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Abstract: With recent advances in technologies, deep learning is being applied more and more to
different tasks. In particular, point cloud processing and classification have been studied for a while
now, with various methods developed. Some of the available classification approaches are based on
specific data source, like LiDAR, while others are focused on specific scenarios, like indoor. A general
major issue is the computational efficiency (in terms of power consumption, memory requirement,
and training/inference time). In this study, we propose an efficient framework (named TONIC) that
can work with any kind of aerial data source (LiDAR or photogrammetry) and does not require high
computational power while achieving accuracy on par with the current state of the art methods. We
also test our framework for its generalization ability, showing capabilities to learn from one dataset
and predict on unseen aerial scenarios.

Keywords: aerial point cloud; classification; AI; machine learning; deep learning

1. Introduction

In recent years, point cloud processing techniques are extensively investigated by
the research community for various applications [1,2]. Among these, aerial point cloud
classification methods hold an important place, as assigning a meaning to 3D points allows
for the widespread use of such geospatial information. There are many studies presented
in the literature focusing on a semantic interpretation of 3D point clouds based on different
techniques [3–5] and for various approaches [6–9]. To the best of our knowledge, many of
the current 3D classification solutions are confined to either specific data (e.g., only LiDAR)
or scenarios (indoor vs. outdoor, terrestrial vs. aerial). This is due to the complexity of the
3D classification process, the different data structure, the need of specific training data, as
well as generalization problems.

This paper introduces our work dedicated to aerial point cloud classification. A
framework (TONIC: efficienT classification Of urbaN poInt Clouds) was developed with
the motivation to realize an efficient (in terms of power consumption, memory require-
ment, and training/inference time), reliable and generalizable method for the semantic
enrichment of urban point clouds. Such enriched point cloud could be preparatory for 3D
building modeling [10], change detection [11], planning [12], etc. The presented framework
can cope with point clouds from any data source (LiDAR or aerial photogrammetry), any
point cloud density and even absence of RGB information.

Our major contributions can be summarized as follows:

1. analyze the effects of point clouds’ density characteristics (overall density and density
variations) for point cloud classification, and find an optimal overall density based on
classification accuracy (Section 3.1.1);

2. deliver a novel point cloud classification approach based on the combination of
classical Machine Learning (ML) and Deep Learning (DL) techniques, i.e., using a
shallow and custom-designed convolutional neural network (CNN) supported by
handcrafted features (Section 3.1.2);
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3. classify heterogeneous point clouds produced by different sensors and methods
(Section 3.2) in an efficient and low-consuming manner (Section 4.3);

4. generalize the method to unseen data (Section 4.4).

Based on the way we treat the hand-crafted features with CNNs, we consider our
work to be categorized as an architectural innovation. To our knowledge, there are no other
methods using our approach (Section 3.1.3), where we generate patches (a 2D matrix per
point) using extracted features and coordinates of the neighboring points and process them
as images aiming to predict a class label per point (represented by a patch). Therefore, we
consider our approach as a new relationship between aerial 3D point clouds and CNNs [13].

In the following sections, related works are presented in Section 2, the workflow is out-
lined in Section 3, whereas results and validations are presented in Section 4. Discussions
and conclusions will wrap up the article.

2. Related Work

Artificial Intelligence (AI) usage in data classification has evolved throughout the
years (Figure 1), and this trend is clearly visible in point cloud processing [14–16]. AI-
based processing of point clouds involves segmentation, classification, and object detection
procedures. ML methods do not require large training data in general. However, more
and more point cloud data becoming available, facilitating the development of new DL
approaches [2,16,17]. DL methods commonly outperform ML methods in various fields
and tasks with the capabilities of representation learning [17]. The benefits include more
generalized model with possible higher accuracy compared to ML. In some cases, hand-
crafted features are included to give a boost to the DL method [18,19], yet it is not a common
trend in the AI community as seen in the literature [2,15,20,21].

Remote Sens. 2021, 13, x FOR PEER REVIEW 2 of 20 
 

 

2. deliver a novel point cloud classification approach based on the combination of clas-

sical Machine Learning (ML) and Deep Learning (DL) techniques, i.e., using a shal-

low and custom-designed convolutional neural network (CNN) supported by hand-

crafted features (Section 3.1.2); 

3. classify heterogeneous point clouds produced by different sensors and methods (Sec-

tion 3.2) in an efficient and low-consuming manner (Section 4.3); 

4. generalize the method to unseen data (Section 4.4). 

Based on the way we treat the hand-crafted features with CNNs, we consider our 

work to be categorized as an architectural innovation. To our knowledge, there are no 

other methods using our approach (Section 3.1.3), where we generate patches (a 2D matrix 

per point) using extracted features and coordinates of the neighboring points and process 

them as images aiming to predict a class label per point (represented by a patch). There-

fore, we consider our approach as a new relationship between aerial 3D point clouds and 

CNNs [13]. 

In the following sections, related works are presented in Section 2, the workflow is 

outlined in Section 3, whereas results and validations are presented in Section 4. Discus-

sions and conclusions will wrap up the article. 

2. Related Work 

Artificial Intelligence (AI) usage in data classification has evolved throughout the 

years (Figure 1), and this trend is clearly visible in point cloud processing [14–16]. AI-

based processing of point clouds involves segmentation, classification, and object detec-

tion procedures. ML methods do not require large training data in general. However, 

more and more point cloud data becoming available, facilitating the development of new 

DL approaches [2,16,17]. DL methods commonly outperform ML methods in various 

fields and tasks with the capabilities of representation learning [17]. The benefits include 

more generalized model with possible higher accuracy compared to ML. In some cases, 

handcrafted features are included to give a boost to the DL method [18,19], yet it is not a 

common trend in the AI community as seen in the literature [2,15,20,21]. 

As our method can be categorized in between ML and DL, the next sections report 

some related works in both fields. 

 

Figure 1. AI approaches for data classification (adapted from Goodfellow et al. [22]). 

  

Figure 1. AI approaches for data classification (adapted from Goodfellow et al. [22]).

As our method can be categorized in between ML and DL, the next sections report
some related works in both fields.

2.1. Classical Machine Learning (ML)

ML methods for point cloud classification are focused on labeling each point individu-
ally via their feature vectors. These features are extracted using neighboring points and
they are pre-defined by the person who handcrafts them. In many cases, the computational
efficiency of the ML algorithms is helpful, and in this way, some problems can be solved
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with high accuracy [19]. However, there is a limit to the extent of feature handcrafting and
therefore how good the results can be [23].

Weinmann et al. [24] analyzed features’ impact in the classification of terrestrial laser
scanning (TLS) data, showing how few and versatile features can outperform the increased
number of features. Hackel et al. [25] presented a TLS classification method able to handle
a varying point density. Thomas et al. [26] focused on utilizing multiscale spherical
neighborhoods for indoor and outdoor LiDAR point clouds. Zhang et al. [27] developed a
classification method that combines surface growing along with support vector machine
for a classification based on segments and implemented connected components-based
refinement to cope with noises in classification. Li et al. [28] applied label smoothing in
order to improve classification results.

The current challenges and limitations of ML methods for point cloud classification
include feature engineering (especially for irregular/noisy point clouds), solving complex
problems, being able to exploit more data and transfer learning adaptation. We consider
these challenges and limitations to be rooted in the nature of ML methods.

2.2. Deep Learning (DL)

With the recent developments in technology, DL is becoming more and more popular
for different data processing necessities [29]. Being able to learn from data (Figure 1)
and thanks to the increasing number of available datasets, DL methods are the current
state-of-the-art in many applications, including point cloud classification.

There are various studies focusing on different perspectives of DL-based point cloud
processing, including 3D shape classification, 3D object detection [30], and 3D point cloud
classification [31]. 3D point cloud classification methods have been developed with dif-
ferent approaches based on graph recursive neural network (RNN), point convolution,
point-wise multi-later perceptron (MLP), etc. [17].

Aerial point cloud classification has been studied by many researchers with varying
approaches: Qi et al. developed PointNet++ [32], a semantic segmentation approach, where
the point cloud is processed with varying neighborhoods and local geometry is learned
by the network as well as global geometry. Yousefhussien et al. [33] developed a 1D-CNN
based method which can learn global and local geometric features from a given point cloud
for classification. Özdemir et al. proposed the combination of handcrafted features with DL
to boost the classification process [34]. Li et al. [21] developed a geometry-attentional deep
neural network (DNN) based on geometry-aware convolutions. Wen et al. [35] developed
a graph-attention based approach which includes edge and density attentions as well
as graph global attention. Huang et al. [36] built a DNN solution based on PointNet++
including hierarchical data augmentation. Li et al. [37] proposes Dance-Net, which intro-
duces a density-aware convolution module capable of approximating typical convolutions
on an irregular 3D point cloud. Winiwarter et al. [38] developed their method based on
multi-scale implementation of PointNet++. Chen et al. [39] proposed a network using
PointNet++ architecture with modified local and global feature extraction capabilities as
well as a focal loss to improve the performance of the original network. Thomas et al. [40]
proposed kernel point convolution (KPConv) that can handle point clouds without any
transitional representations.

The current challenges and limitations of DL methods for point cloud classification
include data irregularity, uneven distribution and density, noise/outlier presence, avail-
ability of large training sets, lack of generalization to various contexts, and explainability.
The reasons for such challenges are due to the intrinsic nature of DL methods, the general
training on specific contexts and datasets, and their lack of clear transparent explanation
and reasons for a certain result or failure.
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3. Method and Data
3.1. Methodology

The methodology builds upon [34,41] and refines its performance, adding reliability,
computational efficiency, and generalization capabilities. In particular, improvements in
the feature extraction approach and deep neural network design are afterwards reported.

During our development and testing, we used publicly available libraries includ-
ing Point Cloud Library [42] for point cloud processing, TensorFlow v2.5.0-rc1 with
Keras [43,44], NumPy [45], and Scikit-learn [46] packages for classical machine learning.

3.1.1. Point Cloud Downsampling

One of the key characteristics of a point cloud is its overall density. The overall density
may differ based on data acquisition (i.e., flight altitude, camera, and lens specifications,
LiDAR sensors, etc.) or data processing (i.e., dense image matching parameter settings,
filtering, etc.) options. A point cloud’s overall density may be as low as 1 pts/m2 or
as high as 1000 pts/m2, which hampers the classification needs. For instance, with an
overall density of ~2 pts/m2, it becomes difficult or even impractical to seek highly detailed
classes, such as traffic lights, cars or sidewalk bars. In addition to overall density, another
key characteristic is the density variation within the point cloud. Like overall density,
the density variation can be as low as 1 pts/m2 or as high as 1000 pts/m2. The higher
the density variation, the less consistent the level of detail is expected within the point
cloud. The density variation has significant impact on results for our approach as we use
handcrafted features (Section 3.1.2). Higher density variation causes less consistency for
the features.

Considering these issues, we adapted a voxel-based downsampling approach which
offer the following main advantages:

1. Speed-up the entire process significantly due to data reduction,
2. Make a better use of features given the consistent density within the point cloud due

to lower density variations,
3. Achieve similar overall density characteristics among different point clouds and favor

generalization possibilities,
4. Noise reduction in the point cloud due to voxel grid filtering.

The downsampling is done with Point Cloud Library’s built-in voxel grid filter, which
downsamples points falling in the same voxel by computing their centroid. We defined the
voxel sizes for downsampling as the multiplication of points resolution and leaf coefficient.
The minimum, mean, median, maximum, and standard deviation of number of nearest
neighboring points are computed with a k-nearest neighborhood (knn) within 1.45 times
the points resolution. This 1.45 coefficient is decided based on the neighboring distances in
an image/patch (see Section 3.1.3).

3.1.2. Multi-Scale Feature Extraction

Neighborhood selection has always been a challenging decision when it comes
to feature extraction. There are alternative approaches in the literature tackling this
task [25,47–49]. In our case, instead of using a single search radius or a constant number of
points (k-nearest neighbors), a multi-scale feature extraction for different neighborhood
coverages is implemented. Normally, we apply three different radii in order to tackle with
the different geometric aspects of the classes.

The extracted features include eigenvalues (λ1 > λ2 > λ3) derived from the princi-
pal component analysis implementation of Point Cloud Library [42], eigenvectors-based
surface normal estimations, covariance features (linearity, sphericity, omnivariance), as
well as geometrically computed features (local elevation change, local planarity, vertical
angle, and height above ground). The covariance features are computed following [24] and
the others are computed based on direct geometrical computations rather than principal
component analysis (Table 1).
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Table 1. Employed handcrafted features.

Linearity (λ1 − λ2)/λ1

Sphericity λ2/λ1

Omnivariance (λ1 ∗ λ2 ∗ λ3)
1/3

Local Elevation Change zmax − zmin

Local Planarity 1
n

n
∑

k=0
L2

(
pk,
→
P
)

Vertical Angle cos−1

 →
Pxy ·

→
p(∣∣∣∣∣∣∣∣→Pxy

∣∣∣∣∣∣∣∣)∗(∣∣∣∣∣∣→p ∣∣∣∣∣∣)


Height Above Ground prz − plz

The employed non-eigen features include: local elevation change (i.e., the difference
in the minimum and maximum z-coordinates in the neighborhood); local planarity (i.e.,

the average distance between the neighboring points (pk) to their best-fit plane (
→
P)); ver-

tical angle (i.e., the angle between the normal vector of a point (
→
p ) and xy-plane (

→
P xy));

height above ground (i.e., the difference between z-coordinates of the point (prz) and the
possible lowest point (plz)). The possible lowest point is the point which is hypothetically
representing the ground and is extracted as given in Algorithm 1, in which we used the
k-d tree algorithm implemented in the Point Cloud Library [42].

Algorithm 1: Possible lowest point identification

Input: 3D point cloud
Initialization: Iterate through the input point cloud and get minimum z-coordinate (zmin)

1: for each real point (pr: {prx, pry, prz}) in the cloud do
2: generate a pseudo point (pp) with coordinates prx, pry, zmin
3: find the nearest neighbor point for pp in the input cloud using k-d tree
4: retrieve the z-coordinate of the found point (fpz)
5: update the z-coordinate of the pp with fpz
6: search for the nearest neighbor point for pp in the input cloud using k-d tree,
possible lowest point (pl: {plx, ply, plz}) is the found point
7: end for

3.1.3. Classification

The developed classification framework (Figure 2) relies on the abovementioned
handcrafted features as well as self-learnt ones. Besides, if available, we also utilize
additional sensor data as features (i.e., intensity, number of returns and return number for
LiDAR clouds, color information for photogrammetric clouds) and local neighborhood
point coordinates. The framework includes both 2DCNN and a 3DCNN which are applied
depending on the data and tasks as reported in the discussions (Section 5).
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We include features and coordinates of the local neighbor points designing a data
matrix (2D patch) for each point (Figure 3). The included coordinate values are first
zero-centered around the point of interest, then scaled to the range of [0,1] by dividing to
maximum values and clipping, forming the patch-wise scaled coordinates. We sort the
patch rows based on the coordinates, which we observed to provide fractionally better
results. The 2D patch is then treated as an image, and classification is handled with an
object detection approach.
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The employed network structure is a 2DCNN architecture as shown in Figure 4.
The network receives the 2D patches described in Figure 3 and processes them like an
image-based object detection network outputting the class probabilities.
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Contrary to rendering-based methods or voxel-based methods [17], our CNN methods
use pseudo images as shown in Figure 5.
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Our framework accommodates also a 3DCNN as it has shown good performance
for image classification task and it takes advantage of inter-channel correlation as well as
spatial correlation [50]. In order to use the aforementioned 2D patches in a 3DCNN, we
fold them along the features’ axis (vertical axis in Figure 5) and produce 3D patches. In this
way, a 2D patch with dimensions of e.g., 40 × 15 becomes 40 × 5 × 3. The applied 3DCNN
architecture (Figure 6) is a slightly modified version of the 2DCNN architecture presented
in Figure 4. Visualizing our 3D patches gives the color images shown in Figure 7.
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Figure 7. An example of generated 3D patches (transposed for better pitcuring).

3.2. Employed Data

Hereafter, a large variety of dataset is presented (Table 2). These data are all used to
evaluate the developed classification methodology and they include: ISPRS Vaihingen,
DALES, LASDU, Bordeaux, and 3DOMCity. All point clouds have ground truth labels, and
except for Bordeaux, all the employed point clouds are publicly available. Each dataset
has different characteristics in terms of density, resolution (i.e., average distance between a
point and its nearest neighbor), source, available sensor data, and classes. We consider the
density as the average number of points per m2 on the ground, whereas resolution is the
average of the distances between each point and its nearest neighbor.

3.2.1. ISPRS 3D Semantic Labeling Contest Dataset (ISPRS Vaihingen)

ISPRS 3D Semantic Labeling Contest Dataset [51] has been one of the most widely
used datasets for urban-scale point cloud classification benchmarking. The dataset includes
LiDAR points, intensities, number of returns, return numbers as well as near infrared (NIR)
orthophoto including NIR, green and blue channels (Figure 8).
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Table 2. Summary of the used datasets (L: LiDAR, OP: Oblique Photogrammetry, lab: laboratory).

Dataset (Year) Source Points Density
(pts/m2) Resolution (m) Coverage

(m ×m) (Tiles) RGB Classes

ISPRS
Vaihingen
(2013) [51]

L 1,165,598 4 0.258 Train: 383 × 405
Test: 374 × 402 NIR 9

DALES
(2020) [52] L 497,632,442 35 0.116 500 × 500 (40 tiles) No 8

LASDU
(2020) [53,54] L 3,080,856 3 0.484 1071 × 1285 No 5

Bordeaux
(2020) [55] L + OP 10,230,941 25 0.173 704 × 739 Yes 5

3DOMCity
(2019) [56] OP (lab.) 22,825,024 14000 0.158mm 0.813 × 0.811 Yes 6
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3.2.2. DALES Dataset

The Dayton Annotated LiDAR Earth Scan (DALES) dataset [52] is a new, large-scale
benchmark for the semantic segmentation of point clouds. The dataset includes number
of returns and return numbers as LiDAR features, yet it lacks LiDAR intensity and color
information (Figure 9).
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3.2.3. LASDU Dataset

The Large-Scale Aerial LiDAR Point Clouds of Highly Dense Urban Areas (LASDU)
dataset [53,54]. The dataset provides intensity, number of returns and return numbers as
LiDAR features, but it does not include any color information (Figure 10).
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3.2.4. Bordeaux Dataset

The Bordeaux dataset [55] is collected with a Leica CityMapper hybrid sensor. The
data include LiDAR’s intensity, number of returns and return numbers as well as colors
retrieved from the photogrammetric dense cloud (Figure 11).
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3.2.5. 3DOMCity Benchmark
The 3DOMCity benchmark [56] includes several tasks: image orientation, dense im-

age matching and point cloud classification. Here we use the very dense point cloud
generated from oblique photogrammetry (Figure 12) for validating the presented classifica-
tion framework.
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4. Results

In this section, quantitative results (namely F1 scores, intersection over union—IoU
and overall accuracy—OA) for the proposed TONIC classification frameworks are reported,
along with comparison with the state-of-the-art methods and generalization capability.
Before detailing accuracy metrics for each dataset of Table 2, the developed downsampling
approach and its effects are shortly presented.

For the training of our deep learning models, we preferred F1 score as loss function,
and used it along with stochastic gradient descent (SGD) optimizer. We set the patience for
15 epochs for early stopping, observing the validation loss.

4.1. Point Cloud Downsampling

Downsampling—if exaggerated—can remove too many points, causing lower accu-
racy due to loss of detail as well as insufficient data for training a neural network. On the
other hand, minimizing the downsampling will not be helpful for reaching a sufficient
data reduction goal, lowering density variation (standard deviation of knn in the Table 3)
and improving computational speed. Therefore, we held some experiments in order to
get an overall understanding of the downsampling process. We used a random forest
classifier for these experiments, due to its fast prediction capabilities and as the focus is
on understanding the influence of the density on the classification. The experiments were
held for ISPRS Vaihingen, LASDU and Bordeaux datasets, using various leaf coefficients
for each dataset (no downsampling means leaf coefficient = 1) till resolution reaches ~1.0 m.
The number of experiments therefore depends on the initial resolution of the dataset. The
classification results are shared in terms of weighted F1 score, average F1 score and overall
accuracy.

Table 3. Density analysis on the ISPRS Vaihingen dataset.

Leaf
Coeff.

% of
Points

Resol.
(m)

Min.
knn

Mean
knn

Median
knn

Max.
knn

Std.
knn

Weigh.
F1 OA

1 100 0.258 2 11 5 106 12.99 0.788 0.788
2 50 0.434 2 4 5 15 1.51 0.798 0.796
4 20 0.732 2 4 4 13 1.31 0.776 0.788
6 11 1.07 2 4 3 13 1.37 0.768 0.770

Tests with the ISPRS dataset were held not only with training and test data but
including the rest of the available tile (Table 2) in order to have a larger region rather than
a combination of two relatively smaller regions. Tests (Table 3) show that the best result
for this dataset was achieved with leaf coefficient of 2, i.e., a points resolution of ~0.43 m.
The weighted F1 and the OA metrics do not show a major change for the next step of
downsampling.
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Downsampling tests on the LASDU entire dataset show that classification results
(Table 4) reached a weighted F1 score fractionally better with the original dataset, while the
overall accuracy is observed to be better with the downsampling with a leaf coefficient of 2.

Table 4. Density analysis on LASDU dataset.

Leaf
Coeff.

% of
Points

Resol.
(m)

Min.
knn

Mean
knn

Median
knn

Max.
knn

Std.
knn

Weigh.
F1 OA

1 100 0.484 2 4 4 83 1.45 0.826 0.814
2 48 0.792 2 5 4 12 1.24 0.823 0.821
4 15 1.440 2 5 5 14 1.31 0.805 0.816

The tests with the Bordeaux dataset were also held on the entire dataset (Table 5). As
the initial resolution is below 0.2 m, we skipped leaf coefficient 2 and continued with 4.
The best weighted F1 score is achieved with leaf coefficient of 6, where the resolution is
~0.74 m.

Table 5. Density Analysis on Bordeaux dataset.

Leaf
Coeff.

% of
Points

Resol.
(m)

Min.
knn

Mean
knn

Median
knn

Max.
knn

Std.
knn

Weigh.
F1 OA

1 100 0.173 2 6 2 61 6.01 0.930 0.928
4 23 0.528 2 4 2 14 1.44 0.922 0.942
6 12 0.737 2 4 4 12 1.31 0.940 0.940
8 8 0.946 2 4 4 12 1.32 0.935 0.935

Considering the achieved results in terms of F1 score, standard deviation for knn, and
data reduction, resolution of 0.7–0.8 m can be considered for all datasets as the most suitable.
The downsampling time is much lower compared to the time gained during feature
extraction, model training and prediction times. Moreover, this data reduction approach is
helpful for generalization purposes as it allows to get very similar density characteristics
among different point clouds and to deal with large amount of data (Section 4.4).

Based on these findings, all datasets were downsampled with the same approach. The
original number of points compared to downsampled versions is given in Table 6, showing
reductions between 52–94%. The differences in ratios among datasets are observed to be
caused mainly by the original point cloud densities.

Table 6. Number of points in each dataset before and after the downsampling procedure.

Dataset ISPRS
Vaihingen DALES LASDU Bordeaux 3DOMCity

# of original points 1,165,598 497,632,442 3,080,856 10,230,941 22,825,024
# of downsampled

points 236,603 27,652,837 1,465,068 1,264,690 2,075,937

% of kept points 0.203 0.056 0.476 0.124 0.091

4.2. Classification Results

In this section we report details of the classification results for each dataset with
accuracy metrics in Tables 7–11 and visualization of the classes in Figures 13–17.
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Table 7. Average and weighted F1 and IoU scores for 2DCNN and 3DCNN classifiers on the ISPRS Vaihingen dataset
(LV: low vegetation). The OA is also reported.

Cables LV Ground Car Fence Roof Facade Shrub Tree Average Weighted OA

2DCNN-F1 0.000 0.795 0.904 0.733 0.213 0.929 0.583 0.451 0.817 0.603 0.822 0.826
3DCNN-F1 0.301 0.781 0.896 0.688 0.207 0.902 0.536 0.413 0.802 0.614 0.804 0.806

2DCNN-IoU 0.000 0.660 0.825 0.579 0.119 0.867 0.411 0.291 0.690 0.494 0.719 0.826
3DCNN-IoU 0.177 0.641 0.811 0.525 0.116 0.822 0.367 0.261 0.670 0.488 0.693 0.806

Table 8. Average and weighted F1 and IoU scores for 2DCNN and 3DCNN classifiers on the DALES dataset. The OA is
also reported.

Ground Veget. Car Truck Cable Fence Pole Building Avg. Weighted OA

2DCNN-F1 0.962 0.927 0.666 0.000 0.903 0.530 0.468 0.911 0.671 0.937 0.938
3DCNN-F1 0.958 0.923 0.682 0.000 0.914 0.490 0.547 0.905 0.677 0.932 0.934

2DCNN-IoU 0.926 0.863 0.499 0.000 0.823 0.360 0.306 0.837 0.577 0.884 0.938
3DCNN-IoU 0.919 0.857 0.517 0.000 0.841 0.325 0.377 0.826 0.583 0.876 0.934

Table 9. Average and weighted F1 and IoU scores for 2DCNN and 3DCNN classifiers for the LASDU
dataset. The OA is also reported.

Ground Building Tree LV Artifact Average Weighted OA

2DCNN-F1 0.887 0.935 0.860 0.691 0.360 0.746 0.851 0.846
3DCNN-F1 0.885 0.915 0.858 0.673 0.322 0.730 0.840 0.837

2DCNN-IoU 0.796 0.878 0.754 0.527 0.220 0.635 0.757 0.846
3DCNN-IoU 0.793 0.843 0.751 0.507 0.192 0.617 0.741 0.837

Table 10. Average and weighted F1 and IoU scores for 2DCNN and 3DCNN classifiers for the
Bordeaux dataset. The OA is also reported.

Ground Facade Roof VegetationOthers Average Weighted OA

2DCNN-F1 0.972 0.819 0.956 0.986 0.708 0.888 0.943 0.944
3DCNN-F1 0.966 0.807 0.951 0.985 0.682 0.878 0.937 0.938

2DCNN-IoU 0.945 0.694 0.916 0.972 0.548 0.808 0.897 0.944
3DCNN-IoU 0.934 0.676 0.907 0.970 0.517 0.801 0.887 0.938

Table 11. Average and weighted F1 and IoU scores for 2DCNN and 3DCNN classifiers for the
3DOMCity dataset. The OA is also reported.

Ground Grass Shrub Tree Facade Roof Average Weighted OA

2DCNN-F1 0.945 0.936 0.798 0.878 0.864 0.906 0.888 0.889 0.889
3DCNN-F1 0.954 0.938 0.777 0.864 0.866 0.887 0.881 0.883 0.883

2DCNN-IoU 0.897 0.880 0.664 0.782 0.761 0.828 0.802 0.802 0.889
3DCNN-IoU 0.913 0.883 0.635 0.760 0.763 0.796 0.792 0.793 0.883
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4.3. Comparisons with the State-of-the-Art

Our TONIC framework was compared to available state-of-the-art approaches in
terms of performances and accuracy. We report the accuracy metrics and training times as
available in the original publications.

In addition to the point cloud classification methods, we also compared our framework
with EfficientNetB7, which is not only efficient but also provides high accuracy compared to
the current state-of-the-art [57]. The network is provided within TensorFlow library, and we
applied it as shown in Figure 18. Due its design, the EfficientNetB7 cannot process images
smaller than 32 × 32 pixels. Therefore, we zero padded our patches to fill that requirement.
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Table 12 reports a comparison for the ISPRS Vaihingen dataset in terms of computa-
tional efficiency and accuracy. It can be seen that our models can achieve accuracies on
par with the current state-of-the-art methods, while requiring less power consumption,
memory and training/inference time. In terms of inference performance for this dataset,
our method takes less than 10 s on Nvidia RTX 2080Ti GPU. With the same hardware
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configuration, EfficientNetB7 takes 23 s. Feature extraction for the dataset takes less than
10 s on Intel i9-8950HK Mobile CPU.

Table 12. Performance comparison between our methods and recent papers, ordered by OA. (* difference from the highest
OA score in the table).

Method GPU TFLOPS
FP32

Training
Time (Hours) GPU Watt GPU

Memory OA GPU

Li et al. [37] 8.73 10 250 24 GB 0.839 Nvidia Tesla K80
Li et al. [21] 2 × 12.15 7 2 × 250 2 × 12 GB 0.835 2 × Nvidia Titan Xp

Wen et al. [35] 12.15 10 250 12 GB 0.832 Nvidia Titan Xp
Chen et al. [39] 14.13 2 250 32 GB 0.832 Nvidia Tesla V100

EfficientNetB7 [57] 13.45 1 250 11 GB 0.748 (−9.1% *) Nvidia RTX 2080Ti
Ours (2DCNN) 13.45 0.15 250 11 GB 0.826 (−1.3% *) Nvidia RTX 2080Ti
Ours (3DCNN) 13.45 0.5 250 11 GB 0.806 (−3.3% *) Nvidia RTX 2080Ti

Other accuracy comparisons are executed using the DALES dataset and comparing
our networks with IOU metrics with respect to current state-of-the-art methods (Table 13).
KPConv and PointNet++ both outperform our methods by 3–4% in terms of OA.

Table 13. OA scores for 2DCNN and 3DCNN classifiers for DALES dataset.

Ground Vegetation Car Truck Cable Fence Pole Building OA

KPConv [40] 0.971 0.941 0.853 0.419 0.955 0.635 0.750 0.966 0.978
PointNet++ [32] 0.941 0.912 0.754 0.303 0.799 0.462 0.400 0.891 0.957
Ours (2DCNN) 0.926 0.863 0.499 0.000 0.823 0.360 0.306 0.837 0.938
Ours (3DCNN) 0.919 0.857 0.517 0.000 0.841 0.325 0.377 0.826 0.934

Finally, accuracy comparisons with the LASDU dataset between our methods and
available baselines are given in Table 14. Our methods outperform baseline methods in
terms of average F1 score, by 1–4%, and OA, by 1–3%.

Table 14. Comparison of F1 scores and OA on the LASDU dataset with respect to current state-of-
the-art methods.

Ground Building Tree LV Artifact Avg. F1 OA

Ours (2DCNN) 0.887 0.935 0.860 0.691 0.360 0.746 0.846
Ours (3DCNN) 0.885 0.915 0.858 0.673 0.322 0.730 0.837
PointNet++ [32] 0.877 0.906 0.820 0.632 0.313 0.710 0.828

HDA-PointNet++ [36] 0.887 0.932 0.822 0.652 0.369 0.733 0.844

4.4. Generalization Capability

To prove the generalization of our approach, we experimented with training and
predicting on different datasets. In particular, we used the trained networks to run pre-
dictions on unseen datasets with overlapping sensor features (i.e., intensity, number of
returns, return numbers, color information). To make use of the existing ground truth
data for accuracy assessment, we applied class modifications in the prediction results and
ground truth labels to match these two. Table 15 shows the prediction results on the ISPRS
Vaihingen dataset of models trained on the DALES dataset. As the class structures of these
two datasets do not completely match, we had to arrange them as shown in Table 16.
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Table 15. Averaged and weighted F1 and IoU scores for 2DCNN and 3DCNN classifiers trained on DALES dataset and
predicting on ISPRS Vaihingen dataset. The OA is also reported.

Cable Ground Car Fence Building Vegetation Average Weighted OA

2DCNN DALES F1 0.130 0.926 0.399 0.001 0.759 0.397 0.435 0.753 0.779
3DCNN DALES F1 0.230 0.929 0.347 0.000 0.758 0.318 0.430 0.739 0.774

2DCNN DALES IoU 0.069 0.862 0.249 0.000 0.611 0.247 0.340 0.649 0.779
3DCNN DALES IoU 0.130 0.867 0.210 0.000 0.610 0.189 0.334 0.639 0.774

Table 16. Corresponding classes between ISPRS Vaihingen and DALES datasets along with
their distributions.

ISPRS Vaihingen Points (Test) DALES Points (Train)

Powerline 0.2% Cable 29.7%
Low veget./Imp. Surface 38.9% Ground 50.0%

Car 0.8% Car/Truck 1.2%
Fence 1.9% Fence 0.6%

Roof/Facade 22.7% Building/Pole 0.9%
Shrub/Tree 35.5% Vegetation 17.6%

The DALES dataset was also used to learn classes and then predict on the Bordeaux
dataset. Table 17 shows classification results, along with class modifications in Table 18.

Table 17. Average and weighted F1 and IoU scores for the 2DCNN and 3DCNN classifiers trained
on DALES dataset and predicted on Bordeaux dataset. The OA is also reported.

Ground Building Vegetation Others Average Weighted OA

2DCNN DALES F1 0.965 0.978 0.947 0.434 0.831 0.968 0.969
3DCNN DALES F1 0.956 0.972 0.937 0.462 0.832 0.961 0.961

2DCNN DALES IoU 0.931 0.958 0.900 0.277 0.766 0.941 0.969
3DCNN DALES IoU 0.916 0.945 0.882 0.300 0.761 0.927 0.961

Table 18. Corresponding classes between Bordeaux and DALES datasets.

Bordeaux Points (Test) DALES Points (Train)

Ground 13.9% Ground 29.7%
Roof/Facade 80.2% Building/Cable/Pole 50.0%

Vegetation 5.0% Vegetation 2.1%
Others 1.0% Car/Truck/Fence 18.2%

Similarly, the ISPRS Vaihingen was used to train the classifiers and then predict classes
on the Bordeaux dataset with network trained on ISPRS Vaihingen. The accuracy metrics
for these predictions are given in Table 19 and class modifications are given in Table 20.

Table 19. F1, IoU with 2DCNN and 3DCNN classifiers trained on ISPRS Vaihingen dataset and
predicted on Bordeaux dataset. The OA is also reported.

Ground Facade Roof Vegetation Others Average Weighted OA

2DCNN ISPRS F1 0.921 0.690 0.923 0.759 0.400 0.739 0.878 0.882
3DCNN ISPRS F1 0.882 0.743 0.878 0.832 0.331 0.733 0.855 0.855

2DCNN ISPRS IoU 0.854 0.527 0.857 0.612 0.250 0.620 0.793 0.882
3DCNN ISPRS IoU 0.789 0.591 0.782 0.712 0.198 0.614 0.751 0.855
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Table 20. Corresponding classes between Bordeaux and ISPRS Vaihingen datasets.

Bordeaux Points (Test) ISPRS Vaihingen Points (Train)

Ground 13.9% Ground 18.1%
Roof 43.6% Roof 26.9%

Facade 36.6% facade 5.1%

Vegetation 5.0% Low
Veget./Shrub/Tree 46.1%

Others 1.0% Cables/Car/Fence 3.7%

5. Discussions

The reported results (Section 4) show that alternatively 2DCNN and 3DCNN achieve the
best accuracy in the various datasets. As there are no significant differences (Tables 21 and 22)
and considering also the computational time and resources (Table 12), we recommend
a 2DCNN approach with respect to a 3DCNN when the generalization capability is not
needed. Results reported in Section 4.4 shows 3DCNN has better generalization capabilities
especially for facade and cables classes.

Table 21. Summarized OA achieved in the different datasets considered in the evaluation procedures.

ISPRS
Vaihingen DALES LASDU Bordeaux 3DOMCity

2DCNN 0.826 0.938 0.846 0.944 0.889
3DCNN 0.806 0.934 0.837 0.938 0.883

Table 22. Summarized OA for the generalization tests.

Trained on Predicted on Model OA

DALES ISPRS Vaihingen 2DCNN 0.779
DALES ISPRS Vaihingen 3DCNN 0.774
DALES Bordeaux 2DCNN 0.969
DALES Bordeaux 3DCNN 0.961

ISPRS Vaihingen Bordeaux 2DCNN 0.882
ISPRS Vaihingen Bordeaux 3DCNN 0.855

The results show that the developed framework also outperform state-of-the-art meth-
ods (Tables 13 and 14), with differences within few percent, but still very low memory and
energy usage. If AI methods were to be used for real-world deployment or in production
activities, manual quality control and corrections would still be required. In this case, few
percentage of overall accuracy is not expected to make significant difference. However, in
terms of efficiency, the reported numbers for training time and used computer resources
(Table 12) clearly shows that our method can process the same dataset much faster com-
pared to current state-of-the-art methods. We explain the time differences between our
DL methods and the current state-of-the-art DL methods with the following two steps
implemented: (i) data reduction with downsampling, (ii) multi-scale feature extraction
before passing data to the DNN. Extracting some features outside the DNN allows us
to utilize a shallower network compared to the state-of-the-art methods, which supports
our efficiency goal. A shallower DNN is not only faster to train and predict, but also
consumes less memory allowing us to run 1024 points per batch in 11 GB of GPU memory.
We consider such efficiency to bring advantages of less energy consumption, lowering
hardware costs, and speeding-up the production progress.

The reported tests on generalization ability (summarized in Table 22) show promising
results. A key challenge here is to get the features from different datasets to share similar
characteristics. Density variations among datasets make it more difficult to generalize
without downsampling them. This step ensures the density characteristics among datasets



Remote Sens. 2021, 13, 1985 18 of 21

are more similar compared to their original versions (Tables 3–5). For instance, 3DCNN
method achieves 82.6% OA (Table 7) on ISPRS Vaihingen dataset, yet, training the same
model on DALES dataset achieves 77.9% OA (Table 15). Similarly, on Bordeaux dataset,
2DCNN classifier achieves 94.4% OA (Table 10) and training the same model on DALES
dataset achieves 96.9% OA (Table 17). Furthermore, the models trained on ISPRS Vaihingen
dataset achieved higher accuracies on Bordeaux even if the color information for these
datasets are in different spaces (NIR, green, blue for ISPRS Vaihingen and red, green, blue
for Bordeaux). Training on ISPRS Vaihingen, 2DCNN classifier achieved 88.2% OA, while
3DCNN achieved 85.5% OA on the Bordeaux dataset.

Comparing the results summarized in Tables 21 and 22, it can be seen a dataset has
a significant effect on the accuracy. For instance, on ISPRS Vaihingen, our methods reach
an OA of 81–83%, and, training the models on DALES, where our methods reach OA
of 93–94%, they still reach OA of 77–78%. Likewise, when the same models—trained
on DALES—predicting on Bordeaux they reach OA of 97%, in which they reach 94%
OA. Training the models ISPRS Vaihingen and predicting on Bordeaux achieves 88% OA.
Similarly, PointNet++ achieves 96% OA on DALES (Table 13) and 83% on LASDU (Table 14).
Based on these numbers, it can be inferred that there is a high correlation between the used
datasets for prediction and the achieved OA. We consider this can be caused by noise in
the ground truth labels (i.e., wrong labelled points), noise in the point cloud (i.e., isolated
point type noise) and type of classes in the data (more complex classes vs. simpler classes).

6. Conclusions

In this paper, we propose the TONIC framework for geospatial point cloud classi-
fication. It uses multi-scale handcrafted features together with DNN, not only reaching
accuracy on par with the current state-of-the-art models, but also a more efficient approach
in terms of resources and computational time (Table 12). We share our experiments on
multiple datasets, including generalization experiments. The reported results also indicate
that our framework is able to work with different data sources (namely photogrammetry
and LiDAR). Considering the large amount of data available in the real world— as opposed
to benchmarks—and the computational complexity of the state-of-the-art methods, it will
not be surprising to see more research focusing on this aspect in the near future. Based
on the accuracy metrics reported in Section 4.2, our framework can be useful for building
extraction, powerline mapping, digital terrain model generation from point clouds, etc.
The two proposed DNN approaches are observed to perform similarly within the same
dataset, yet 3DCNN is observed to perform better specifically in cables and poles classes as
seen in Tables 7 and 8. This makes our solution reliable and useful for many classification
tasks with geospatial data.

The main limitation of our approach is its applicability to urban scenarios surveyed
with aerial sensors (photogrammetry or LiDAR). Due to the used hand-crafted features,
our approach might not be competitive in alternative cases other than aerial point cloud
classification. As future work, we will investigate its deployment to indoor, UAV, and
satellite-based dense point clouds and we will consider data augmentation, which we
expect to improve our results.
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