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Abstract: High-precision 3D maps play an important role in autonomous driving. The current
mapping system performs well in most circumstances. However, it still encounters difficulties in
the case of the Global Navigation Satellite System (GNSS) signal blockage, when surrounded by too
many moving objects, or when mapping a featureless environment. In these challenging scenarios,
either the global navigation approach or the local navigation approach will degenerate. With the
aim of developing a degeneracy-aware robust mapping system, this paper analyzes the possible
degeneration states for different navigation sources and proposes a new degeneration indicator for
the point cloud registration algorithm. The proposed degeneracy indicator could then be seamlessly
integrated into the factor graph-based mapping framework. Extensive experiments on real-world
datasets demonstrate that the proposed 3D reconstruction system based on GNSS and Light Detection
and Ranging (LiDAR) sensors can map challenging scenarios with high precision.

Keywords: 3D reconstruction; LiDAR; GNSS; scan matching; factor graph; degeneracy-aware factors;
loop closure

1. Introduction

Rapid progress has been witnessed in the field of unmanned ground vehicles
(UGVs) [1,2]. Autonomous driving is expected to address transportation problems such as
road accidents and traffic congestion [3,4]. Among those enabling technologies, the creation
and utilization of a high-precision map play an important role [5]. The high-precision map
differs from the traditional map not only in its higher accuracy but also in that it contains
much more environmental information, which will benefit other modules [6].

The high-precision map should be accurate both globally and locally. At the global
scale, the map should be well aligned with the Global Navigation Satellite System (GNSS)
trajectory [7]. Locally, the map should fully capture the local details of the surroundings,
and the map’s accuracy should be at the centimeter level [8]. To meet these requirements,
the mapping system should combine the global navigation approaches with local navi-
gation approaches. Whilst the global navigation information could come from the GNSS
system, the local navigation information could be obtained from the Inertial Measurement
Unit (IMU), wheel odometer, or Light Detection and Ranging (LiDAR) odometry. However,
both types of navigation information may become inaccurate in some circumstances [1,9].

For the global navigation information, the GNSS signal might become inaccurate due
to the blockage of tall buildings or the well-known multi-path effect [10]. It may even
become unavailable in certain scenarios, such as under bridges, in tunnels, in underground
parking lots, etc. For the local navigation approaches, the wheel odometer may become
inaccurate in the case of slippage [11]. The LiDAR odometry may also become inaccurate
in a featureless environment or when surrounded by too many moving objects [9,12].
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Therefore, an ideal mapping system should be capable of detecting the degeneracy state
for both navigation approaches, and a robust fusion approach should be designed.

In this paper, we propose to use the factor graph as the fusion framework. The factor
graph is a probabilistic framework that could capably handle the uncertainties of different
navigation approaches and integrate the different sources of navigation information in a
principled way [13].

We thoroughly analyze the different factors contained in the proposed factor graph and
design approaches that could estimate the degeneracy state for each factor. The degeneracy
state is then transformed to adjust the information matrix for each factor. Therefore,
the proposed fusion framework automatically assigns high confidence to those highly
confident factors and weakens the influence of those degenerate factors.

We test the proposed mapping system in several challenging scenarios with two types
of vehicles equipped with two different kinds of LiDAR, as shown in Figure 1. The testing
scenarios include over a high bridge with busy traffic, in an underground parking lot,
and a featureless off-road environment. Experimental results show that the proposed
mapping framework could overcome the influence of dynamic objects, the GNSS signal
outage, and the scan matching degradation. All the testing scenarios are mapped with
high precision. The maps built are also shown in Figure 1. To make the mapping system
more complete, we also discuss problems regarding loop closure detection and automatic
map update and extension.

Figure 1. The fully automated 3D mapping system for self-driving vehicles in challenging scenarios. Two platforms
equipped with two types of multi-channel LiDARs are shown on the left. The testing scenarios include busy urban
environments with high bridges (a–c), underground parking lots (d), open scenarios (e), and featureless off-road scenarios
(f). Maps are colored by altitude.

In summary, we have made the following contributions in this paper:

• A factor graph-based fusion framework is proposed which could suitably integrate the
global navigation information with local navigation information in a probabilistic way.

• A comprehensive degeneration analysis is performed for both the global and the local
navigation approach. A new robust degeneration indicator is proposed for the local
navigation approach which could reliably estimate the degeneration state of the scan
matching algorithm. The degeneration state is then incorporated into the factor graph,
thus enabling a more robust, degeneration-aware fusion approach.

• An improved submap-to-submap matching method is used to estimate loop closure
constraints. The loop closure constraint can be reliably estimated even with a large
initial position offset or a limited overlap field of view.

• The proposed mapping system has been extensively tested on real-world datasets in
several challenging scenarios, including busy urban scenarios, featureless off-road
scenarios, high bridges, highways, and large-scale settings. Experimental results
confirmed the effectiveness of the mapping system.
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The remainder of this paper is organized as follows: in Section 2, some related works
are introduced. The proposed mapping system is presented in Section 3. Section 4 provides
the experimental results, and the conclusions are discussed in Section 5.

2. Related Work

LiDAR-based mapping has been extensively studied [1,14]. A complete mapping
system includes at least the following modules: the front-end scan matching, the loop
closure detection, and the back-end optimization. This paper reviews related works from
the following aspects.

2.1. Scan Matching

As the basis of the LiDAR-based mapping system, scan matching methods can be gen-
erally divided into two categories: local approaches and global approaches [12]. Iterative
Closest Point (ICP) and its variants [15,16] are widely used local scan matching approaches.
Point-to-point, point-to-plane, or plane-to-plane distances are usually applied to measure
spatial distances of local structures extracted from two scans. The local structure could also
be approximated using the Gaussian model [17]. The transformation is then estimated by
minimizing the distances of corresponding local structures. As a widely used approach
in recent years, Lidar Odometry and Mapping (LOAM) [18] firstly extracts corner points
and surface points based on the local geometric structures. The point-to-line distance
and the point-to-plane distance are then separately applied to these corner points and
surface points. Compared with these local approaches, the Correlative Scan Matching
(CSM) [19] is a popular global scan matching approach that treats the scan as a whole. It
enumerates all the possible transformations and selects the best one based on the global
distance measure. Due to its heavy computational load, CSM is not suitable for 3D match-
ing. Fu et al. [12] proposed to combine the global scan matching approaches with local
scan matching approaches and obtained competitive results in off-road environments.

2.2. Loop Closure Detection

Loop closure is helpful for mapping, especially in large-scale environments or sce-
narios with inaccurate GNSS/Inertial Navigation System (INS) measurements. In Cartog-
rapher [20], a branch and bound-based algorithm is proposed to detect the loop closures.
Ren et al. [21] improved the boosting-based approach to detect loop closures in a 2D
Simultaneous Localization and Mapping (SLAM) system. Dube et al. [22] proposed a
SegMatch-based approach where the descriptors of segments are used for place recognition.
Based on RangeNet++ [23], Kong et al. [24] proposed a semantic graph-based method to
recognize previously visited scenes.

2.3. Robust Mapping

As the back-end of the SLAM system, the constructed pose graph or the factor graph
is usually optimized using off-the-shelf toolboxes, such as g2o [25], GTSAM [26], Ceres [27],
or iSAM [13]. However, the factors involved in the factor graph might be outlier factors
due to noisy observations or erroneous scan registrations. To eliminate the influence of
these outliers, robust optimization algorithms have been designed, such as the Switchable
Constraints [28], the Max-Mixture Model [29], etc. Although these approaches could
downweight the influence of possible outliers, a robust, degeneracy-aware, front-end
algorithm is still desired.

To improve the robustness of the front-end, the covariance matrix of the scan matching
could be calculated to model the matching precision [19,30]. Zhang and Singh proposed a
degeneracy indicator based on the geometric structure of the problem constraints in [31].
Aldera et al. [32] exploited the principal eigenvector of the scan matching to predict failures
for introspective analysis. An end-to-end approach was proposed in [33] to learn the
error model of the 2D LiDAR scan matching. Contrary to these works, we analyze the
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convergence of the optimization error of the scan matching algorithm and propose a new
degeneration indicator based on it.

3. The Proposed Approach
3.1. System Overview

The framework of the proposed system is illustrated in Figure 2. It mainly consists of
the following modules:

Figure 2. Overview of the proposed mapping system. It combines navigation information from the
GNSS, the wheel odometry, the IMU, and the LiDAR odometry. Degeneration analysis is performed
for all these navigation sources. A pose graph is then constructed to calculate the optimal poses.
The maps are then assembled based on the optimized poses.

(I) Data preprocessing. This module is to preprocess the LiDAR point cloud, as shown
in Figure 3. It includes three parts: keyframe selection, intra-frame compensation, and noise
removal. Keyframes are selected based on the minimum odometric displacement (we
set 1.0 m translation or 10 degree rotation). Distortion caused by LiDAR ego-motion
is compensated through IMU/wheel encoder outputs [34,35]. We consider the moving
objects as noise to the mapping system. They are filtered out by a multi-object detection
and tracking method [36–38], as shown in Figure 3c. In the off-road environment, there
might be floating dust as the wind blows, as shown in Figure 3d. These floating dust
particles are removed by a specifically designed algorithm [39].

Figure 3. The LiDAR data preprocessing includes three parts: the keyframe selection (a), the intra-
frame compensation (b), and the noise removal (c,d). The noise either refers to the moving objects in
the urban environment or the floating dust in the off-road environment.

(II) Factor graph-based pose optimization. As the core of the mapping system, a factor
graph is then constructed to fuse the different kinds of navigation information. The factor
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graph consists of nodes and edges. Each node represents the pose of the keyframe to be
estimated. The edges represent different kinds of constraints posed on the nodes. These
include the GNSS factor produced by the GNSS information; the local odometry factor
produced by the wheel odometer and IMU, and the scan matching factor generated by
the preprocessed LiDAR scans. For each kind of factor, we need to set an appropriate
information matrix for it, which represents its uncertainty. Estimating the uncertainty of
each navigation source is one of the main contributions of this paper and will be described
in the following subsections.

(III) Map construction and extension. The factor graph is then optimized using any
off-the-shelf optimizers, including g2o, GTSAM, Ceres, etc. In this paper, we choose to use
iSAM [13] as the optimizer. The optimized poses are then utilized to merge the keyframe
point clouds into a consistent map. To ensure the scalability and the possible extension of
the constructed map, we also design specific algorithms in Section 3.5.

3.2. Pose Graph Optimization

The pose graph that we constructed is shown in Figure 4. It integrates multiple sensor
input data and outputs the optimized poses {X∗}. Specifically, the following types of
factors are involved: the motion prior factor U0

i,j from the IMU/wheel encoder [34,35],

the scan-to-scan matching factor U1
i,j, the scan-to-submap matching factor U2

i,j, the loop

closure factor U3
i,l , and the integrated GNSS/INS factor Zi. For brevity, U0

i,j, U1
i,j, and U2

i,j
are all named as the local constraints (as shown with orange squares in Figure 4).

Figure 4. Overview of the pose graph. There are mainly three types of factors: global constraints,
local constraints, and loop closure constraints.

Based on Bayesian inference, the factor graph optimization is constructed as:

p(X, Z, U) = p(X0) ·∏
i,j

p(Xj|Uc
i,j, Xi) ·∏

k
p(Zk|Xk), (1)

where X denotes the variable nodes, U represents the local constraints and loop closure
constraints. Z denotes the GNSS/INS observations. As illustrated in [13], the motion
model of p(Xj|Uc

i,j, Xi) can be described as:

Xj = f c
i,j(Xi, Uc

i,j) + wc
i,j, (2)

where Xi and Xj denote the corresponding nodes connected by constraint Uc
i,j, f c

i,j is the state
transition process, wc

i,j is the process noise with covariance matrix Λc
i,j, and c ∈ {0, 1, 2, 3}

is the constraint type. The observation model of p(Zk|Xk) can be expressed as:

Zk = hk(Xk) + vk, (3)

where Zk denotes the GNSS/INS observation over the node Xk, hk is the observation
function, and vk indicates the noise of the observation with covariance matrix Γk.
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Combining (1), (2), and (3), we obtain the following least squares formulation:

X∗ = arg min
X

(
∑
i,j
‖ f c

i,j(Xi, Xj)−Uc
i,j ‖2

Λc
i,j
+∑

k
‖ hk(Xk)− Zk ‖2

Γk

)
, (4)

where ‖ e ‖2
Λ= eTΛ−1e =‖ Λ−1/2e ‖2.

We denote Λ−1/2 as Ω. Then, ΩΛ and ΩΓ are the confidence matrices (also named
information matrices), which reflect the reliability of the factors and can be calculated by
the inverse of the standard deviation. To facilitate calculation, Ω is usually represented as
a diagonal matrix, which suggests that the six degrees of freedom of X (x, y, z, roll, pitch,
azimuth) are independent of each other.

Quantitatively estimating the noise level of each factor is the key to improving the
pose estimation accuracy. For the noise model of the IMU/wheel encoder factor, we use
the approach proposed in [34]. The scan matching factor and the GNSS/INS factor are then
analyzed as follows.

3.3. Scan Matching Factor

Mathematically, scan matching aims to estimate the relative transformation T between
the target point cloud P and the reference point cloudQ. Based on the different types ofQ,
the scan matching factor involves three different forms: whenQ is a neighboring keyframe,
it forms a scan-to-scan matching factor; when Q represents a local sub-map, it generates a
scan-to-submap matching factor. When Q is a scan of a revisited place, it generates a loop
closure factor.

All three types of scan matching factors aim to minimize the following energy function:

T ∗ = arg min
T
E(T ), (5)

where E(T ) is a specifically designed energy function. This minimization function could
be solved with the Levenberg–Marquardt algorithm through nonlinear iterations:

δ = −
(

JT J + λdiag(JT J)
)−1 JTd

T ← T + δ
, (6)

where J = ∂E/∂T and d is the residual error, which is usually represented as the geometric
distance between two matching primitives.

It is noted in [31] that the eigenvalues of JT J reflect the degeneracy state of the scan
matching algorithm. Therefore, the authors of [31] defined the degeneration indicator as:

D = λmin + 1, (7)

where λmin is the smallest eigenvalue of JT J. This method can detect degradation in some
cases, but it might become unreliable, especially in the featureless off-road environment.
Moreover, D has no probabilistic meanings, making it difficult to be integrated into the
factor graph. To remedy this, we propose another degeneracy indicator in this paper. We
firstly define δi as the update vector at each optimization iteration:

δi = [∆txi , ∆tyi , ∆tzi , ∆rxi , ∆ryi , ∆rzi ]
T . (8)

Then, by aggregating the δi from the last n iterations, we can calculate its covariance matrix:

Φ = [δ1, δ2, ..., δn]

Σδ = Φ ·ΦT . (9)
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Assuming that the six degrees of freedom are independent of each other, the diagonal
matrix of Σδ is denoted as:

Σ
′
δ = diag(Σtx

δ , Σ
ty
δ , Σtz

δ , Σrx
δ , Σ

ry
δ , Σrz

δ ). (10)

Intuitively, when the degeneration occurs, the corresponding elements of Σ
′
δ will

increase. Therefore, we combine D with Σ
′
δ, and define its information matrix Ωc

Λ as:

Ωc
Λ = (k1sign(D− Dth) + k2) · ξΛ((Σ

′
δ)
−1/2), (11)

where sign(x) = 1 when x ≥ 0; otherwise, sign(x) = −1. Dth is set to 300, and k1 =
0.25, k2 = 0.75. ξΛ(·) is a normalization function. c ∈ {1, 2, 3} corresponds to the three
types of scan matching constraints.

It is observed from Figure 4 that U0, U1, and U2 are all used to calculate the local
constraints between two neighboring keyframes. Among them, U0 is directly obtainable
from the hardware. U2 is the most computationally expensive approach but provides
the most accurate results in most circumstances. Generally, we have Ω0

Λ < Ω1
Λ < Ω2

Λ.
Moreover, the proposed degeneration indicator could be applied to both Ω1

Λ and Ω2
Λ based

on (11). When U1 or U2 degenerate, Ω1
Λ or Ω2

Λ will be automatically set to a lower value.
U0 has the lowest accuracy in most circumstances. When both U1 and U2 degenerate, U0

will play a more important role.
For the loop closure constraint U3, it is usually more challenging than U1 and U2

due to the relatively large initial offset. Inspired by the work in [12], we adopt a combi-
nation of the global registration approach and the local registration approach, namely the
CSM and LOAM. For LOAM, instead of performing the scan-to-scan registration or the
scan-to-submap registration, we perform a submap-to-submap registration. Moreover,
the degeneration analysis could also be applied to the local registration approach. Only
those loop closure constraints with a low degeneration score are automatically added to
the factor graph. For those possible degenerate loop closure candidates, either they are
removed or a manual confirmation is performed.

3.4. GNSS/INS Factor

The integrated GNSS/INS device provides six-degrees-of-freedom global pose esti-
mation over each node, which is expressed in (3). However, the GNSS signal might be
blocked by tall buildings or trees, resulting in lower position accuracy. Besides the position
output, the modern GNSS/INS devices also output affiliated information including the
number of observed satellites Nvs, the position deviation DEVpos, etc. Experimental results
show that these values are strongly correlated with the GNSS/INS accuracy. Therefore, we
use these values to adjust the information matrix in the factor graph. Let ΩΓ represent the
information matrix of the GNSS/INS factor. It is a 6× 6 diagonal matrix and defined as:

ΩΓ = I · (k1sign(Nvs − Nth
vs) + k2) · ξΓ((DEVpos)

−1/2), (12)

where Nth
vs is set 10, and k1 = 0.25, k2 = 0.75. ξΓ(·) is a normalization function. I is a 6× 6

diagonal matrix denoted as:

I = diag(µt, µt, µt, µr, µr, µr), (13)

where µt is the translational weight factor and µr is the rotational weight factor. According
to the units of the translation (meter) and rotation (rad) variables, we set µr/µt = 5.

3.5. Map Extension

The optimized poses X∗ are then used to stitch keyframes together to generate a global
map. As shown in Figure 2, as the optimized poses are in 3D, we can generate both the
3D map and the 2D grayscale map. To facilitate the storage and the online usage of the
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map, the whole map is partitioned into small blocks by the global coordinate, and each
small block is stored as a separate file. For the 3D map, each small block is stored using the
Octree structure [40], whilst, for the 2D map, both the intensity and the height information
are stored for each grid cell [6].

In general, maps cannot be built all at once and the map should be extendable to cover
previously unseen areas. As an illustrative example shown in Figure 5, M1 is a pre-built
map, and M2 is a new area that will be added to M1. To ensure the global consistency of
the map, the following procedures are performed: (I) Generate the pose graph of M2 and
calculate the optimized poses of M2. (II) Find the keyframes in M2 that are closest to M1,
perform the submap-to-submap matching of these keyframes to M1, and obtain the relative
poses of these keyframes against M1. (III) Assign high confidence to these optimized poses,
and add them as extra constraints to the pose graph of M2. M2 is then re-optimized and
added to M1.

Figure 5. An illustrative example of the map extension. The base map that has already been built is
denoted as M1. M2 represents the extended map. A and B represent two loop closure constraints
that connect M1 and M2.

4. Experimental Results

The experimental platforms are two modified self-driving vehicles shown in Figure 1.
Each platform is equipped with a multi-channel LiDAR, an IMU, a wheel encoder, and a
Novatel Propack 7 GNSS/INS system. Platform 2 is an industrial robot and the task loads
have to be mounted on top of it. Therefore, the LiDAR has to be mounted in front of the
vehicle and only has a limited FoV of around 200 degrees. The offline mapping system is
run on a laptop with an Intel Core i7 CPU at 2.20 GHz.

4.1. Map Quality Assessment

To measure map quality and to facilitate quantitative comparisons of the results,
the mean map entropy (MME) [41] is used. Given a mapM = {P1, P2, ..., PN}, the entropy
of a point Pk is calculated by:

mme(Pk) =
1
2

ln(2πe|Σ(Pk)|), (14)

where Σ(Pk) is the covariance matrix of the point set ΩPk in a certain neighborhood of Pk.
The local radius is set to 0.5 m and mme(Pk) is valid when the size of ΩPk is larger than 5.
The entropy is calculated for each point and the average is calculated as:

H(M) =
1
N

N

∑
k=1

mme(Pk). (15)

Generally, H(M) represents the sharpness of the map. Lower H(M) means higher
map quality [41]. To verify the relationship between H(M) and the map quality, we
add different levels of Gaussian noise (characterized by a standard deviation of σ) to
maps sampled from two scenes. The original maps with σ = 0 are shown in Figure 6.
The resulting map entropy plotted against σ is shown in Figure 7. For both samples,
H(M) is positively correlated with σ, indicating that higher entropy characterizes poorer
map quality.
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(a) Sample-1 (b) Sample-2

Figure 6. Two samples for evaluating the mean map entropy. Sample-1 includes traffic signs and
light poles. Sample-2 is mainly composed of trees, bushes, and a sculpture.

Figure 7. The resulting map entropy against the standard deviation of Gaussian noise.

4.2. Results of Noise Removal

Removal of dynamic vehicles: The comparison results with and without the removal
of dynamic vehicles (RDV) are shown in Figure 8. As shown in Figure 8, the ghost shadows
caused by moving vehicles (highlighted with blue dotted boxes in Figure 8a) are mostly
filtered out by the proposed mapping system. Furthermore, the decrease in H(M) after
the removal of dynamic vehicles suggests that the map quality has been improved.

Removal of floating dust: Two comparative mapping results with and without the
removal of floating dust (RFD) in off-road scenarios are shown in Figure 9. It is obvious
that the map quality has been improved after the removal of floating dust.
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(a) Sample-1 (b) Sample-2

(c) Sample-3 (d) Sample-4

Figure 8. Comparison of the mapping results and the MME values in four scenes with (top) and
without (bottom) the removal of dynamic vehicles.

(a) Sample-1

(b) Sample-2

Figure 9. The mapping results and the MME values with and without the removal of floating dust.
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4.3. Analysis of Degeneracy-Aware Factors

The degeneration analysis of the GNSS/INS factor and the scan matching factor is
performed in this section. The first dataset was collected by Platform 1 in city environments
with a total driving length of 19.3 km, as shown in Figure 10. The evaluation of the
GNSS/INS status is shown in Figure 11. Intuitively, frames with lower Nvs or higher
DEVpos have worse GNSS/INS status. A manual confirmation indicates that these frames
are mainly captured under high bridges.

Figure 10. The mapping results are overlaid on the satellite image. Four possible degenerate scenarios
are shown at the bottom.

(a) The number of valid satellites Nvs

(b) The position deviation DEVpos

Figure 11. Evaluation of the GNSS/INS status. Frames with well-conditioned GNSS/INS status are
highlighted in green.
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For the scan matching degeneration analysis, we evaluate the degeneracy indicators
D and Σ

′
δ. For easy comparison with D, we define E based on Σ

′
δ:

E = η1(Σ
tx
δ + Σ

ty
δ + Σtz

δ ) + η2(Σ
rx
δ + Σ

ry
δ + Σrz

δ ), (16)

where η1 and η2 are scale factors. The values of D and E are calculated for each scan-to-scan
and scan-to-submap registration, and the results are shown in Figure 12a–d. Frames with
lower D or higher E are more prone to degeneration and they are highlighted in pink.
These frames are mostly captured on the highway, with less geometrical structures, or
surrounded by many vehicles, as shown in sub-figures 2 and 3 in Figure 10. Furthermore,
the scan-to-submap matching constraints have larger D and smaller E than the scan-to-scan
matching constraints. Therefore, the scan-to-scan matching constraints are generally more
prone to degeneration than the scan-to-submap constraints.

(a) D of scan-to-scan matching constraints

(b) D of scan-to-submap matching constraints

(c) E of scan-to-scan matching constraints

(d) E of scan-to-submap matching constraints

(e) The translational part of E in the scan-to-submap matching constraints

Figure 12. Degeneracy indicators of the scan matching constraints. In (a–d), the non-degenerate
cases are shown in green. Frames with lower D or higher E are more prone to degeneration (shown
in pink). The translation components of Σ

′

δ of the scan-to-submap matching constraints are shown
in (e).
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Moreover, the degeneration direction can also be inferred from the six components of
Σ
′
δ. Figure 12e shows the translational components of Σ

′
δ for the scan-to-submap matching

constraints. It is observed that the longitudinal direction is more prone to degeneration,
as shown by the blue dots. This is consistent with the feature distribution shown in close
views 2 and 3 of Figure 10, where repeated features mostly appear along the longitudi-
nal direction.

To further compare the performance of E and D, we conducted a test on the dataset
collected by Platform 2 in the off-road scenario. We randomly selected five sets of data,
each of which contained 200 keyframes. Zero-mean Gaussian noise was added to the
last 150 scans for each set of data. Then, the scan matching algorithm was performed
to compute the relative transformation between every two keyframes. We evaluated the
translation errors and the degeneration indicators of the scan-to-submap matching factors.
In Figure 13, the non-degenerate cases (without Gaussian noise) are shown in yellow and
the degenerate cases (with Gaussian noise) are shown in pink. The translation error (shown
in red) increases significantly for the last 150 keyframes of each group. Furthermore,
the proposed degeneration indicator E (shown in green) shows a similar trend to the
translation error, exhibiting better performance than the degeneration indicator D (shown
in blue). Further comparison results between D and E will be described in Section 4.4.

Figure 13. Comparison results of the degeneration indicators. Five groups with a total of
1000 keyframes are tested. Gaussian noise is added to generate the degraded cases (marked in
pink). The translation errors of the scan-to-submap matching constraints are shown in red. The de-
generation indicators E and D are shown in green and blue, respectively.

4.4. Analysis of Loop Closures

In most scenarios, the GNSS/INS can provide a good initial value for loop closure
detection. In the case of GNSS signal blockage, the loop closure has to be detected by the
scan matching algorithm. In the featureless off-road environment, loop closure detection
becomes more challenging.

We collected three sets of data by Platform 2 in the off-road scenario. A total of
846 pairs of loop closure constraints were generated, including 423 pairs with small transla-
tional offsets (around 2 m) and 423 pairs with large offsets (around 15 m). Similar to [12],
the ground-truth position of each keyframe was obtained using the graph SLAM algorithm.
For each group, we added five levels of translational and rotational noise, obtaining a total
number of 4230 loop closure pairs. The noise parameters are shown in Table 1. The number
shown in this table represents the mean (em) of the added Gaussian noise and the standard
deviation (esd) is set to 25% of em.
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Table 1. Five levels of noise for loop closure registration.

Setting
Translation Noise (m) Rotation Noise (deg)

Forward Le f t U p Azimuth Pitch Roll

Level1 0.5 0.5 0.5 3.0 1.5 1.5

Level2 1.0 1.0 0.5 5.0 2.5 2.5

Level3 2.0 2.0 1.0 5.0 2.5 2.5

Level4 3.0 3.0 1.5 5.0 2.5 2.5

Level5 3.0 3.0 1.5 10.0 5.0 5.0

We choose NDT and LOAM as the baseline approaches. Figure 14 shows the error
statistics of loop closure registration. Overall, the proposed method obtains the best
performance at all levels of difficulty for both two groups. Furthermore, Figure 15 shows
the proportion of correct loop closure registrations. We compare the registration result
with the ground truth. It is considered as a correct registration if the translation error is
less than 0.2 m and the rotation error is less than 0.5 degrees. Based on Figures 14 and 15,
the proposed approach performs best in both the overall accuracy and the success rate.

(a) Translation error (b) Rotation error

(c) Translation error (d) Rotation error

Figure 14. Boxplots of the registration error of the loop closure constraints. The box spans the first
and third quartiles. (a,b) show the results of group one with small offsets. (c,d) show the results of
group two with large offsets.
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(a) (b)

Figure 15. Proportion of the correct loop closures obtained by three approaches. (a) shows the results
of group one with small offsets, and (b) shows the results of group two with large offsets.

Two typical loop closure matching results are shown in Figure 16. The large position
offset and the limited FoV of each LiDAR frame pose significant challenges to the loop clo-
sure registration algorithm. It is observed in Figure 16 that both NDT and LOAM failed to
obtain the correct registration result. In contrast, the proposed approach uses a combination
of the global registration approach (CSM) and local registration approach (LOAM-based
submap-to-submap matching) and correctly computed the registration results.

(a) Sample-1

(b) Sample-2

Figure 16. Two typical loop closure matching results. The target scanP is shown in white, the original
source scanQ is shown in green, and the transformed source scanQ′ is shown in red. The registration
errors are presented and some comparable details are marked by ellipses.

Moreover, the proposed degeneracy indicator E (simplified from Σ
′
δ (16)) is also

evaluated for the loop closure registration algorithm. The performance of E and D is
shown in Figure 17. The ROC curves are obtained by evaluating 4230 pairs of loop closures.
The proposed indicator E obtains much better performance than the indicator D.
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Figure 17. ROC curves for the degeneracy indicators E and D. This evaluation is performed using
a total of 4230 pairs of loop closures, including 2031 positive (matching) pairs and 2199 negative
(non-matching) pairs.

4.5. Mapping Results

In addition to the mapping results described in Section 4.3, the proposed mapping
system is also tested under several other challenging scenarios.

Mapping results in challenging city scenarios: The mapping system is tested in a com-
plex city scenario, including the city road under a bridge, highways, and an underground
parking garage, as shown in Figure 18. Moreover, the data were collected during a high-
traffic period, when the vehicle was always surrounded by many other moving objects.
It is observed that the lane markings on the ground are clearly visible in the enlarged 2D
grayscale maps (as shown in close views 1–3 of Figure 18). The high-precision 3D point
cloud map of the underground parking garage suggests that the mapping system could
accurately map the area without the GNSS signal, and the built map could be seamlessly
aligned to the area with the GNSS signal.

Figure 18. Mapping results in challenging city scenarios. The map is overlaid on the satellite image. Four close views
labeled 1–4 are shown on the right. Sub-figures 1–3 show the reflectance intensity map. The 3D map of an underground
parking lot is shown in sub-figure 4.
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The computational efficiency of the mapping system is also evaluated. In this test,
the scan matching and the removal of dynamic objects can be processed in parallel at
a frequency of 10 Hz. The route is around 34.5 km and consists of 31,189 keyframes.
The detection and verification of loop closures take less than 15 min and the optimization
can be performed in a few seconds. Finally, the rendering of maps takes around 20 min at a
frequency of around 30 Hz. Overall, the construction of the map takes less than 90 min on
a single CPU.

Mapping results in off-road scenarios: Figure 19 shows the mapping results tested on
Platform 2 in the featureless off-road scenarios. Two sets of data with a total driving length
of 10.859 km were collected. The driving route and the generated 3D map are overlaid on
the satellite image. Three enlarged grayscale maps shown at the bottom of Figure 19 prove
the effectiveness of the mapping system in the featureless off-road environment even with
a LiDAR with limited FoV.

Figure 19. Mapping results in off-road scenarios. Data were collected along two routes. The complete
map overlaid on the satellite image is shown at the top. Three zoom-in views labeled 1–3 are shown
at the bottom, where the grey value encodes the height information.

Mapping results at a high driving speed: In all the above experiments, the vehicle
drives at a speed of around 30 km/h. In this test, we evaluate the mapping system at a
higher driving speed. The mapping results are shown in Figure 20a. Some of the scenarios
are relatively open with fewer feature points. The vehicle drives at an average speed of
38.2 km/h, and the maximum speed reaches 76.2 km/h (as shown in Figure 20b). Some of
the mapping results are shown at the bottom of Figure 20a, where the lane markings on the
ground are visible, demonstrating the effectiveness of the mapping system.
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(a)

(b)

Figure 20. Mapping results at a higher driving speed. Three zoom-in views of the corresponding
2D grayscale maps (rendered by the reflectance intensity values) are shown at the bottom in (a).
The driving speed is shown in (b).

Large-scale mapping: Finally, the mapping system was also tested in a large-scale
highly dynamic urban scenario. As shown in Figure 21, two sets of data were collected.
The first dataset was collected from A to B on 3 September 2019 and the second dataset
was collected from B to A on 28 July 2020. The total driving length is 56.3 km and the
driving speed is shown in Figure 21b. A large number of dynamic vehicles make the scan
matching tend to degenerate, especially over the high bridges. Moreover, GNSS signal
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blockage frequently occurs due to tall buildings. These problems are handled well by the
degeneration analysis proposed in this paper.

(a)

(b)

Figure 21. Mapping results in large-scale settings. The total driving length is 56.3 km and the
maximum elevation change is 37.2 m. The constructed 3D map overlaid on the satellite image is
shown in (a). Three enlarged views are shown on the right. The driving speed is shown in (b) with a
maximum speed of 88.92 km/h.

5. Conclusions

In this paper, we proposed a framework for LiDAR-based 3D mapping in challenging
scenarios. A degeneracy-aware factor graph is constructed by fusing different kinds of
navigation information to improve the mapping accuracy and robustness. The reliability
of each factor is analyzed, and the degeneration state can be effectively detected. A new
scan matching degeneracy indicator Σ

′
δ is proposed. This new indicator can be seamlessly

integrated into the pose graph optimization framework. The loop closure constraint can
be reliably estimated by an improved submap-to-submap matching method even with a
large initial position offset or a limited overlap field of view. Extensive experiments in
several challenging scenarios are performed. Results indicate that the proposed mapping
system works well both in the highly dynamic urban scenarios and the featureless off-road
scenarios, even with GNSS signal blockage or at a higher driving speed. In the future,
we plan to augment the mapping system with more informative visual features captured
from cameras.
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