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Abstract: Plant phenology depends largely on temperature, but temperature alone cannot explain 

the Northern Hemisphere shifts in the start of the growing season (SOS). The spatio–temporal dis-

tribution of SOS sensitivity to climate variability has also changed in recent years. We applied the 

partial least squares regression (PLSR) method to construct a standardized SOS sensitivity evalua-

tion index and analyzed the combined effects of air temperature (Tem), water balance (Wbi), radia-

tion (Srad), and previous year’s phenology on SOS. The spatial and temporal distributions of SOS 

sensitivity to Northern Hemisphere climate change from 1982 to 2014 were analyzed using time 

windows of 33 and 15 years; the dominant biological and environmental drivers were also assessed. 

The results showed that the combined sensitivity of SOS to climate change (SCom) is most influenced 

by preseason temperature sensitivity. However, because of the asymmetric response of SOS to day-

time/night temperature (Tmax/Tmin) and non-negligible moderating of Wbi and Srad on SOS, SCom 

was more effective in expressing the effect of climate change on SOS than any single climatic factor. 

Vegetation cover (or type) was the dominant factor influencing the spatial pattern of SOS sensitivity, 

followed by spring temperature (Tmin > Tmax), and the weakest was water balance. Forests had 

the highest SCom absolute values. A significant decrease in the sensitivity of some vegetation (22.2%) 

led to a decreasing trend in sensitivity in the Northern Hemisphere. Although temperature remains 

the main climatic factor driving temporal changes in SCom, the temperature effects were asymmetric 

between spring and winter (Tems/Temw). More moisture might mitigate the asymmetric response 

of SCom to spring/winter warming. Vegetation adaptation has a greater influence on the temporal 

variability of SOS sensitivity relative to each climatic factor (Tems, Temw, Wbi, Srad). More mois-

ture might mitigate the asymmetric response of SCom to spring/winter warming. This study provides 

a basis for vegetation phenology sensitivity assessment and prediction. 

Keywords: vegetation phenology; climate change; phenological sensitivity; start of the growing  

season; driving force; partial least squares regression 

 

1. Introduction 

Plant phenology, especially the start of the growing season (SOS) (or spring green-

up date), is a highly sensitive indicator of the impacts of climate change on the biosphere 

[1–3]. The early onset of vegetation spring phenology has been widely reported as an in-

dicator of the climate warming [1,3,4]. Vegetation phenology fine-tunes itself according to 
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the environment; moreover, it is closely linked to climate variability [5,6]. Studies have 

shown that earlier SOS leads to higher photosynthetic rates and vegetation growth [7], 

while also increasing transpiration, resulting in increased drought stress [8]. Phenological 

changes also regulate vegetation feedback to the climate system by influencing the re-

gional and global carbon budget, water flux, and energy balance [4,9]. Therefore, improv-

ing the knowledge on phenology change and its drivers is essential to better understand 

and model the relationship between ecosystems and the climate system. 

Plant phenological sensitivity (phenological phase changes caused by unit changes 

in climatic conditions) determines the magnitude of phenological changes in response to 

future climate change and is key to understanding the relationship between vegetation 

phenology and climate change [3,10]. A number of studies have extensively assessed the 

impacts of global warming on the SOS over the past decades based on ground and satellite 

data [10–21]. Temperature is considered the dominant controlling factor of SOS [13–14,17–

18], and studies on phenological sensitivity have also focused on the sensitivity of SOS to 

temperature (STem) [22–24]. However, the relative importance of climate constraints on 

surface phenology has shifted since 1982 [13]. Recent studies have found that precipitation 

may play a key role in determining the spring [10,12]. Moreover, snow cover produced by 

preseason precipitation has also been shown to influence spring phenology at high lati-

tudes and altitudes [15]. Radiation, a comprehensive measure of sunshine duration and 

light intensity, shows obvious interannual variability [16]. Moreover, the photoperiod 

plays an important role in controlling SOS in most Northern Hemisphere forests [17]. Ra-

diation indirectly affects phenology, as it influences preseason temperature and water bal-

ance by controlling surface heat fluxes and evapotranspiration. Importantly, biological 

factors can also modulate the SOS [10,16]. The interaction between phenological events in 

spring and autumn may change the overall phenological response to climate warming 

[10]. Although SOS is influenced by multiple meteorological factors, most studies have 

examined only the temperature or precipitation sensitivity of SOS [22–24]; only a few 

studies have evaluated the combined effects of climate change on SOS [25]. This is partly 

because preseason meteorological factors, such as temperature, moisture utilization, and 

radiation, have different units of measurement. As a result, the sensitivity of each mete-

orological factor based on regression analysis cannot be quantitatively compared on the 

same scale. In addition, considering the STem as an example, the length of the phenologi-

cally relevant period (preseason) affected by temperature (including Tem, Tmax, and 

Tmin) varies in different climatic regions (or biomes), and changes in the temperature cu-

mulative time and statistical characteristics may cause estimation biases in STem [22,25]. 

SOS responds differently to Tmax and Tmin for the same preseason duration in some ar-

eas [18]; this difference in response is controlled by a number of environmental factors 

and vegetation conditions [10]. Thus, the phenological response of vegetation to recent 

climate warming cannot be explained entirely by temperature [26,27]. Given the complex 

response of SOS to preseason meteorological elements and biological elements, most pre-

vious studies were single factor sensitivity studies based on linear regression analysis 

(univariate and multiple regression) [24] and correlation analysis (or partial correlation 

analysis) [28]. Therefore, it is necessary to establish a standardized sensitivity evaluation 

index considering the influence of biological factors to characterize the sensitivity of SOS 

to each meteorological factor, which would facilitate a comparative analysis of the SOS 

sensitivity to each meteorological factor, and to construct a comprehensive SOS sensitivity 

index for climate change. 

The spatio–temporal differences in the sensitivity of SOS to climate change are not 

yet fully understood. The STem exhibits a large spatial variability [26] and has a downward 

trend with global warming [12,29,30]. Fu et al. [29] reported a declining STem in European 

temperate tree species. The causes for the spatio–temporal variation of STem are poorly 

understood, particularly on the global scale [10,24]. Studies have explored the causes of 

variation in phenological sensitivity from the aspects of climate, geography, and biology 

[12,23–25,28,31–35]. Interacting effects of temperature and precipitation have changed the 
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climate sensitivity of spring vegetation green-up [25]. The SOS is more sensitive to pre-

season precipitation in arid areas and more sensitive to preseason temperature in humid 

areas [12]. With warming-induced leaf-out advancement, a reduced photoperiod earlier 

in spring may decrease the STem [10]. The sensitivity of spring vegetation phenology is 

related to the rate of warming and phenological sensitivity with increasing local spring 

temperature variance at the species level from ground observations [23]. Spring pheno-

logical temperature sensitivity is higher at low latitudes than at cold or high latitudes 

[34,35]. The sensitivity of vegetation phenology to climate change varies by biome [32]; 

vegetation types with earlier SOSmean (mean SOS for 1982–2008) are more sensitive to 

spring temperature in the Northern Hemisphere [28]. Changes in phenological sensitivity 

are the result of a combination of multiple factors, but few studies have analyzed the dom-

inant drivers of sensitivity variation. Understanding the large-scale spatio–temporal pat-

tern of phenological sensitivity to climate change and its dominant controls will improve 

our ability to predict the timing of SOS. 

In this study, we used four different methods to extract phenology dates from the 

normalized difference vegetation index (NDVI) time series of the Global Inventory Mon-

itoring and Modeling System (GIMMS) NDVI3g.v1 dataset. We then applied the partial 

least squares regression (PLSR) to extract the standardized SOS sensitivity index to pre-

season climatic factors (air temperature, water balance, and radiation) and constructed a 

comprehensive SOS sensitivity index (SCom) for climate change. The purpose of this study 

was to (1) quantify the spatial and temporal variability of the Northern Hemisphere (lati-

tude ≥ 30°) SOS sensitivity to climate change (single factor and synthesis) from 1982 to 

2014 in 33-year and 15-year time windows, (2) determine the influence of environmental 

and biological factors on the spatial distribution of SOS sensitivity, and (3) identify the 

dominant drivers of the temporal variability of SOS sensitivity. 

2. Materials and Methods 

2.1. Materials 

The NDVI is widely used in global-scale phenological studies [10,20]. In this study, 

we used the latest NDVI dataset (GIMMS NDVI3g.v1 https://iridl.ldeo.colum-

bia.edu/SOURCES/.NASA/.ARC/.ECOCAST/.GIMMS/.NDVI3g/.v1p0/ (Accessed 15 May 

2021) generated from NOAA/AVHRR series satellite images by the NASA GIMMS group, 

which covers the period from January 1982 to December 2015 and has a spatial resolution 

of 1/12° and an interval of 15 days [36]. NDVI3g.v1 addresses various issues that were 

present in earlier datasets addressed in NDVI3g.v1 (e.g., updating satellite sensors, atmos-

pheric disturbances, and non-vegetation dynamics), and NDVI3g.v1 further addresses the 

artifacts caused by snow cover and calibration changes [37]. In this study, we excluded 

areas of bare soil/sparse vegetation with an annual average NDVI of less than 0.1 [20]. 

TerraClimate is a high-resolution (1/24°, 4 km) global monthly climate and climatic 

water balance dataset covering the period from 1958 to 2015 [38]. It combines high spatial 

resolution WorldClim climate data with coarse resolution data from other sources to gen-

erate monthly precipitation, maximum and minimum temperatures, wind speed, vapor 

pressure, and solar radiation datasets. TerraClimate also uses a water balance model to 

generate monthly surface water balance datasets. Compared with coarser datasets, Terra-

Climate shows significant improvement with regard to spatial authenticity and the overall 

mean absolute error. We used the monthly average maximum temperature (Tmax), aver-

age minimum temperature (Tmin), accumulated precipitation (Pre), downward 

shortwave flux at the surface (Srad), soil moisture (Sm), actual evapotranspiration (Aet), 

and snow water equivalent (Swe) TerraClimate datasets covering 1981–2015. 

The land cover (LC) data product from the European Space Agency’s Climate 

Change Initiative (CCI) specifies different vegetation types. The project delivers consistent 

global land-cover maps at a spatial resolution of 300 m and an annual temporal resolution 

from 1992 to 2015. The land cover classification system used in this dataset was found to 
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be compatible with the plant functional types used in climate models [39]. We used the 

new and improved Köppen–Geiger climate classification maps at 1-km resolution [40] for 

the present day (1980–2016) to specify the different climate regions by referring to the 

Intergovernmental Panel on Climate Change (IPCC) default climate regions recalculated 

by the Joint Research Centre (JRC) of the European Commission [41]. We excluded grid 

points where phenology could not be extracted and land cover types changed, especially 

for pixels with two or more growth cycles in one year. Detailed information and spatial 

distribution of climatic regions and plant types are shown in Table 1 and Figure 1. The 

spatial resolution of the land cover and climatic regions was resampled to match the res-

olution of the NDVI data. 

Table 1. Descriptions of the climatic regions and plant types in this study based on the Köppen 

climate classification and CCI-LC land cover types, respectively. 

Climate 

Regions 

Köppen–Geiger Climate  

Classifications 

Plant 

Types 
CCI-LC Land Cover Types 

WTD 
Warm temperate, dry: 

BWh/BWk/BSh/Csa/Csb/Dwa 

DBF Deciduous Broadleaf Forests 

DNF Deciduous Needleleaf Forests 

WTM 
Warm temperate, moist: 

Cfa/Cfb 
EBF Evergreen Broadleaf Forests 

CTD 
Cool temperate, dry: 

BSk/Dsa/Dsb/Dwb/Dwc 

ENF Evergreen Needleleaf Forests 

MF Mixed Forests 

CTM 
Cool temperate, moist: 

Cfc/Dfa/Dfb 
SHR Shrublands 

BD Boreal, dry: Dsc/Dsd/Dwd GRA Grasslands 

BM Boreal, moist: Dfc/Dfd CRO 
Croplands, cropland/Natural vege-

tation mosaic 

ET Polar, alpine climate: ET/EF SV Sparse vegetation (<15%) 

 

Figure 1. Spatial distribution of climatic regions (a) and plant types (b). 
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2.2. Methods 

2.2.1. Extracting Phenology Using NDVI Data 

A number of methods have been developed to extract the SOS and EOS (end of the 

growing season) from seasonal NDVI variability. Phenology extraction is mainly divided 

into two steps: (1) reconstructing the NDVI time series, and (2) determining the pheno-

logical extraction from the change characteristics of the filtered NDVI curve. We used the 

double logistic function to fit the NDVI time series in this study [20]. The inflection point 

detection method or the threshold method can be used to extract phenological data from 

NDVI time series data. We used two inflection point detection methods (i.e., first-order 

derivative [42] and second-order derivative [43] methods) and two fixed threshold meth-

ods (i.e., 0.2 [44] and 0.5 [45] fixed thresholds), to obtain a total of four methods to extract 

vegetation SOS and EOS in the Northern Hemisphere from 1982 to 2014. To reduce the 

uncertainty caused by the different methods, we used the average SOS and EOS of the 

four methods. Savizky–Golay filters were applied to the GIMMS NDVI3g.v1 datasets to 

minimize noise prior to phenological estimation [20]. 

2.2.2. Partial Least Squares Regression (PLSR) 

PLSR is a multivariate statistical regression analysis that combines the advantages of 

multiple regression, typical correlation, and principal component analysis. It is advanta-

geous in the analysis of multiple variables with multiple correlations, particularly when 

the number of variables is greater than the number of samples [46]. The standardized 

model regression coefficient (MC), an output of PLSR, indicates the extent to which the 

independent variables can explain the weight of the dependent variables. In this study, 

MC was defined as the normalization sensitivity of the dependent variable to the inde-

pendent variable. Variable importance in the projection (VIP) is an important output of 

PLSR and represents the relative importance of independent variables in explaining the 

dependent variable in the model. When VIP ≥ 1, the independent variable is considered 

important and that it significantly affects the dependent variable [47]. The independent 

variable could be considered the dominant driver of the dependent variable when its VIP 

value is maximum and greater than 1. PLSR is widely used in the study of vegetation 

response to climate change and has played an important role in identifying influential 

factors in both lag and driving force analyses [36,47,48]. In this study, all variables were 

standardized before PLSR analysis. 

2.2.3. Sensitivity of SOS to Climate Change 

The process for calculating the sensitivity of the SOS to climate change (Figure 2) is 

as follows: 

(1) Screening of indicators: Meteorological and biological factors can affect SOS. There-

fore, we selected Tmax, Tmin, Pre, Aet, melting snow water equivalent (Ms), effective 

precipitation (Water = Pre − Aet), water balance index (Wbi = Pre − Aet − Ms), Sm, 

and Srad as meteorological variables in this study covering the six months of presea-

son; the lengths of the growing season (LOS), EOS, and SOS of the previous year were 

selected as biological variables. We performed a PLSR for each pixel using 57 (9 × 6 

months + 3) indicators as independent variables and SOS as the dependent variable. 

Ms was calculated as the difference between the month’s snow water equivalent 

(Swe) and that of the previous month. Based on our PLSR results in the Northern 

Hemisphere and the specific physical significance, we selected Tmax, Tmin, Wbi, and 

Srad as the final climatic indicators and the previous year’s EOS and LOS as the final 

biological indicators affecting SOS in this study. 

(2) Optimal preseason determination: The end date of the preseason is usually fixed as 

the SOS date. Therefore, the start date should be optimized to strengthen the corre-

lation between preseason climatic factors and phenology [29,33]. Based on the PLSR 

results, we defined preseason in this study as the period during which the preseason 
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climatic factors (preseason average Tmax and Tmin, cumulative Wbi, and cumulative 

Srad at a time step of one month) showed the highest contribution to SOS dynamics 

in each pixel, that is, when the VIP value was at its maximum. The weather data for 

the month in which the SOS was located were used to calculate the preseason length 

when the SOS date occurred after the 15th [16]; this approach retains the influence of 

biological factors with a total of 26 (4 × 6 months + 2) independent variables. In this 

step, we obtained 20 optimal preseason datasets, each of which included the best 

preseason duration of Tmax, Tmin, Wbi, and Srad for each pixel in the Northern 

Hemisphere, one on a 33-year time window and the remaining 19 on a 15-year time 

window. 

(3) Standardized sensitivity index: To analyze the spatial distribution and temporal var-

iability of SOS sensitivity to climatic factors in the Northern Hemisphere during 

1982–2014, we conducted a PLSR for each pixel between SOS and the optimal presea-

son meteorological (mean Tmax, mean Tmin, cumulative Wbi, cumulative Srad) and 

biological (EOS and LOS of the previous year) factors with time windows of 33 and 

15 years, respectively. MC is the standardized sensitivity index, and VIP is the rela-

tive importance of each climatic factor. SCom is the sum of the MC values of the four 

climatic factors. Finally, we obtained 20 sensitivity datasets, each of which included 

the sensitivity of SOS to preseason Tmax, Tmin, Tem, Wbi, Srad, and Com for each 

pixel in the Northern Hemisphere. 

 

Figure 2. Calculation process of SOS sensitivity to climate change. 

2.2.4. Effect Evaluation of the Sensitivity Index 

A high standard deviation indicates dispersion across a wide range of values in a 

time series [49]. The standard deviation (SD) index, which only represents the stability of 

SOS under the influence of climate factors—was used with the standardized sensitivity 
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index for the Spearman correlation analysis. Higher absolute values of the correlation co-

efficient indicate a stronger effect of the sensitivity index. The formula for calculating the 

SD index is as follows: 

�� = ��� × (�� ⋅ ����),���� = 1 −
|����� + �����|

|����� +�����| + |�����������������|
 (1)

where ��� is the standard deviation of the SOS time series from 1982 to 2015, indi-

cating the stability of SOS; �� is the determination coefficient of PLSR, which represents 

the contribution of climatic and biological factors to SOS dynamics; and ����  is the 

weight of the meteorological factors. The SD index can therefore be used to measure the 

SOS fluctuations caused by climate change, with larger SD values indicating weaker SOS 

resistance to climate change. 

2.2.5. Trend Analysis and Significance Testing 

The Mann–Kendall (MK) trend test is a commonly used method for measuring hy-

drological, meteorological, and other non-normally distributed time-series trends. We 

used the Then–Sen (TS) estimator and the non-parametric MK test for trend analysis and 

significance testing of the sensitivity index. The TS–MK method minimizes the noise re-

lated to parametric uncertainty in the regression equation [50]. The climate tendency rate 

is a method to describe the long-term meteorological trends; the linear tendency method 

was used to calculate the climate tendency rate of each climatic factor for each pixel, where 

p < 0.05 indicates a significant change. The sensitivity intensity in this study was expressed 

as the absolute value of the sensitivity for trend analysis and driving force analysis. 

2.2.6. Driving Force Analysis 

The PLSR method was used to determine the influence of spring (March to May) 

climate (Tmin, Tmax, Wbi, Srad), spring climate tendency rate (Tmin’, Tmax’, Wbi’, Srad’), 

biological (mean value of NDVI and SOS), and geographical (altitude and latitude) factors 

on the spatial distribution of SCom in the Northern Hemisphere during 1982–2014 with time 

windows of 33 and 15 years. The PLSR method was also used to explore the relative im-

portance of climatic (average temperature in spring, average temperature in winter—De-

cember to February, accumulated Wbi in spring and winter—December to May, accumu-

lated Srad in spring and winter) and biological (mean value of SOS with a 15-year time 

window) factors driving the temporal variation of SCom in each pixel. The values of MC 

and VIP obtained by the PLSR represent the respective driving direction and relative im-

portance of each driving factor that affected the spatio–temporal variation of sensitivity. 

3. Results 

3.1. Selection of Indicators and Preseason Duration for Sensitivity Assessment 

Reasonable light, temperature, and moisture indicators can help us obtain more ac-

curate SOS sensitivity to climate change. Statistical results on the influence of meteorolog-

ical variables covering the six months of the preseason and previous year’s phenology on 

SOS in the Northern Hemisphere (Figure 3a) showed that meteorological variables had 

the strongest influence on SOS during the month in which SOS occurred, and the intensity 

of the impact then decreased with increasing months. Tmax had the strongest impact on 

SOS followed by Tmin. The correlation between SOS and Tmax and Tmin may be the 

opposite (Figure 3b). Among the water-related indicators, Aet had the strongest effect on 

SOS followed by Ms. This may be due to the direct effect of temperature on evapotranspi-

ration and snowmelt, indicating an SOS response to temperature. The water balance index 

(VIPWbi = 1.26) considering snowmelt had a stronger influence on SOS dynamics than that 

of effective precipitation (VIPWater = 1.23). Sm was not considered because its VIP value 

was lower than that of Wbi and did not show a cumulative effect. Therefore, we selected 

Wbi as the moisture indicator. Srad had a significant effect on the SOS (VIPSrad = 1). To 
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exclude the influence of biological factors, we included preseason EOS and LOS, which 

significantly (VIP ≥ 1) influenced SOS—as covariates in the sensitivity index calculation. 

Finally, we selected preseason Tmax, Tmin, Wbi, and Srad as climate indicators to con-

struct the standard sensitivity index. 

 

Figure 3. PLSR–based significance index VIP (a) and correlation index MC (b) statistics between SOS and environmental 

and biological factors in the Northern Hemisphere. The horizontal coordinate is the preseason months of SOS. As a special 

case, the first line shows the preseason phenological variables (Phen); Phen–0, Phen–1, and Phen–2 are the previous year’s 

start, end, and length of the growing season (SOS, EOS, LOS), respectively. Values in the figure represent the median of 

all pixels. 

When screening for meteorological variables, we found that the response of SOS to 

climatic factors (Tmax, Tmin, Srad) of neighboring and distant months was reversed (Fig-

ure 3b). Preseason duration implies the combined effects of spring and winter climate 

change on SOS, especially from winter warming. We calculated the preseason durations 

of each pixel for 19 time periods in 15-year time steps and found significant spatial varia-

bility in the preseason vegetation duration (Figure S1 of Supplementary Materials), but 

fewer regions with significant temporal variability (Figure S2 of Supplementary Materi-

als). The application of the optimal preseason could reduce the sensitivity error caused by 

the change in the preseason over time. 

3.2. Sensitivity of SOS to Preseason Meteorological Factors 

The sensitivity statistics for the climatic region and plant type are shown in Figure 4. 

The SCom value for each biome occurred in the following order: forest > shrub > grassland 

> farmland > sparse vegetation, with the highest sensitivity in mixed forests (MF) (Figure 

4a). SCom is also more sensitive in wet and cool zones than in dry, warm, and cold zones. 

The cool, temperate, and moist (CTM) zones, where most of the Northern Hemisphere 

deciduous forests are located, are the most sensitive, and warm, temperate, and dry 

(WTD) zones dominated by grass and sparse vegetation are the least sensitive (Figure 4b). 

Overall, SOS in the Northern Hemisphere ecosystem showed the highest sensitivity to 

Tmax (−0.27), followed by Tmin (−0.20), and SOS showed the weakest sensitivity to Wbi 

and Srad (−0.07, −0.06). Similar conclusions were reached in the ecosystems of most vege-

tation types and climatic regions. 
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Figure 4. SOS sensitivity to climate change in different plant types (a) and climatic regions (b) in the Northern Hemisphere 

during 1982–2014. Values in the figure represent the median of all pixel sensitivity values in different plant types (or 

climatic regions). The specific meanings of different plant types and climatic regions are shown in Table 1; N stands for 

the Northern Hemisphere (latitude ≥ 30°). 

The spatial distribution of the SOS standardized sensitivity to preseason meteorolog-

ical factors in the Northern Hemisphere from 1982 to 2014 is shown in Figure S3 of Sup-

plementary Materials. The highest SOS sensitivities to preseason Tmax and Tmin (STmax 

and STmin) were concentrated in the mid-latitude and non-farming areas. We also found 

that 19.3% of the pixels showed opposite SOS responses to preseason Tmax and Tmin 

(Figure S4 of Supplementary Materials). The highest SOS sensitivities to preseason Wbi 

and Srad (SWbi and SSrad) were mainly distributed at the high latitudes. The proportions of 

pixels significantly affected by temperature, moisture, and radiation were 88%, 46%, and 

29%, respectively; therefore, the spatial distribution of SCom was similar to that of STem (Fig-

ure S3c–f of Supplementary Materials). The spatial distribution of each sensitivity’s con-

tribution to SCom (Figure 5d) also shows that STem limits SCom in most pixels of the mid-

latitudes, whereas SWbi and SSrad are the dominant drivers of SCom at high latitudes and high 

elevations. SCom in the Northern Hemisphere was dominated by STem, SWbi, and SSrad from 

1982 to 2014, contributing 74.9%, 15.7%, and 9.4%, respectively. 

3.3. Temporal and Spatial Characteristics of SOS Sensitivity to Preseason Climatic Factors 

We calculated the sensitivity of each pixel over 19 periods from 1982 to 2014 using a 

time window of 15 years. The spatial distribution of SCom varied significantly between the 

period of rapid warming (1984–1998) and interrupted warming (1998–2012), with the pro-

portion of significantly negative sensitive pixels decreasing from 81% to 76%. The propor-

tion of pixels in which STem, SWbi, and SSrad dominated SCom was 66.8%, 19.0%, and 14.2% 

during the rapid warming period, respectively, which changed to 61.6%, 22.2%, and 16.1% 

during the warming interruption. The region in which sensitivity was dominated by Wbi 

and Srad expanded (Figure 5b,c,e,f). 
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Figure 5. Spatial distribution of SCom (a–c), weights of STem, SWbi, SSrad (d–f), and decision coefficients (R2) of SOS based on 

PLSR (g–i) for the periods of the study (1982–2014), rapid warming (1984–1998), and interrupted warming (1998–2012). 

The four sections of the pie chart in a clockwise direction represent the proportion of pixels with significant positive, 

positive, negative, and significant negative trends. 

We observed obvious spatial heterogeneity in the time-varying sensitivity trends 

(Figures 6 and S5). A total of 39.5% of pixels showed significant changes in SCom (22.2% 

decrease, 17.3% increase), whereas 53.3% of pixels showed a decreasing trend in the 

Northern Hemisphere (Figure 6f). The trends in single-factor sensitivity and integrated 

sensitivity are not spatially consistent, even for the STem that contributes the most to SCom 

(Figure 6e,f). The statistical results for different climatic zones (Figure S5a of Supplemen-

tary Materials) showed that a greater proportion of pixels exhibited reduced sensitivity in 

cold/moist climates compared with warm/dry climates (WTM = 52.8% > WTD = 46.6%, 

CTM = 52.8% > CTD = 46.8%, BM = 56.0% > BD = 52.1%, ET = 54.0%). The proportion of 

pixels with reduced sensitivity was greatest in shrubs (SHR = 57.0%) among all vegetation 

types (Figure S5b of Supplementary Materials). In terms of temporal trends in the median 

sensitivity of all pixels in the Northern Hemisphere over 19 time periods (Figure S6 of 

Supplementary Materials), the sensitivity of SOS to preseason Com, Tmax, Tmin, and Tem 

was significantly reduced. The sensitivity to preseason Wbi showed a tendency to first 

decrease and then increase, whereas the opposite was true for preseason Srad, although 
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there were no significant changes. However, the proportion of pixels dominated by SSrad 

and SWbi in SCom increased significantly with time. 

 

Figure 6. Spatial distribution of SOS sensitivity trends (Sen’s slope) to climate factors in the Northern Hemisphere over 19 

periods with a time step of 15 years during 1982–2014. The dotted regions indicate significant changes in sensitivity (|Z| 

> 1.95), and the trend in units of ‘/10 a’, a is the abbreviation for annual. The four sections of the pie chart in a clockwise 

direction represent the proportion of pixels with significant positive, positive, negative, and significant negative trends. 

3.4. Effectiveness Evaluation of the Standardized SOS Sensitivity Index 

The correlation between the standardized sensitivity index and the SD index (Figure 

S7 of Supplementary Materials) in most climate regions and plant types is expressed as 

Com > Tem > Tmax > Tmin > Srad > Wbi. That is, the comprehensive sensitivity index was 

superior to the single-factor sensitivity index and showed stronger applicability in boreal 

moist, polar alpine climate regions (BM = −0.60, ET = −0.61) and deciduous needleleaf for-

ests (DNF = −0.67). 

3.5. Drivers of the Spatial Pattern of SCom 

Several factors affected the spatial pattern of SCom in the Northern Hemisphere from 

1982 to 2014 (Figure 7). The spatial pattern was most strongly influenced by the NDVI 

(VIP = 1.17, MC = 0.05). Moreover, earlier SOS dates corresponded to higher sensitivities 

(MC = −0.02). SOS sensitivity increased with digital elevation model altitude (DEM, MC = 

0.04) and decreased with latitude (LAT, MC = −0.02); the effects of LAT on the spatial 

distribution of sensitivity were significant (VIP = 1.11). Tmin was the dominant climatic 

control on the spatial pattern of SCom (VIP = 1.14, MC = −0.014), followed by Tmax (VIP = 

1.12, MC = −0.004). Wbi had the weakest effect on the spatial pattern of sensitivity (VIP = 

0.48); none of the rates of change of climatic factors had a significant effect on the sensi-

tivity spatial pattern (VIP < 1). However, owing to the complexity of climate and land 

cover, the impacts of the different drivers on sensitivity were not consistent across differ-

ent climate regions (Figure S8 of Supplementary Materials). 
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Figure 7. Driving force analysis of the spatial pattern of SCom in the Northern Hemisphere based on PLSR. Mean values of 

variable importance in the projection (VIP−a) and mean values of the standardized model regression coefficient (MC−b) 

for different factors over 19 time periods, 1982−2014. 

The influence of various driving factors affecting the spatial pattern of sensitivity 

changed in response to the slowing down of climate warming (Figure S9 of Supplemen-

tary Materials). The influence of biological factors (SOS and NDVI) showed a weakening 

trend from 1982 to 2014. The influence of DEM first increased and then decreased, while 

the influence of LAT continued to increase. The impact of spring temperature (Tmax, 

Tmin) on the spatial distribution of SCom first increased and then decreased. The effect of 

Wbi showed a decreasing trend, whereas Srad showed the opposite trend. The influences 

of Tmax, Wbi, and Srad on the spatial distribution of SCom reversed over time (positive and 

negative MC), which affected the spatial variability of sensitivity. The influence of the 

climate tendency rate (Tmax’, Tmin’, Wbi’, Srad’) on the spatial pattern of SCom has weak-

ened in recent years. 

3.6. Drivers of the Temporal Characteristics of SCom 

Biological factors had a stronger effect on the temporal variability of SCom than did 

climate change (Figure 8). SOS with the maximum VIP value was the dominant driver of 

the temporal variability of SCom in the Northern Hemisphere, followed by spring temper-

atures (Tems) and Wbi. Winter temperatures (Temw) and Srad had the weakest influence. 

The importance of Wbi on the temporal variability of SCom was greater in the arid zones 

(WTD and CTD) (Figure 8a). According to the spatial distribution of the drivers influenc-

ing the temporal variation of SCom (Figure S10 of Supplementary Materials), regions sig-

nificantly affected by SOS and climate factors were not concentrated. The proportion of 

pixels showing positive and negative influences on sensitivity for each driving factor in 

the different climate regions was relatively balanced at ~50% and did not exceed 57.5% 

(Figure 8b). Considering climate alone, the pixel proportions in which Tem, Wbi, and Srad 

dominated the temporal variability of SCom in the Northern Hemisphere were 51.6% (Tems 

= 25.5%, Temw = 26.1%), 26.1%, and 22.3%, respectively. The pixel proportions dominated 

by Wbi in arid (WTD and CTD) and cold (BD, BM, ET) areas were >25%, and Srad per-

formed best in wet and ET climates (Figure 8c). Our results suggest that temperature 

change is the dominant climatic control on the temporal variability of SOS sensitivity, with 

important contributions from water balance and radiation. 
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Figure 8. Statistics on the drivers influencing the temporal variability of SCom in different climatic regions and the Northern 

Hemisphere, including (a) the average VIP value of each driving factor in each climate region, and (b) the standardized 

regression coefficient (MC) of the PLSR between climatic variables/SOS and SCom. Bars above and below 0 represent per-

centage of positive and negative correlations, respectively. The colored sections indicate the percentages of significant 

correlations at VIP ≥ 1. (c) The proportion of pixels in which climatic variables dominate the temporal change in sensitivity. 

Most notably, the effects of spring and winter warming on the temporal variability 

of sensitivity in different regions of the Northern Hemisphere were superimposed or off-

set. The proportions of pixels where spring/winter warming jointly promoted and inhib-

ited sensitivity were 23.7% and 23.3%, respectively, whereas 53.1% of pixels showed the 

opposite effect from spring/winter warming (Figure S11a of Supplementary Materials). 

The proportion of pixels where spring/winter warming had an opposite effect on sensi-

tivity increased with increasing latitude and decreasing temperature in dry climate re-

gions (WTD = 53.0%, CTD = 53.7%, BD = 58.1%). However, the opposite trend was ob-

served in humid regions (WTM = 51.2%, CTM = 50.4%, BM = 48.8%). In addition, the afore-

mentioned results also showed that the proportion of the asymmetric response of SCom to 

spring/winter temperature changes was smaller in the humid zone than that in the dry 

zone. This indicate that more moisture might mitigate the asymmetric response of SCom to 

spring/winter warming (Figure S11b of Supplementary Materials). 

4. Discussion 

4.1. Rationality of the Standardized SOS Sensitivity Index and its Evaluation Results 

Both existing studies [18,51–53] and the present study showed an asymmetric effect 

of daytime and nighttime (spring and winter) warming on SOS. However, this asymmetry 

has rarely been considered in previous SOS sensitivity studies [23,24,33,37,54,55]. Biolog-

ical and environmental factors combine to regulate the SOS. Interactions between pheno-

logical events in spring and autumn may change the phenological response to ongoing 

climate warming [10], and interspecies interactions may affect SOS [56]. Our results 

showed that preseason EOS and LOS significantly affect the SOS. Studies have shown that 

changes in SOS sensitivity to temperature are associated with preseason duration [16,33]. 

For the aforementioned facts, we constructed a composite sensitivity index to characterize 

the complex response of spring phenology to climate change (Tmax, Tmin, Wbi, Srad). 

The effects of the previous year’s phenology (EOS, LOS) and optimal preseason duration 

were incorporated in the calculation process to exclude the effects of non- meteorological 

factors on the sensitivity index. The results demonstrated that the composite index was 

superior to the single-factor index in expressing the influence of SOS due to climate 

change. Temperature, especially the preseason Tmax, is considered to be the main con-

trolling factor for SOS, as warmer temperature breaks the ecodormancy earlier with global 

warming [10,51,57]; our results also show that SOS sensitivity to Tmax is highest in the 

Northern Hemisphere ecosystems and most vegetation types and climate type ecosys-

tems, followed by Tmin. However, we also found that SOS changes were dominated by 
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moisture and radiation in 15.7% and 9.4% of the grid points, respectively. The control of 

SOS by moisture and radiation can be explained by their indirect effect on the thermal 

demand of SOS [10]. The interaction between radiation, temperature, and water affects 

the sensitivity of SOS to climate change [17,25]. SCom can reflect the comprehensive impact 

of climate change (including changes in light, temperature, and water and their interac-

tions) on SOS. 

4.2. Driving Force Analysis of the Spatial Distribution of SCom 

The combined interaction between climate characteristics, climate tendency, and bi-

ological and geographical factors influences the spatial pattern of sensitivity. However, 

few studies have examined these factors together to identify the dominant drivers for the 

spatial distribution of SOS sensitivity. STem was the highest in the forests [55]. SOS in 

warmer locations of the Northern Hemisphere was found to be less responsive to climate 

change, and STem increased with altitude (cold climate) [33]. Wang et al. [23] found that the 

temperature sensitivity decreased with increasing spring temperature. Moreover, vegeta-

tion at lower latitudes (or with earlier SOS) was found to be more sensitive to changes in 

spring temperature [37,54]. Climatic tendency is highly correlated with SOS [20]. The find-

ings of this study are consistent with these observations. In addition, we found that the 

multi-year average NDVI (an index reflecting the status of surface vegetation cover) had 

the greatest influence on the spatial distribution of SCom. SCom decreased with increasing 

latitude (or decreasing temperature) in this study, despite warmer regions (lower lati-

tudes) showing lower sensitivity. This may be due to the importance of vegetation cover-

age (NDVI) on the spatial distribution of sensitivity, with higher sensitivity at higher cov-

erage. Sparse vegetation, grasslands, and tundra dominate the high latitudes, high alti-

tudes, and cold regions; this prevents SOS from closely tracking changes in temperature 

to avoid frost risks [58]. 

The spatial distribution of SCom showed diametrically opposed responses to drivers 

in different climatic regions (Figure S5 of Supplementary Materials) attributable to the 

regional characteristics of vegetation and climate types in the Northern Hemisphere, 

which might also be due to the interaction of hydrothermal conditions to influence the 

distribution of SOS sensitivity [25]. With the exception of LAT and Srad, the influence of 

biological factors (SOS, NDVI), climate characteristics (Tmax, Tmin, Wbi), climate trend 

rate (Tmax’, Tmin’, Wbi’, Srad’), and geographical factors (DEM) on the spatial pattern of 

sensitivity has weakened in recent years (Figure S6 of Supplementary Materials). The rea-

sons for this phenomenon are as follows: First, the vegetation and the communities in 

which they are located have adapted to climate warming [31,56]. Furthermore, the rate of 

warming has decreased, resulting in no trends in SOS during the global warming hiatus 

[31,56]. Finally, a faster rate of warming at higher altitudes has led to SOS at different 

altitudes becoming more uniform [15,59]. 

4.3. Driving Force Analysis of the Temporal Variability of SCom 

According to global average surface temperature data, a global warming interruption 

occurred between 1998 and 2012 [60,61]. To explore the effect of this warming slowdown 

on SOS sensitivity, we analyzed the temporal variability and dominant drivers of SOS 

sensitivity using a time window of 15 years. The simulated effect (R2 = 0.57) of preseason 

climate change and phenology on SOS dynamics was significantly enhanced at the 15-

year time step (Figure 4g,h,j) relative to the 33-year time window (R2 = 0.40), which al-

lowed us to obtain more accurate SOS sensitivity, as the SOS response to preseason cli-

mate change (especially temperature change) is nonlinear [29]. 

SOS sensitivity to climate warming generally shows a decreasing trend in the North-

ern Hemisphere [29]. The present study also showed a significant decreasing trend in the 

median of all pixels SCom (or STem) in the Northern Hemisphere. However, we found that 

only 53.3% of the pixels showed a decrease in SCom; 22.2% were statistically significant 

(Figures 5 and S2a). This may suggest that the decrease in the sensitivity trend exceeded 
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the increase on the pixel scale. The significant reduction in SOS sensitivity in a small pro-

portion of vegetation leads to a decreasing trend of SCom (or STem) in the Northern Hemi-

sphere, with vegetation in wetter/cooler climate zones and shrubs contributing more to 

the decrease in sensitivity. In all climate regions other than WTM, we found that biological 

factors (SOS) exert more influence on the temporal variability of SOS sensitivity relative 

to each climatic factor (Tems, Temw, Wbi, Srad), suggesting that vegetation autonomously 

regulates SOS to adapt to climate change [31]. Vegetation adaptation is the most important 

factor influencing temporal variation in SCom. 

Temperature may be an important climate driver dominating temporal changes in 

sensitivity (5.16% of the pixels). Strong uncertainty remains in the main climatic factors 

that driver the temporal variability of sensitivity. In different climatic regions and the 

Northern Hemisphere, the proportion of positive and negative responses of sensitivity to 

various driving factors (biological and climatic) was relatively balanced (Figure 7b). This 

may be due to the spatial heterogeneity (Figures 5 and S2) of the sensitivity variation (only 

53.3% of the pixels showed a decrease in sensitivity), or the asymmetric response of SCom 

to spring/winter warming (53.1% of pixels showed the opposite effect). More likely, it is 

due to the complex interaction of drivers [10]. For example, radiation showed clear time-

varying characteristics [62], and the proportion of pixels dominated by radiation reached 

22.3% in this study. Moreover, strong solar radiation in spring causes snow to melt, lead-

ing to higher temperatures in the soil relative to the atmosphere. The sensitivity of SOS 

may be affected by the influx of snowmelt water into partially frozen soils, as this pro-

motes root activity before temperatures reach 0 °C [63]. The effect of Wbi on the temporal 

variability of SCom was greater than or equal to the effect of Tems in arid and cold climate 

regions. Water shortage in these regions is the dominant limiting factor in the develop-

ment of spring phenology [64]. We also found that more moisture might mitigate the 

asymmetric response of SCom to spring/winter warming. Srad and Temw showed weaker 

influences on the temporal variability of sensitivity relative to Wbi and Tems; however, 

the proportion of pixels in which the temporal sensitivity was dominated by Temw still 

reached 26.1%. Studies have shown that warming in winter and early spring shortens the 

cold storage period, which reduces sensitivity, as the cold storage requirements of certain 

plant types are not met [65]. Although the response of sensitivity to climatic factors is 

complex, the main driving factors still have different emphases in different climatic re-

gions. 

4.4. Limitations 

As the four methods to estimate SOS were based on satellite data, some uncertainties 

may arise due to resolution and data quality limitations. Moreover, although we selected 

pixels with no significant change in land cover type for statistical analysis, they may still 

include some impacts from human activity. We studied the spatial and temporal patterns 

of spring phenology sensitivity and analyzed the relative importance of each driving fac-

tor to the spatial and temporal distribution of sensitivity. However, we do not understand 

the underlying causes and ecological processes that lead to these patterns. Meteorological 

and phenological observations with higher spatio–temporal resolution and manipulatable 

physiological experiments can further our understanding of the underlying mechanisms 

of the SOS response to climate change. 

5. Conclusions 

We applied the PLSR method as the core algorithm and used meteorological and 

NDVI-extracted phenological data to screen the most suitable biological and climatic in-

dicators affecting SOS in the Northern Hemisphere. We then constructed a standardized 

SOS sensitivity index for climate change based on the optimal preseason duration of the 

climatic indicators. The index can determine the weight and direction of individual cli-

mate factors as well as their combined effects on SOS. Based on the sensitivity evaluation 
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results, we analyzed the spatial and temporal characteristics of SOS sensitivity and its 

dominant drivers in the Northern Hemisphere from 1982 to 2014. 

This study showed that the combined sensitivity of SOS to climate change (SCom) is 

most influenced by pre-season temperature sensitivity. However, because of the asym-

metric response of SOS to Tmax/Tmin and the non-negligible moderating effect of Wbi 

and Srad on SOS, SCom was more effective in expressing the effect of climate change on 

SOS compared with the single climatic factor. Vegetation cover (or type) was the domi-

nant factor influencing the spatial pattern of SOS sensitivity, followed by spring temper-

ature (Tmin > Tmax); the weakest was Wbi. Forests had the highest SCom absolute values. 

In recent years, a significant decrease in the sensitivity of some vegetation has led to a 

decreasing trend of sensitivity in the Northern Hemisphere, with vegetation in wet-

ter/cooler climate zones and shrubs contributing more to the decrease in SCom. Biological 

factors (vegetation adaptation) exerted a greater influence on the temporal variability of 

SOS sensitivity relative to each climatic factor (Tems, Temw, Wbi, Srad). Although tem-

perature remains the main climatic factor driving temporal changes in SCom, the effects 

were asymmetric between spring and winter. More moisture might mitigate the asym-

metric response of SCom to spring/winter warming. Despite the complex response of sen-

sitivity to climate change, the dominant factors in different climatic regions still have dif-

ferent emphases. 

Identifying systematic differences in phenological climate sensitivity would facilitate 

the development of indicators and estimates of vulnerability for conservation and national 

adaptation programs [32]. The performance of the current phenological models is unsat-

isfactory [10]. The quantitative evaluation of sensitivity and driving force analysis of SOS 

in this study provides not only a new method for identifying the combined sensitivity of 

springtime phenology to climate change but also a basis for the construction of better phe-

nological models to improve phenological prediction performance. 
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types (b); Figure S6.: Temporal changes in SOS sensitivity to climate factors in the north (a–e) and 

the proportion of climate factors dominating sensitivity (f); Figure S7: Correlation between the 

standardized sensitivity index and SD index in different climate regions (a) and plant types (b); 
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warming in spring and winter on the temporal variation of SCom. 
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Abbreviations 

Aet Actual evapotranspiration 

CCI European Space Agency’s Climate Change Initiative 

DEM Digital elevation model altitude  

EOS End of the growing season 

IPCC Intergovernmental Panel on Climate Change 

JRC Joint Research Centre  

LAT Latitude  

LC Land Cover 

LOS Lengths of the growing season 

MC The standardized model regression coefficient 

MK Mann–Kendall 

Ms Melting snow water equivalent 

NDNI Normalized difference vegetation index 

PLSR Partial least squares regression 

Pre Accumulated precipitation 

SCom Combined sensitivity of SOS to climate change 

SD Standard deviation 

Sm Soil moisture 

SOS Start of growing season (or spring green-up date) 

Srad Radiation (or Downward shortwave flux at the surface) 

STem/STmax/STmin/SWbi/SSrad Sensitivity of SOS to preseason Tem/Tmax/Tmin/Wbi/Srad 

Swe Snow water equivalent 

Tem Air temperature 

Tems/Temw Spring/Winter temperature 

Tmax/Tmin 
daytime/night temperature (or Maximum/Minimum tempera-

ture) 

Tmin’/Tmax’/Wbi’/Srad’ Climate tendency rate of Tmin/Tmax/Wbi/Srad 

TS Then–Sen 

VIP Variable importance in the projection 

Wbi Water balance 
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