red minimum chlorophyll
absorption bands, and the NIR edge, provided the most accurate estimates of cover crop
biomass and percent cover (Table 1). One of the difficulties in relying solely on traditional
greenness indices for detecting cover crops is that they are intermixed in agricultural fields
alongside bare soils and crop residues, which are the dormant and decaying remains of
harvested crops left in the field. Traditional greenness indices have difficulty distinguishing
between bare soils and crop residues (Figure 1, [11]). Furthermore, cover crops also become
dormant with cold winter temperatures or can be seeding after dormancy, emerging only
in the spring [18]. Recently, time series methods to identify cover crops based on phenology
from multiple sensors have successfully predicted cover crop and cover crop residue cover
over large spatial scales [19] and cover crop end of season [15].

Using wavelengths beyond those in the visible and NIR portions of the electromag-
netic spectrum is a promising strategy to differentiate between non-photosynthetically
active vegetation (i.e., crop residues) and bare soils in agroecosystems. By incorporating
information from wavelengths in the shortwave infrared (SWIR), cellulose and lignin ab-
sorption features of crop residues can be detected and used to differentiate them from bare
soils ([11,20–22]; Table 1). Hively et al. (2018) compared the performance of the normalized
difference tillage index (NDTI) index from Landsat observations and six WorldView-3
SWIR indices to map the spatial pattern of crop residues [23]. Their results suggested that
two SWIR indices of Lignin Cellulose Absorption Index (LCA) and Shortwave Infrared Nor-
malized Difference Residue Index (SINDRI) performed most accurately (Table 1). Similarly,
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Sonmez and Slater (2016) found that SWIR-based Cellulose Absorption Index detected
crop residue and tillage practices better than three vegetation indices [21]. Rather than
estimating percent of ground cover or biomass of cover crops, machine learning methods
can predict the presence of cover crops anywhere on the landscape using only remotely
sensed data. Seifert et al. 2018 used a random forest classification to incorporate the NDVI
and SWIR bands along with additional parameters, such as elapsed days, to classify winter
cover crops [24]. We note that the term “Growing Degree Days” generally incorporate a
temperature threshold calculation, and henceforth refer to GDD as defined by Seifert et al.
(2018) as “Elapsed Days”.

Table 1. Summary of recent (2015 and after) efforts to estimate winter cover crops and crop residues in agricultural
farm fields.

Target Parameter Location Satellite Data Most Predictive Indices for
Target Parameter Reference

Crop Residue Canada EO-1 Hyperion SWIR (shortwave infrared)
spectral bands Bannari et al., 2015 [20]

Crop Residue,
Cover Crop Pennsylvania, USA Landsat + SPOT

NDTI (Normalized Difference
Tillage Index)

mean NDVI, GDD (“Growing
Degree Days”)

Hively et al., 2015 [11]

Crop Residue, Tillage
Practices Ohio, USA Landast + EO-1 Hyperion CAI (cellulose absorption index) Sonmez and Slater 2016 [21]

Crop Residue Maryland, USA Landsat + WorldView-3 SWIR

SINDRI (Shortwave Infrared
Normalized Difference Residue
Index), LCA (Lignin Cellulose

Absorption)

Hively et al., 2018 [23]

Crop Residue Maryland, USA Worldview-3 Moisture corrected SINDRI Quemada et al., 2018 [25]

Cover Crop Marland, USA 16-band CROPSCAN
Imagery

NDVI, TVI (Triangular vegetation
index), GDD Prabhakara et al., 2015 [10]

Cover Crop Kansas, USA & Ukrain MODIS GDD, maximum NDVI Skakun et al., 2017 [14]
Cover crop Midwestern USA Landsat + MODIS Elapsed Days, maximum NDVI Seifert et al., 2018 [24]
Cover Crop Maryland, USA Landsat GDD Hively et al., 2020 [26]
Cover Crop Maryland, USA Landsat + Sentinel-2 Maximum seasonal NDVI Thieme et al., 2020 [12]
Cover Crop Corn Belt regions, USA Landsat, Sentinel, MODIS NDVI (timing and intensity) Hagen et al., 2020 [19]
Cover Crop Eastern Netherlands Sentinel-2 GDD, NDVI (timing and intensity) Fan et al., 2020 [27]

Cover Crop (senescence) Washington, DC, USA VENµS and Sentinel-2 NDVI (downward trend) Gao et al., 2020 [15]

These promising efforts indicate that remote sensing can be an effective approach to
analyze cover cropping and related conservation agriculture practices at regional scales.
However, most studies have still largely limited their approaches to smaller geographic
areas, and few have taken advantage of the potential of machine learning models to explic-
itly predict cover crop presence in agroecosystems. Additionally, applications of thermal
remote sensing in agriculture have been limited compared to those using optical remote
sensing data [28]. Thermal remote sensing provides information about temperatures on the
earth’s surface, which is linked to landscape-level patterns and processes like vegetation
cover [29], plant activity [30], and vegetation water stress [31,32]. While traditionally chal-
lenging to process at fine scales, recent developments including the Landsat Provisional
Surface Temperature (ST) product [33], provide a key opportunity to test the potential ben-
efits of thermal data for prediction of agroecosystem practices. A preliminary exploration
of the differences in ST between winter cover crops, crop residues, and bare soils indicates
consistent temperature differences in the fall that could be leveraged by machine learning
classification algorithms (Figure 2).

Our ability to monitor cover crop adoption and predict the benefits of widespread
cover crop use as a potential climate mitigation strategy depends on our ability to accurately
detect cover crops across regional scales. In this paper we evaluate the predictive capacity
of established and novel remote-sensing-based metrics for detecting cover crops using
a series of machine learning models. The goal of this work is to assess which regions of
the electromagnetic spectrum and indices are most effective for detecting cover crops and
crop residues. We developed two suites of machine learning models: a two-class model to
predict the presence or absence of winter cover crops, and a three-class model to classify
winter cover crops, crop residues, and bare soils. The model inputs increase in complexity
from traditional greenness indices, to adding SWIR and then thermal data with the Landsat
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ST product. We anticipate that the addition of thermal data will improve detection of cover
crops because cover crops are generally warmer than bare soil in the autumn (Figure 2). We
also anticipate that adding SWIR will improve model ability to distinguish between cover
crops and crop residues. Our overarching goal is to develop a comprehensive methodology
to quantify observed and potential benefits of winter cover crop adoption at spatial and
temporal scales relevant for land management.
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Figure 2. Autumn land surface temperatures (LST) for farm fields in Posey County with cover crops
(green), crop residues (blue), and conventional tillage (bare soil-red) in the fall of 2015. Each line
represents the aggregate cycle of six individual farm LST time series for each agricultural land use
practice. The MOD11Q1 daily, 1 km daytime LST product point samples were obtained from the
Application for Extracting and Exploring Analysis Ready Samples (AppEEARS Team, 2020).

2. Materials and Methods

We obtained Landsat Operational Land Imager (OLI) and TIRS (Thermal Infrared
Sensor) observations and the Landsat Provisional ST product for the 2015–2016 growing
season and calculated vegetation-relevant metrics in the visible, near-infrared, shortwave
infrared, and thermal regions. Using these remotely sensed input data and ground-truth
information from windshield surveys (Section 2.1), we created a series of random forest
models to classify (1) the presence/absence of cover crops; and (2) distinguish between
cover crops, crop residues, and bare soil/conventional tillage. We then built models with
increasing complexity to assess the additional value of each wavelength region beyond
simple greenness (NDVI). Remote sensing classification models were assessed using both
model accuracy and Cohen’s Kappa.

2.1. Survey Data

Indiana is in the Midwestern United States, a temperate region that produces about
one-quarter of the world’s annual soybean supply and one-third of the world’s annual
maize supply [34]. There are over 127 million acres of agricultural land in the Midwest,
75% of which is used for corn and soybeans, and the remaining 25% is used to produce a
variety of crops including alfalfa, tobacco, and wheat [35]. The most popular cover crops in
Indiana are fall-seeded cereals like rye and wheat [36]. Cash crops are typically planted in
mid-April to early May, and harvested in mid-September to mid-October.

Our study draws on field validation data from fall windshield surveys collected by the
U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) across
five counties in Indiana, USA. A team of surveyors drives along prescribed transects and
manually records cover crop presence and species, crop residue presence, and prior cash
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crop, among other metrics [37]. We obtained the survey transect data from five selected
counties in Indiana (Figure 3), resulting in data from a total of 1262 ground-truthing fields.
We aggregated the species-specific cover crop observations into presence/absence data.
The counties differed in their rates of cover cropping, but the number of transect points
documenting the presence of cover crops within each county were generally representative
of that county’s cover cropping rate. (Table 2). Survey transect data were processed in ESRI
ArcGIS version 10.1. Specifically, 120 m buffers (polygons) were created around all 1262
GPS transect points, avoiding roads, ditches, and other non-agricultural land cover areas.
We chose 120 m to keep the polygons as close to the roadside points as possible and to
maintain proximity to the transect points, while permitting enough pixels to represent the
ground. The average spectral signature for each band within a 40 m buffer around the 120
m buffer centroid was used to calculate band metrics in Table 2. These data were then used
to train our random forest classification models.
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Figure 3. Counties in Indiana with cover crop/tillage survey data, overlain on winter NDVI from
MODIS. Colors indicate the percentage of GPS points with fall cover crops in 2015 (out of all GPS
points) per county. The total number of GPS points per county is also indicated.

Table 2. Representativeness of study counties in Indiana. The number of GPS points designated as ‘cover crop’ in transects
in each county are compared to overall estimates of cover cropping rates in study counties after both corn and soy growing
seasons. Total n = 1262.

County Cover Cropped (Approximate % of GPS
Points in Ground Surveys)

Reported County Cover Cropping Rate (from Indiana
Conservation Tillage Program Estimates)

Benton 3.8% 5% (corn), 6% (soy)

Gibson 29% 27% (corn), 14% (soy)

Posey 39% 34% (corn), 22% (soy)

Warren 7.2% 7% (corn), 7% (soy)

White 2.6% 3 % (corn), 4% (soy)
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2.2. Remote Sensing Analyses
2.2.1. Landsat OLI Observations

We obtained HLS2 (Harmonized Landsat Sentinel 2 Data) BRDF-adjusted (Bidi-
rectional Reflectance Distribution Function) L30 (Landsat-8 OLI harmonized surface re-
flectance resampled at 30 m over the Sentinel-2 tiling system) for all of Indiana [38] for
the study year (2015–2016 growing season). We used the HLS product to facilitate future
incorporation of the HLS S30 (Sentinel-2 30 m) product, which was not used in the present
study. The study area required the download of 12 tiles: 16SDH, 16SEH, 16SFH, 16SDJ,
16SEJ, 16SFJ, 16TFK, 16TEK, 16TDK, 16TDL, 16TEL, and 16TFL. Data were reprojected
using the ‘gdalwarp’ command in the ‘rgdal’ package, version 1.5–18 [39] in R [40]. For
all scenes, we created a cloud mask based on the corresponding Quality Assessment (QA)
layer that filtered out pixels with Cirrus (bit 0), Cloud (bit 1), or Adjacent Cloud (bit 2)
according to the recommendations in the HLS Product user’s guide Version 1.4 [41]. Data
were compiled to represent the hydrologic year rather than the calendar year; the 2016
water year runs from 1 October 2015 through 30 September 2016.

2.2.2. Landsat Analysis-Ready Data

The Landsat ST product and associated Quality Assessment (QA) layers were obtained
from the U.S. Landsat Analysis Ready Data product bundle. Only surface temperature
estimates from the Landsat 8 thermal imager were used in this analysis for continuity
with the OLI observations. The ST data are produced at 100 m resolution every 16 days.
Broadly, the surface temperature algorithm uses Level-1 thermal infrared bands from the
Thermal InfraRed Sensor (TIRS), along with other ancillary inputs, to estimate surface
temperature in Kelvin for the terrestrial land surface. More algorithm details can be found
in [33]. For all scenes, we filtered out pixels with high uncertainty in the ST based on the
ST QA layer (>70%). Data were compiled to represent the hydrologic year and converted
to degrees Celsius.

2.2.3. Band Math for Random Forest Inputs

We applied calculations to the L30 Bands and ST to obtain the metrics described in
Table 3. We transformed Landsat bands to calculate both well-established and novel band
metrics that we used as input data for the random forest classification models. We obtained
NDVI using the standard Landsat 8 formulation

NDVI =
Band 5 − Band 4
Band 5 + Band 4

(1)

where Bands 5 and 4 represent the NIR and Red bands, respectively. Further calcula-
tions performed on NDVI timeseries are described in Table 2. To calculate the Sim-
ple Tillage Index (STI) and Normalized Difference Tillage Index (NDTI), we used the
following equations

STI =
Band 6
Band 7

(2)

NDTI =
Band 6 − Band 7
Band 6 + Band 7

(3)

where bands 6 and 7 are SWIR 1 and SWIR 2, respectively. To calculate elapsed days, we
counted the number of days between 11/1 of 2015 and the date of maximum NDVI for
each pixel

Elapsed Days = ∑Date Max NDVI
11/1 ndays (4)

in the formulation of Seifert et al. (2018) [24].
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Table 3. Band math calculations for Landsat post-harvest relevant metrics. Landsat observations for a total of n = 1262
points were used.

Metric Math Applied Reference(s) Models Included

NDVI Maximum of fall observations
(1 October—1 December) Skakun et al., 2017 [14] First level

NDVI

• Minimum of fall observations
• Median of fall observations
• Amplitude (annual max (1 October—30
September)—fall max (1 October—1
December))
• Annual maximum of NDVI (1 October—30
September)
• Ratio of Fall maximum NDVI to annual
maximum NDVI (1 October—30 September)

Hagen et al., 2020 [19] Second level

B3 (Green Band) Median of fall Observations (1 October—1
December) Seifert et al., 2018 [24] Second level

B5 (NIR Band) Median of fall Observations (1 October—1
December) Seifert et al., 2018 [24] Second level

B6 (SWIR 1 Band) Median of fall Observations (1 October—1
December) Seifert et al., 2018 [24] Second level

Elapsed Days Sum from 11/1 to annual maximum NDVI
image date (1 October—30 September) Seifert et al., 2018 [24] Second level

Normalized Difference Tillage
Index (NDTI)

Median of fall Observations (1 October—1
December) Hively 2019 [42] Third level

Simple Tillage Index (STI) Median of fall Observations (1 October—1
December) Van Deventer 1997 [43] Third level

Surface Temperature (ST) Median of fall Observations (1 October—1
December) Cook et al., 2014 [33] (Product) Fourth level

B10 (Thermal infrared 2 Band)

• Median of fall Observations (1 October—1
December)
• Annual maximum of B10 (1 October—30
September)
• Thermal Ratio (ratio of fall maximum B10
to annual maximum B10).

Developed for this paper Fourth level

2.3. Random Forest Classification
2.3.1. Model Building

We used a machine learning classification approach in this study to assess cover crop
presence on the landscape and distinguish cover crops from crop residues and bare soils.
Machine learning is a powerful technique that allows an algorithm to ‘learn’ relationships
between output classes (e.g., cover crops vs. bare soil) and input features (e.g., remotely
sensed metrics) to classify novel input data. We used random forest, which is a supervised
learning algorithm. For classification problems, random forest constructs an ensemble
of decision trees based on input features during training, then aggregates votes from
individual trees to determine the final predicted class. One strength of random forest (as
opposed to other machine learning algorithms) is that the models are interpretable, in that
the trained model can be used to gain insight into the relationship between features and
classes using variable importance metrics [44].

Here, we developed both two- and three-class random forest models to predict winter
land cover and land use practices in the U.S. state of Indiana. The two-class model was
trained to predict the presence or absence of winter cover crops across the landscape.
The three-class model aimed to distinguish between bare soil (conventional tillage), crop
residues, and winter cover crops. To assess the value of adding observations and indices
from additional regions of the electromagnetic spectrum, four iterations of each model were
run with an increasingly complex set of input parameters. The four levels of complexity
were as follows:

• First level: NDVI—we used the maximum of fall (1 October–1 December) NDVI
observations for each pixel.
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• Second level: VisNIR—we used bands and indices from the visible and near infrared
regions of the spectrum (see Table 2), in addition to the NDVI from the first level.

• Third level: SWIR—we added two tillage indices, based on the shortwave infrared
bands (see Equations (2) and (3) to the input datasets in the third level of complexity,
in addition to all metrics in levels 1 and 2.

• Fourth level: ST (Thermal)—we added the median of fall observations (October—
1 December) and the absolute maximum ST from the Landsat provisional surface
temperature product to the input datasets in this fourth and final level of complexity,
in addition to all metrics in levels 1, 2, and 3.

Random forest models were created using the ‘caret’ package in R [45]. Because the
classes were highly imbalanced (i.e., there were many more non-cover crop points than
points with winter cover crops), we up-sampled the cover crop points in the training
dataset to achieve balanced classes for model training. Specifically, the minority class
(cover crops) was sampled with replacement to make the class distributions equal. In
random forest model development, we conducted repeated cross-validation of 80% of the
training data with 10 folds and 10 repeats. The number of trees (ntree) was set at 500 for all
models. We also created a grid of hyper-parameter values that allowed the ‘mtry’ metric,
which is the number of variables available for splitting at each tree node, to vary from 1 to
16 (the total number of variables in our input dataset). The models presented in Table 4 are
models with the highest accuracy and kappa.

Table 4. Training accuracy of cover crop detection algorithms when based on increasingly extensive range of wavelengths
in the input datasets (total n = 989). We report the overall model accuracy, the value of the kappa statistic for the cover crop
class, and the optimal mtry value used for the final model.

Model First Level: NDVI Second Level: VisNIR Third Level: SWI Fourth Level: Thermal ST

Two-class model:
Cover crop

presence/absence

Acc = 89.7%
k = 0.79
mtry = 1

Acc = 95.2%
k = 0.91
mtry = 2

Acc = 95.4%
k = 0.91
mtry = 2

Acc = 95.5%
k = 0.91
mtry = 2

Three-class model:
Cover crop vs. residue

vs. bare soil
(conventional till)

Acc = 72.1%
k = 0.58
mtry = 2

Acc = 77.1%
k = 0.66
mtry = 1

Acc = 78.9%
k = 0.68
mtry = 1

Acc = 79.7%
k = 0.70
mtry = 3

2.3.2. Model Validation

In addition to reporting model statistics on the 20% of the validation data left out
during model building, we also applied the models to all of Posey County Indiana and
evaluated model performance against the transect data. The latter is a more difficult
classification task for the machine learning algorithm because it must implement the
algorithm to classify every pixel across the county. The ‘best’ models were selected based
on both accuracy and Cohen’s Kappa statistic:

κ =
Po − Pe

1 − Pe
(5)

where Po is the relative observed agreement, and Pe is the expected agreement. There is
no standard scale for interpreting kappa values. The higher the kappa value, the better
the match between machine learning classification results and the ground truth data.
Here, we consider Landis and Koch’s interpretation for kappa values, where: 0–0.20 is
slight, 0.21–0.40 is fair, 0.41–0.60 is moderate, 0.61–0.80 is substantial, and 0.81–1 is ‘almost
perfect’ [46].

Overall accuracy was evaluated as

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(6)
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where true positive (TP); true negative (TN); false positive (FP); and false negative (FN)
are all possibilities for the relationship between the predicted condition (modeled class)
and true condition (ground truth class). A ‘false positive’ is also known as a ‘Type I
statistical error’ and ‘false negative’ is known as a ‘Type II statistical error’. Because it is
more important for our cover crop detection model to detect the presence of cover crops,
rather than detect the presence of bare soil/conventional tillage, we also report the Positive
Class Accuracy

Positive Class Accuracy =
TP

(TP + FN)
(7)

3. Results
3.1. Within-Model Training Accuracy Model Results

Overall, models that included thermal and surface temperature data were only slight
improvements over the simpler greenness-based models (Table 4). For the two class
models, the fourth-level ST model, SWIR, and VisNIR model had equivalent kappa values,
indicating the more complex model provided marginal benefit. For the three-class model,
the addition of the more complicated VisNIR metrics and SWIR band increased model
accuracy and kappa (from 72.1% accuracy to 78.9% accuracy and k = 0.58 to k = 0.68,
with a slight added benefit of the additional thermal data in terms of model accuracy
(79.7% accuracy) and kappa (k = 0.70). Overall, the overall training accuracy of the model
was excellent. Next, we tested model strength more rigorously by applying the random
forest model to spatially continuous input rasters. Such predictions on new data are more
representative of real-world applications of our model than training accuracy.

3.2. Model Testing Results for Novel Predictions in Posey and Gibson Counties

Overall, models that included ST and thermal data were the best models in terms
of both accuracy and kappa for both the two- and three-class models (Table 5). For the
two-class model, the fourth level ST model was the best predictor of cover crop pres-
ence, with an overall accuracy of 89.4% and k = 0.72, indicating our model has ‘substan-
tial’ predictive value according to Landis and Koch’s rubric. For the three-class model,
the fourth level ST model also performed best, with an overall accuracy of 79.8% and
k = 0.69. The fall maximum NDVI-only models performed poorly, with only k = 0.2 and
k = 0.12 for the two- and three-class models, respectively (Table 5). However, the biggest
jump in improvement for both two and three class models was from the addition of more
complicated NDVI-based metrics (Table 5) between the first and second level models.

Table 5. Classification accuracy of cover crop detection algorithms when based on increasingly extensive range of wave-
lengths in the input datasets. Accuracy metrics were obtained by evaluating the accuracy of predictions on windshield
surveys in Posey County (n = 397). We report the overall model accuracy, and the value of the kappa statistic for the cover
crop class.

Model First Level: NDVI Second Level:
VisNIR

Third Level:
SWIR

Fourth Level:
Thermal ST

Two-class model:
Cover crop

presence/absence

Acc = 72.0%
k = 0.2

Acc = 85.6%
k = 0.61

Acc = 87.4%
k = 0.67

Acc = 89.4%
k = 0.72

Three-class model:
Cover crop vs. residue

vs. bare soil
(conventional till)

Acc = 43.3%
k = 0.12

Acc = 74.8%
k = 0.62

Acc = 74.1%
k = 0.61

Acc = 79.8%
k = 0.69

Confusion matrices for the fourth-level Thermal ST models for the two- and three-class
models are presented below. Positive class accuracy for the two-class model was 80.2%,
indicating that the model generally predicted cover crops correctly (Table 6). Positive
class accuracy in the three-class model was 72.8% for cover crops and 88.6% for residues,
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indicating the model was not as adept at accurately predicting cover crops as crop residues
(Table 7).

Table 6. Confusion matrix for the Thermal/ST(fourth-level) two-class model for Posey and Gibson
counties (n = 397). Green text represents true positive and true negative predictions, and red text
indicates false positives and false negatives. See equations 5–7 for description of calculation of
performance metrics.

Ground Truth

Cover Crops No cover crop
Predicted Cover Crops 77 19

Conventional 23 278

Two Class Model Accuracy = 89.4%
Kappa = 0.72

Positive Class Accuracy—cover crops = 80.2%

Table 7. Confusion matrix for the Thermal/ST (fourth-level) three-class model for Posey and Gibson
counties (n = 397). Green text represents true positive and true negative predictions, and red text
indicates false positives and false negatives. See equations 5–7 for description of calculation of
performance metrics.

Ground Truth

Cover Crops Crop Residue Bare Soil
Predicted Cover Crops 86 13 19

Residue 3 101 10
Bare Soil 11 24 130

Three Class Model Accuracy = 79.9%
Kappa = 0.69

Positive Class Accuracy—cover crops = 72.8 %
Positive class Accuracy—residue = 88.6%

Variable importance scores for both the two- and three-class models showed that
surface temperature was the most important predictive variable for both models (Table 8).
For the two-class model that predicted cover crop presence/absence, the standardized
tillage index was the second most important, with a variable importance score of 68.9,
followed by the annual maximum value of band B10 at 57.4 (Table 8). For the three-class
model that predicted crop residues and cover crop presence, the STI and NDTI were the
second and third most important variables, with variable importance scores of 82.8 and
74.0, respectively. (Table 8). Notably, ‘elapsed days’ were not highly important in either
model, with scores of 24.6 and 15.6 for the two- and three-class models, respectively. Vari-
ability in ST and variability in fall maximum NDVI were not strongly coupled, (Figure 4a),
underscoring the limited predictive power of NDVI in our classification models. There was
stronger coupling between ST and STI, particularly for the cover crop class (Figure 4b). This
suggests that the relationship between ST and STI may be useful in identifying cover crops.
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Table 8. Variable importance scores for the two-class cover crop presence/absence and three-class
cover crop/residue/bare soil model, ranked from most to least important. All metrics are the median
fall observations (1 October—1 December) unless otherwise noted. More information on specific
metrics can be found in Table 2. Displayed variable importance scores are scaled mean decrease
accuracy (%IncMSE divided by its standard deviation).

Two-Class Model Variable Importance Three-Class Model

ST 100 Most Important ST 100

STI 68.9
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Despite high positive-class accuracy, the two-class model indicated a lower percentage
of cover crops over Posey County than estimates from the Indiana Conservation Partnership
(Figure 5). Cover crop presence is 24.8% in the two-class model, and 30.0% in the three-class
model (Figure 5a,b). In the three-class model, there was also 25.0% crop residue coverage.
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Corresponding input variables are also plotted alongside random forest model results
(Figure 5c–e).

1 
 

 
Figure 5. Results of cover crop estimation over portions of Indiana’s Posey county (f), which has the highest cover crop
adoption rates in the state. Estimates based on the two-class cover crop presence/absence (a) and the three-class cover crop
and crop residue (b) model are shown alongside key input variables: NDVI (c), the NDTI (d), and surface temperature (e).

4. Discussion

Our study evaluated the capacity of indices in the visible, NIR, SWIR, and thermal
regions to predict winter cover crops and crop residues over the state of Indiana. Overall,
we found that NDVI and metrics based solely on visible and NIR were not sufficient to
detect cover crops or crop residues in Midwest agroecosystems. Our approach relied on
comparing models with varying degrees of complexity by starting with NDVI, then adding
a suite of indices from the visible and near-infrared, then incorporating SWIR bands, and
finally incorporating thermal surface temperature data. For both our two- and three-class
model, we found that a more complex model that included ST yielded the most accurate
predictions of both cover crops and crop residues. Our work supports findings elsewhere
in the literature [21,23,24] that beyond greenness—that is, going beyond the visible range
and infrared bands—is essential to improve the detection of winter cover crops.

Each region of the electromagnetic spectrum tested here—VisNIR, SWIR, and
thermal—is related to different characteristics of vegetation and thus each provides unique
information for detection. The visible and near-infrared wavelengths are proxies for leaf
area index and photosynthetic activity [47,48]. Wavelengths in the SWIR target the water,
cellulose, and lignin in non-photosynthetically active vegetation to distinguish it from bare
soils [49,50]. ST, which until now has not been used to detect winter agricultural practices
at regional scales, is a variable with multifaceted connections to vegetation activity that
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incorporates the impacts of both vegetation structure (i.e., surface roughness; [51]) and
function (i.e., transpiration; [52]).

A crucial finding of our study is that going beyond greenness meaningfully improved
model ability to predict cover crop and crop residue presence on the landscape. Overall,
remote sensing of vegetation based on the traditional multispectral ‘greenness’ paradigm
is not sufficient to detect cover crops at spatial and temporal scales relevant to land
use and land cover change. The NDVI-only based models had poor predictive power
(k ≤ 0.2; Table 5). Random forest models based on a suite of indices in the visible and
near-infrared improved model performance, likely by leveraging variables relevant to both
fall vegetation cover (i.e., Fall NDVI) and growing season crop performance (i.e., elapsed
days, [24]). Indices in the SWIR were more important in the three-class vegetation model
than the two-class model, likely because the three-class model had a specific category for
crop residues which are most distinguishable by wavelengths in the SWIR (Table 8). Even
so, the SWIR index STI was the second most important predictive variable in the two-class
model (Table 8). Finally, the addition of ST led to the best models for both the two- and
three-class models (Table 5).

A second key finding from our study is that incorporating thermal data alongside
SWIR resulted in the best detection model. Although there is little difference in ST be-
tween bare soil, crop residues, and cover crops in the dormant season, there are consistent
differences between land cover types in the fall that can be leveraged by detection algo-
rithms (Figure 2). Thermal data improved detection accuracy over the SWIR model for the
two-class model, increasing kappa from 0.67 to 0.72 (Table 5). For the three-class model,
thermal data also led to increased predictive power, increasing kappa from 0.61 to 0.69
(Table 5). While this improvement may seem small, incorporating thermal data offers
several important advantages that should be treated as crucial to future detection. As
temperatures drop in the fall, bare soil is the coldest, while crop residues that blanket the
land surface keep the land surface relatively warm (Figure 2). Cover crops are in the middle,
with slightly warmer temperatures than bare soil [53], potentially due to increased surface
roughness of vegetation or lower albedo if snow is present [54]. Thermal data was the most
important predictor variable in the three-class model, which suggests that thermal data
can amplify the differences between photosynthetically active and non-photosynthetically
active vegetation. Overall, incorporating thermal data greatly improves our ability to detect
cover crops in Midwest agricultural lands.

Our iterative random forest classification approach allowed us to evaluate the addi-
tional predictive value added by each additional wavelength region through a series of
increasingly complex models. Furthermore, the variable importance scores of random
forest inputs allowed us to evaluate the relative predictive power of explanatory variables
(Table 8). In contrast to empirical approaches that test for correlations between biomass
and vegetation indices, our machine learning approach allows prediction of cover crop
presence on novel regions based solely on remotely sensed inputs. Assessment of variable
importance scores indicates that surface temperature has strongest predictive power in
both the two- and three-class model (Table 8). Indices in the SWIR were the second most
important variables for both the two- and three-class models, underscoring the impor-
tance of SWIR for both cover crop detection and crop residue detection. Continuing to
improve accuracy is essential given remote sensing’s potential future role in monitoring
and contributing to public policies, such as carbon markets and incentives for conservation
agriculture adoption.

Ongoing improvements in spaceborne sensors means that additional information
beyond greenness can be leveraged for agricultural applications including cover crop
detection. Full-waveform information from hyperspectral imaging spectroscopy could
distinguish photosynthetically active vegetation from crop residues and bare soils, and also
allow investigation of individual species that comprise winter cover crops. Additionally,
the increasing availability of high-resolution thermal data, like those provided by the
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)
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instrument aboard the International Space Station [55], allows for further exploration of the
predictive power of thermal data for questions relating to agricultural land-use practices.

The improved ability to accurately detect cover crops, as well as crop residues, in
farmlands provides a critical advantage in understanding the ecological effects of these
practices on local and regional carbon, water, and energy cycles (e.g., [4,56]). Being able
to link carbon sequestration, changes in crop biomass, and nutrient cycling means re-
searchers will be better able to model the carbon and energy balance mitigation potential
of sequestration benefits and improvements in nitrate retention resulting from cover crops.

5. Conclusions and Future Directions: Implications for Policy and Management

This study demonstrated the value of going beyond greenness for the detection of
cover crop and crop residues, which have critical climate mitigation and broader ecological
implications. Improved detection, even incremental above the promising advantages
of incorporating SWIR bands, has important policy and management implications for
agriculture. As policymakers look towards additional mechanisms to encourage greater
adoption of cover crops to promote carbon sequestration, such as carbon markets [57], the
availability of reliable detection methods will be critical to advancing these opportunities
as a monitoring tool. The availability of improved detection will also enable better trend
analysis that can benefit farmers by identifying how cover crops affect cash crop yields, soil
moisture and nitrogen fertilizer retention, and soil organic matter. These opportunities are
crucial because farmers in the US Midwest have been slow to adopt zero tillage practices,
which leave crop residues on the land surface, and slower still to adopt cover crops [9,58].

The rapid development of improved remote sensing of cover crops and crop residues has
shown that relying solely on NDVI to detect cover crops is problematic because once winter
cover crops become dormant, it is very difficult to distinguish between cover crops, crop
residues, and bare soils that have significantly different ecological benefits but are highly inter-
mixed. Incorporating SWIR bands and thermal data are both important to advancing remote
sensing detection of agroecosystems, particularly as sensors improve and provide for more
temporally and spatially refined resolutions, which will be very important to account for the
variability in management decisions around the timing of planting and termination of cover
crops. Thermal data could increase in importance as warming temperatures and changing
precipitation patterns facilitate unexpected ecological and managerial responses [59]. Random
forest classification is also crucial for prediction on novel data and model interpretability. This
work was limited to only five counties in one Midwest US State and looked at fall cover crops
only because of the available transect data.

Looking forward, better remote sensing detection of cover crops has the potential to be of
critical importance to environmental management and policy. Cover crops are implicated in
mitigating water pollution, climate adaption from improved soil moisture retention, climate
mitigation through carbon sequestration, and increasing agrobiodiversity by expanding
current crop rotations [2,4]. Improving the temporal and spatial resolution of cover crop
detection will contribute to more comprehensive analysis of benefits of cover crops from local
to regional scales and inform both agricultural and environmental management.
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