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Abstract: As a special micro-motion feature of rotor target, rotational angular velocity can provide
a discriminant basis for target classification and recognition. In this paper, the authors focus on an
efficient rotational angular velocity estimation method of the rotor target is based on the combination
of the time–frequency analysis algorithm and Hough transform. In order to avoid the problems
of low time–frequency resolution and cross-term interference in short-time Fourier transform and
Wigner–Ville distribution algorithm, a modified short-time fractional Fourier transform (M-STFRFT)
is proposed to obtain the time-FRFT domain (FRFD)-frequency spectrum with the highest time–
FRFD–frequency resolution. In particular, an orthogonal matching pursuit (OMP)-based algorithm is
proposed to reduce the computational complexity when estimating the matched transform order in
the proposed M-STFRFT algorithm. Firstly, partial transform order candidates are selected randomly
from the complete candidates. Then, a partial entropy vector corresponding to partial transform
order candidates is calculated from the FRFT results and utilized to reconstruct the complete entropy
vector via the OMP algorithm, and the matched transform order can be estimated by searching
minimum entropy. Based on the estimated matched transform order, STFRFT is performed to obtain
the time–FRFD–frequency spectrum. Moreover, Hough transform is employed to obtain the energy
accumulation spectrum, and the micro-Doppler parameter of rotational angular velocity can be
estimated by searching the peak value from the energy accumulation spectrum. Both simulated
data and measured data collected by frequency modulated continuous wave radar validate the
effectiveness of the proposed algorithm.

Keywords: rotor target; rotational angular velocity estimation; matched transform order; orthogonal
matching pursuit algorithm; modified short-time fractional fourier transform

1. Introduction

The micro-Doppler (m-D) effect is a frequency modulation (FM) induced by the micro-
motion [1–3], including rotation, vibration, precession, and nutation, which widely exists
in many objects or their structures, such as rotors of a helicopter, warhead in mid-phase,
running vehicle engines, and so on. As the m-D effect can provide abundant information
about a target’s motion, it has attracted extensive application in target imaging, detection,
recognition, and classification. The m-D effect of radar echo signals usually behaves as
the nonlinear and time-varying frequency in a narrow frequency band, which is related to
the target structure, micro-motion property, and the carrier frequency of the transmitting
signal [4,5]. This valuable relationship may help realize micro-motion parameter estimation
based on m-D distribution signatures in the time–frequency domain.

By contrast with the Fourier transform (FT), the time–frequency analysis class trans-
forms not only provide joint distribution information in the time domain and frequency
domain, but also clearly describe the relationship between signal frequency and time.
Therefore, they are widely employed in micro-motion parameter estimation [6,7]. Gener-
ally, time-frequency analysis class transforms can be divided into two categories: (1) linear
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time–frequency transform, such as short-time Fourier transform (STFT) and continuous
wavelet transform (CWT) [8]; (2) nonlinear time–frequency transform, including Wigner–
Ville distribution (WVD) and Cohen class distribution [9].

As a typical algorithm of linear time–frequency transform, STFT has received wide
attention and been applied in several fields, such as the instantaneous frequency estima-
tion [10] and the enhancing of spectral resolution [11]. Although these methods have
achieved effective performance in parameter estimation and low computational complexity,
respectively, the STFT algorithm still suffers from poor concentration [12]. WVD, as the
most basic Cohen class bilinear time–frequency distribution, was first proposed by Wigner
in quantum mechanics, and then was first applied to signal analysis by Ville [13]. It not
only essentially distributes the signal energy in the time–frequency plane, but also has
a good time–frequency resolution. However, the existence of cross-term makes it have
false information when analyzing multicomponent signals [14,15]. In view of this problem,
several studies have been in-depth conducted by many scholars, such as pseudo Wigner–
Ville distribution (PWVD) [16] and reassigned smoothed pseudo Wigner–Ville distribution
(RSPWVD) [17]. Since Hough transform can map the time–frequency distribution on the
parameter space through achieving energy accumulation along the Doppler frequency
change rule of the signal, it is usually used to estimate the micro-Doppler parameters from
the time–frequency domain spectrum. The Hough transform was combined with STFT,
WVD, PWVD, and RSPWVD for parameter estimation in the Hough–STFT algorithm [18],
Hough–WVD algorithm [15], Hough–PWVD algorithm [6], and Hough–RSPWVD algo-
rithm [19], respectively. In these algorithms, the correct micro-Doppler parameters can be
estimated from parameter candidate sets by finding the location of the maximal Hough
integration in these algorithms. Although the time–frequency analysis algorithms men-
tioned above can realize the estimation of micro-Doppler parameters, they are still plagued
by low time–frequency resolution and cross-term interference.

The fractional Fourier transform (FRFT) [20,21] is a generalization of the Fourier
transform with an additional transform order parameter and was first proposed by Vic-
tor Namias in 1980 [22]. Because of the best energy concentration in the FRFT domain
(FRFD) with a certain order in terms of the chirp signal, several implementations and
fast computational algorithms of FRFT have been derived in recent years; also, they are
widely applied in radar signal processing. Inspired by sparse Fourier transform (SFT) [23]
and Pei’s discrete FRFT [24], a novel sparse discrete FRFT (SDFRFT) was proposed by
Liu et al. to reduce the computational complexity when dealing with large data sets,
which are sparsely represented in the FRFD [25]. Chen et al. proposed adaptive sparse
fractional Fourier transform algorithm and used it in fast and refined processing of radar
maneuvering target [26]. These algorithms implement FRFT and improve the effectiveness
of FRFT through sparse representation. However, in the essential stage of the matched
transform order estimation, these algorithms still use the traditional search method or
the combination of polynomial phase transform and accurate search method, which are
more time-consuming and will increase the computational complexity. However, the FRFT
only reveals the signal energy distribution in FRFD under the matched transform order
and fails to show the changes of FRFD-frequency with time. In order to introduce the
FRFT to the traditional time–frequency representation, the short-time fractional Fourier
transform (STFRFT) was proposed [27,28], which draws the process of windowing in STFT
into FRFT, to clarify the instantaneous FRFD-frequency and display the time and FRFD
information jointly in the time-FRFD plane. With higher concentration and no interference
of cross-term, the STFRFT could provide tight support for the signals and eliminate the in-
terference [29,30]. An effective algorithm based on STFRFT is proposed for target detection
and m-D signal extraction, in which the radar echoes of sea target with transaction and
rotation movement can be approximated as the sum of linear frequency modulated signals
within a short time [31]. The concept of SFT was also introduced to STFRFT to achieve high
time–FRFD–frequency resolution and low complexity of time–frequency distribution [32].
However, these STFRFT-based algorithms do not give an effective solution to the estima-
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tion of the matched transform order. It is common knowledge that the transform order is
important and essential in FRFT, where FRFT or STFRFT will achieve the best performance
while choosing the optimal transform order related to the chirp rate [33,34]. Therefore, it
is of great significance to study an effective and fast matched transform order estimation
algorithm for the application of FRFT or STFRFT. Serbes and Aldimashki [35] proposed a
fast and accurate matched transform order estimation method using the golden section
search (GSS)-based FRFT algorithm. Guan et al. [36] proposed a grading iterative search
method to increase the estimation accuracy and calculation speed of the matched transform
order. Both the golden section search method and the grading iterative search method
require that the amplitude spectrum of FRFT must be unimodal. However, these methods
are no longer applicable for the FRFT amplitude spectrum with Doppler frequency of
quasi-linear frequency modulation signal, which is multimodal. The main reason is that the
multimodal amplitude spectrum will make the method fall into local iterative convergence,
resulting in a large error of matched transform order estimation.

In this paper, we propose a novel modified short-time fractional Fourier transform (M-
STFRFT) algorithm to estimate the micro-Doppler parameter of rotational angular velocity.
The contributions of this paper can be summarized as: (1) Interested in the framework
of rotational angular velocity estimation based on the time–frequency analysis algorithm
and Hough transform, instead of the STFT and WVD algorithm, we combine the STFRFT
algorithm and Hough transform to realize the rotational angular velocity estimation. The
rotational angular velocity can be estimated by searching the peak value from the energy
accumulation spectrum obtained by Hough transform in the micro-Doppler parameter
space. (2) In order to avoid the local iterative convergence in the GSS-based algorithm and
solve the heavy computational complexity in the traditional search method, we propose
a novel orthogonal matching pursuit (OMP)-based matched transform order estimation
method in the M-STFRFT algorithm. Several comparative experimental results based on
both simulated data and measured data are implemented to verify the effectiveness of the
proposed algorithm in solving the contradiction between the estimation accuracy and the
efficiency and avoiding the problem of local iterative convergence in the matched transform
order estimation. From the results, we can conclude that the proposed algorithm is more
effective and stable in rotational angular velocity estimation than GSS-based FRFT method
proposed in [35] and other mentioned time–frequency analysis estimation algorithms.

The rest of this paper is organized as follows. The echo model and time–frequency
analysis of FRFT are reviewed in Section 2. The proposed estimation algorithm of rotational
angular velocity based on modified short-time fractional Fourier transform is summarized
in Section 3. Section 4 verifies the effectiveness of the proposed algorithm by simulated
experiments. Conclusions are presented in Section 5.

2. Fundamental Knowledge
2.1. Echo Model

When an aircraft target is observed by ground-based radar, the received signal is
composed of echoes reflected by multiple scatterers. For targets with rotors, such as a
helicopter or propeller aircraft, the echo contains not only the translation movement of
scatterers on the fuselage but also the fretting characteristics of the scatterers on the rotor
blades. In the following discussion, we take the helicopter as an example; the special
geometry between radar and a helicopter is shown in Figure 1a, in which the distance
between the radar and rotor target center is denoted as RC, and the angle of pitch is denoted
as β. Considering the 2-D slant-range plane, the simplified geometry is shown in Figure 1b.
A radar coordinate system XOY and target coordinate system X′O′Y′ are set up, in which
the rotor center is denoted as O′. The rotation radius of scatterer F on the rotor blade is
assumed to be r—i.e., the distance from F to O′ is r—and the distance from F to the radar is
denoted as RF. The scatterer F rotates around the target coordinate system center O′ with a
rotational angular velocity ω, and the rotation angle at the initial time is denoted as θ0. It is
assumed that the radial velocity of the helicopter’s translational motion is v.
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Figure 1. Geometry between radar and rotor target: (a) space geometry; (b) 2-D plane geometry. 
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Considering the far field condition, the instantaneous distance between the scatterer F
and the radar can be written as:

RF(tm) ≈ RC + vtm + r cos(ωtm + θ0), (1)

where tm = mTr is the slow time, m is the m-th echo pulse, and Tr is the pulse repetition interval.
In this paper, we take the linear frequency modulation (LFM) as the transmitted signal,

which can be expressed as:

st
(
t̂, tm

)
= rect

(
t̂/Tp

)
exp

(
j2π
(

fct + µt̂2/2
))

, (2)

where rect(·) is the rectangular window, t̂ is the fast time, Tp is the pulse width, fc is the
signal carrier frequency, µ is the chirp rate, and t = t̂ + tm is the total time. There are two
different time variables t̂ and t in the transmitted signal described in Equation (2). The
reason is that the signal carrier frequency fc exists on the whole pulse transmission time
axis, while the chirp rate µ is used to adjust the change of Doppler frequency within a
pulse. The echo signal of scatterer F can be expressed as:

sr
(
t̂, tm

)
= σrect(tm/Ta)rect

((
t̂− 2RF(tm)/c

)
/Tp

)
exp

(
j2π
(

fc(t− 2RF(tm)/c) + µ
(
t̂− 2RF(tm)/c

)2/2
))

, (3)

where σ is the scattering coefficient of the scatterer F, Ta is the observation time, and c
is the speed of light. The target echo signal after pulse compression can be expressed as:

sF
(
t̂, tm

)
= σTp sin c

[
B
(
t̂− 2RF(tm)/c

)]
rect(tm/Ta) exp(−j4πRC/λ)×

exp(−j4π(vtm + r cos(ωtm + θ0))/λ) + w
(
t̂, tm

) , (4)

where B is the signal bandwidth, λ is the wavelength, and w
(
t̂, tm

)
denotes the white

Gaussian noise signal. By taking the derivative of the phase, the micro-Doppler frequency
can be obtained as:

fd−F =
1

2π
d[−4π(vtm + r cos(ωtm + θ0))/λ]

dtm
= −2(v−ωr sin(ωtm + θ0))/λ, (5)

It can be seen from Equation (5) that the Doppler frequency of the scatterer echo on
the rotor blade is related not only to the radial velocity v of the translational movement
but also to the rotational angular velocity ω of the rotating component and the rotor blade
length r. In a short observation time, the change of rotation angle ωtm is quite small, the
trigonometric function is expanded and can be approximated by Taylor series expansion,
that is, sin ωtm ≈ ωtm and cos ωtm ≈ 1. We can rewrite Equation (5) as:

fd−F ≈
2
λ

(
−v + ωr sin θ0 + ω2tmr cos θ0

)
, (6)
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As we can see from Equation (6) that the Doppler frequency of the scatterer echo on
rotor blades after translation movement compensation is a linear function of time tm, which
indicates that the scatterer echo on rotor blades can be expressed as an LFM signal.

2.2. Time-Frequency Analysis

FRFT can be interpreted as a rotation of Fourier transform with the transform angle α

in the time–frequency plane, it is defined by means of the transform kernel Kp (tm, u), and
can be expressed as:

FRFTp(u) =
{

Fp[sF(tm)]
}
(u) =

∫ +∞

−∞
sF(tm)Kp(tm, u)dtm, (7)

where FRFTp(u) is the result of FRFT of signal sF(tm) corresponding to the transform order
p, Fp is the operator of FRFT, and Kp(tm,u) is indicated by:

Kp(tm, u) =


√

1−j cot α
2π exp

(
j
(

1
2 tm

2 cot α− utm csc α + 1
2 u2 cot α

))
, α 6= kπ

δ
(

u− (−1)ktm

)
, α = kπ

, (8)

where k is an integer, α is the transform angle, and α = pπ/2, δ(·) is the impulse function.
As we can see from Equation (7) that the definition of FRFT implies that it is the de-

composition into the chirp bases Kp (tm,u), so the result of FRFT under a proper transform
order, which is called the matched transform order, of the chirp signal is an impulse. In
other words, the result of the FRFT of the signal is the most concentrated in the matched
transform order. As a matter of fact, if the chirp rate of the signal sF(tm) is µ0, the matched
transform order is p0 = 2α0/π, where α0 is the matched transform angle and can be ex-
pressed as [26,31]:

α0 = arc cot
(
−µ0S2

)
, (9)

where S is the scale factor introduced in Reference [37], and S =
√

Ta/ fr, fr is the pulse
sample frequency, that is the pulse repetition frequency.

In Equation (7), the variable u represents a new physical quantity extended from the
frequency concept and is termed the FRFD-frequency, so the FRFT can also be interpreted
as the FRFD-spectrum, which is the chirp-multiplied and scaled Fourier domain spectrum
that consists of the initial frequencies of the chirp signal. However, FRFT is not a strict
time–frequency analysis algorithm, because it cannot provide the instantaneous frequency
modulation at any specified moment during the observation duration. It is well known
that as an improvement of FT, the STFT can represent the energy of a signal in the time–
frequency domain with a sliding window, where the time–frequency spectrum can be
obtained by intercepting each short signal to do FT and arranging the obtained spectrum
along the time axis. Similarly, by multiplying the signal with a window before taking the
FRFT, another time–frequency analysis method of STFRFT can be obtained as:

STFRFTp(tm, u) =
∫ +∞

−∞
sF(τ)g(τ − tm)Kp(τ, u)dτ, (10)

where STFRFTp(tm,u) is the time–FRFD–frequency spectrum, and g(tm) is the window
function. In this paper, the commonly used Gaussian window is regarded as the window
function, which is the optimal window [30] and can be expressed as:

g(τ) =
1√
2πσ

exp
(
− τ2

2σ2

)
, (11)

where σ is the standard deviation.
In order to distinguish the results of STFRFT from those with the same window

function but different transform order, it is usually called the p-th order STFRFT in some



Remote Sens. 2021, 13, 1970 6 of 26

cases. The window with short time support is capturing a portion of the signal around
the window center, and the FRFT of this portion is viewed as the instantaneous FRFD-
spectrum of the chirp signal. By moving the window along the time axis, the STFRFT can
be realized, and the time–FRFD–frequency spectrum is obtained, which can provide not
only the FRFD-frequency contents, but also how they change by time.

3. The Proposed Rotational Angular Velocity Estimation Algorithm

One can see from Equation (10) that the result of STFRFT is not only a time–FRFD–
frequency spectrum, but also related to the transform order p, and there is an optimal
time-FRFD- frequency spectrum with the highest time–FRFD–frequency resolution in the
case of the matched transform order p0 or the matched transform angle α0. In practice,
the matched transform order p0, which is an unknown variable, should be estimated
from the FRFT result and used in STFRFT to obtain the optimal time–FRFD–frequency
spectrum. As a parameter space transform algorithm, Hough transform can realize the
energy accumulation from the time–FRFD–frequency spectrum of the target echo. The
rotational angular velocity can be estimated according to the peak value of the energy
accumulation. The flowchart of the rotational angular velocity estimation method based
on STFRFT and Hough transform is shown in Figure 2.
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Figure 2. Estimation method of rotational angular velocity based on STFRFT and Hough transform.

As we can see from Figure 2, in order to obtain the time–FRFD–frequency spectrum
with the highest time–FRFD–frequency resolution and accurately estimate the rotational
angular velocity, the transform order p used in STFRFT should be estimated and as close as
possible to the matched transform order p0.

3.1. The Traditional Search Method of Estimating the Matched Transform Order

In the traditional search method, the estimation of the matched transform order is
to take p as a variable with a search step size of ∆p and calculate FRFT of the signal in a
two-dimensional energy distribution on the (p,u) plane. All the discretization values of the
transform order are regarded as the candidate values. Then we can search the maximum
amplitude, which is the highest energy accumulation, and the corresponding transform
order candidate is the estimated matched transform order, which we called the optimal
transform order. The flowchart of the traditional search method to estimate the matched
transform order is shown in Figure 3.
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As we can see from Figure 3, each candidate value of the transform order will be used
in FRFT. When a candidate value is equal to or close to the matched transform order, the
energy of the signal in the FRFT result is the most concentrated. However, there will be a
contradiction between the estimation accuracy and the computational complexity in the
estimation of optimal transform order p̂0 using the traditional search method. On the one
hand, the higher the estimation accuracy, the smaller the search step size of transform
order. At the same time, more FRFT times will be implemented, which will lead to
greater computational complexity. On the other hand, the computational complexity of the
traditional search method can be reduced by increasing the search step size of the transform
order or by reducing the number of operations of the FRFT. However, with the increase
of the search step size, the estimation accuracy of the optimal transform order will be
reduced, resulting in the reduction of the time–FRFD–frequency resolution of the STFRFT,
which is not conducive to the estimation of the micro-Doppler parameter of rotational
angular velocity. In order to solve this problem, a novel modified short-time fractional
Fourier transform algorithm is proposed in this paper, where the problem of searching the
maximum amplitude or the maximum energy accumulation in FRFT is converted into the
entropy minimization problem and an OMP-based algorithm is proposed to reduce the
computational complexity in the estimation of the matched transform order.

3.2. The Proposed OMP-Based Algorithm of Estimating the Matched Transform Order

Different transform orders correspond to different maximum amplitude values of
FRFT results. When the candidate value of transform order is equal to the matched trans-
form order, the maximum amplitude value of FRFT results reaches the maximum. Although
we can estimate the matched transform order by searching the maximum amplitude value
of the FRFT result, it is easy to be affected by noise, which leads to inaccurate estimation
of the matched transform order. As we all know, entropy can effectively measure the
focusing of signal energy [38], and the more concentrated the signal energy is, the smaller
the corresponding entropy is. When the candidate value of the transform order is equal
to the matched transform order, the energy accumulation in FRFT result is the strongest,
and the corresponding entropy is the smallest. Therefore, the matched transform order can
be effectively estimated by calculating the entropy of the FRFT result and searching the
minimum entropy.

The transform order of FRFT is related to the rotation angle of time–frequency axis,
so FRFT has the characteristics of periodicity and symmetry with transform order as an
independent variable [39], where the period is 4 and the axis of symmetry within a period
[0, 4] is p = 2. Therefore, it only needs to consider the FRFT results with the transform order
in the range of [0, 2] in the traditional search method. It is assumed that the variable p is
discretized by the search step size ∆p in the range of [0, 2] to P = [p1, . . . pi, . . . ,pN]T, which
we called the candidate values of the transform order. The total number of candidate values
is N = b2/∆pc, where b·c represents the rounding down operation. The discrete form of
the echo signal sF(tm) of the range unit where the target is located can be expressed as:

sF = [sF(1), sF(2), · · · , sF(M)], (12)

where M is the number of echo pulses in one observation time. According to Equation (7),
the FRFT result of the echo signal with the candidate value of the transform order pi is:

FRFTpi =
[
FRFTpi (1), FRFTpi (2), · · · FRFTpi (M)

]
. (13)

The entropy of the FRFT result can be calculated as:

Epi = −
M

∑
m=1

(
FRFTpi

2(m)

‖FRFTpi‖2
ln

FRFTpi
2(m)

‖FRFTpi‖2

)
= −

M

∑
m=1

 FRFTpi
2(m)

M
∑

l=1
FRFTpi

2(l)
ln

FRFTpi
2(m)

M
∑

l=1
FRFTpi

2(l)

, (14)
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where ‖ · ‖2 represents the 2-norm. All the candidate values of transform order P are
used in FRFT and the corresponding complete entropy vector can be expressed as:

E =
[
Ep1 , · · · Epi , · · · EpN

]T. (15)

The minimum entropy value can be found from the entropy vector, and the corre-
sponding candidate value of transform order is the optimal transform order where we
call this method the minimum entropy criterion-based optimal transform order estimation
method, and the flowchart of this method is summarized and shown in Figure 4.
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In order to reduce the computational complexity of the optimal transform order
estimation in the traditional search method, partial candidate values of the transform order
Pη are selected randomly with a ratio η (0 ≤ η ≤ 1), which we called the reconstruction
data ratio, from the complete candidate values of the transform order P. Then, a partial
entropy vector Eη corresponding to the selected candidate values of the transform order
is calculated. Finally, the OMP algorithm is utilized to reconstruct the complete entropy
vector E, and the optimal transform order can be estimated by searching the minimum

entropy from the reconstructed entropy vector
^
E.

Partial candidate values of the transform order Pη can be expressed as:

Pη =
[

p1, · · · pj, · · · pNη

]T
, (16)

where Nη = bN · ηc is the total number of the partial candidate values of the transform
order and Pη is selected randomly from P, that is, Pη ⊆ P. The random selection process
can be described by a matrix multiplication as:

Pη = Φ · P, (17)

where Φ is a partial unit matrix of size Nη × N, which is called dictionary matrix, and it
can be obtained according to the position of the transform order selected from the complete
candidate values P in advance. The elements in the dictionary matrix Φ take values from
{0, 1}. Only one element in each row is 1, and the rest are 0. Taking 1 means that the
samples at the corresponding position in P are selected in Pη . Each candidate value of Pη is
carried into Equations (13) and (14), and the partial entropy vector can be expressed as:

Eη = Φ · E, (18)

where Eη is a measurement vector of size Nη × 1, and E ∈ RN×1 is the sparse entropy
vector to be reconstructed and solved.
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According to the theory of compressed sensing, the OMP-based sparse optimization

algorithm can be used to solve Equation (18) to get sparse solution
^
E, which can be

expressed as:
^
E = argmin

E
‖E‖0 s.t. Eη −ΦE ≤ ε0, (19)

where ‖ · ‖0 denotes L0 norm, and ε0 denotes the error threshold in the sparse recovery
processing. The optimal transform order can be estimated by searching the minimum
entropy from the reconstructed entropy vector, which can be expressed as:

p̂0 = argmin
pi

^
E. (20)

To sum up, the flowchart of the proposed OMP-based algorithm of estimating the
matched transform order is summarized in Figure 5, and the main steps of the OMP
algorithm to reconstruct the complete entropy vector are shown in Algorithm 1.

Algorithm 1 Main steps of the OMP algorithm to reconstruct the complete entropy vector.

Input: measurement vector Eη ∈ RNη , dictionary matrix Φ ∈ ZNη×N , error threshold ε0.
Initialization: let the iterative counter k = 1, residual matrix γ0 = Eη, the index set Λ0 = ∅.
Iteration: at the k-th iteration
(1) Update the index set Λk = Λk−1 ∪ λk, where λk = argmax

i=1,2,··· ,N
|〈γk−1, ϕi〉|, ϕi is the i-th column of Φ.

(2) Update the support set ΦΛk =
[
ΦΛk−1

, ϕλk

]
, and calculate the signal

^
Ek = argmax‖Eη −ΦΛk Ek‖2 =

(
ΦΛk

HΦΛk

)−1
ΦΛk

HEη .

(3) Update the residual matrix γk = Eη −ΦΛk

^
Ek.

(4) Increment k, and return to Step (1) until the stopping criterion ‖γk‖2 ≤ ε0 is met. The selection of the error threshold ε0 is related
to the precision requirement.

Output: Reconstructed entropy vector
^
E =

^
Ek.
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3.3. Rotational Angular Velocity Estimation via Modified Short-Time Fractional Fourier Transform

In this paper, the estimated matched transform order p̂0 is used in STFRFT to obtain
the time–FRFD–frequency spectrum that has the highest time–FRFD–frequency resolution
compared to other spectra corresponding to other candidate values of the transform
order. After the time FRFD-frequency domain is characterized by the STFRFT, the Hough
transform is employed to map the time FRFD-frequency domain on the micro-Doppler
parameter space {ω,r,θ}, where ω, r, and θ denote the rotational angular velocity, the length,



Remote Sens. 2021, 13, 1970 10 of 26

and initial phase of the rotor blades, respectively. The Hough transform for parameter
estimation of sinusoidal frequency modulated signals is defined as:

H(ω, r, θ) =
∫

Ta

∣∣STFRFTp̂0 [t, 2ωr sin(ωt + θ)/λ]
∣∣dt, (21)

where |·| denotes the absolute value symbol, STFRFTp̂0 [t, 2ωr sin(ωt + θ)/λ] is the STFRFT
result obtained by Equation (10) with the optimal transform order p̂0 and is the time–FRFD–
frequency spectrum with the Doppler frequency change rule fd = 2ωr sin(ωt + θ)/λ.

As we can see from Equation (21), the result of the Hough transform is not only related
to the length and initial phase of the rotor blades, but also to the rotational angular velocity
of the rotor target. We can also say that these three variables determine the trajectory of
Hough transform to accumulate energy and should be discretized into multiple candidate
values before Hough transform, i.e., ωi ∈ {ω1, · · · , ωi, · · · , ωNω}, ri ∈ {r1, · · · , ri, · · · , rNr}
and θi ∈

{
θ1, · · · , θi, · · · , θNθ

}
, where Nω, Nr and Nθ represent the number of discrete

values of three variables ω, r, and θ, respectively. For each candidate value of the rotational
angular velocity ωi, there will be an energy accumulation spectrum in the two-dimensional
parameter space {r,θ}. When a rotational angular velocity candidate value is equal to or
close to the real rotational angular velocity of the rotor target, the energy accumulation
spectrum in two-dimensional parameter space {r,θ} has the highest energy accumulation
peak. Therefore, we can search the peak value from the energy accumulation spectrum in
two-dimensional parameter space {r,θ} to estimate the rotational angular velocity of the
rotor target. This estimation process of rotational angular velocity can be expressed as:

Hv(ω) = argmax
{ωi ,H(ω,r,θ)}

H(ω, r, θ), (22)

ω̂0 = argmax
ωi

Hv(ω), (23)

where Hv(ω,v) denotes the peak value of energy accumulation corresponding to different
candidate values of the rotational angular velocity, ω̂0 denotes the estimated rotational
angular velocity.

By accurately estimating the optimal transform order, the rotational angular velocity of
the rotor target can be estimated by searching the peak value from the energy accumulation
spectrum obtained by Hough transform. To summarize, the complete procedure of the
proposed method for rotational angular velocity estimation of rotor target is shown in
Figure 6, in which the process in the blue dotted box is the matched transform order
estimation based on the OMP algorithm and the process in the red dashed box is the
rotational angular velocity estimation based on the combination of the M-STFRFT algorithm
and Hough transform.

3.4. Computational Complexity Analysis

Compared with the traditional search method where 100% transform order candi-
dates are selected, the proposed sparse-based method only selects partial transform order
candidates and realizes the estimation of matched transform order through OMP recon-
struction algorithm, so it is computationally efficient, because fractional Fourier transform
and entropy operation corresponding to several transform order candidates are avoided.
The following is a comparative analysis of the computational complexity between the
traditional search method and the proposed sparse-based method, in which we take an
addition, multiplication, and logarithm operation as a calculating unit.

In the traditional search method where 100% transform order candidates are selected,
the computational complexity depends on the discrete FRFT and entropy operation. The
digital computation of FRFT requires only a sequence of FFTs with the computational
complexity O(Mlog2M), the entropy operation of Equation (14) requires the computational
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complexity of O(4M). Therefore, the total computational complexity of the traditional
search method where 100% transform order candidates are selected can be expressed as:

Csearch−method = O(MN log2 M + 4MN). (24)

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 27 
 

 

and  1, , , ,i i N
    , where N , 

rN , and N  represent the number of discrete 

values of three variables  , r , and  , respectively. For each candidate value of the 

rotational angular velocity 
i , there will be an energy accumulation spectrum in the two-

dimensional parameter space  ,r  . When a rotational angular velocity candidate value 

is equal to or close to the real rotational angular velocity of the rotor target, the energy 

accumulation spectrum in two-dimensional parameter space  ,r   has the highest en-

ergy accumulation peak. Therefore, we can search the peak value from the energy accu-

mulation spectrum in two-dimensional parameter space  ,r   to estimate the rotational 

angular velocity of the rotor target. This estimation process of rotational angular velocity 

can be expressed as: 

 
  

 
, , ,

arg max , ,
i

v
H r

H H r
  

   , 
(22) 

 0
ˆ argmax

i

vH


 
,
 (23) 

where  ,vH v  denotes the peak value of energy accumulation corresponding to dif-

ferent candidate values of the rotational angular velocity, 
0̂  denotes the estimated ro-

tational angular velocity. 

By accurately estimating the optimal transform order, the rotational angular velocity 

of the rotor target can be estimated by searching the peak value from the energy accumu-

lation spectrum obtained by Hough transform. To summarize, the complete procedure of 

the proposed method for rotational angular velocity estimation of rotor target is shown in 

Figure 6, in which the process in the blue dotted box is the matched transform order esti-

mation based on the OMP algorithm and the process in the red dashed box is the rota-

tional angular velocity estimation based on the combination of the M-STFRFT algorithm 

and Hough transform. 

Radar echo FRFT

Search step size   p

Reconstructed 

entropy vector

Optimal 

transform order 

Calculate partial 

entropy vector

Reconstruction data ratio 

P

P

E
OMP algorithm

Ê
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Suppose that the data ratio of selected transform order candidates is η in the proposed
sparse-based method. The computational complexity of the OMP reconstruction algorithm
is O(NηN). The whole process of the proposed sparse-based method consists of Nη FRFTs,
Nη entropy operations, and one OMP reconstruction operation, so the total computational
complexity can be given by:

Cproposed−method = O
(

MNη log2 M + 4MNη + Nη N
)
. (25)

As we can see from Equations (24) and (25), the computational complexity of the tradi-
tional search method and the proposed sparse-based method are related to the search step
size ∆p and reconstruction data ratio η. The comparison between Equations (24) and (25)
implies that the computational complexity of the proposed sparse-based method is much
less than that of the traditional search method where 100% transform order candidates are
selected, which will be validated through the simulation of computation time in Section 4.3.

4. Experimental Results

In this section, several comparative experiments of simulated data are conducted, and
simulation results based on measured data collected by frequency modulated continuous
wave radar are presented to validate the performance and effectiveness of the proposed
algorithm. We consider that a monostatic early warning radar and the micro-Doppler
signals are simulated by rotation of the rotor blades in a helicopter, the main rotor part
consists of two blades, and the blade length is 6 m. Suppose that there is a scatterer at the
outermost end of each blade, so the echo signal contains two micro-Doppler components
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that we call rotor echo with the same rotational angular velocity and different initial phases.
In this experiment, the main parameters of the transmitted signal and the rotor part are
summarized in Table 1.

Table 1. Main parameters of the transmitted signal and the rotor part.

Transmitted
signal parameters Carrier frequency Bandwidth Pulse repetition

frequency Observation time Pulse samples

Value 1 GHz 2 MHz 5 kHz 25 ms 125

Rotor part
parameters Blade number Blade length Rotational angular

velocity Initial phase 1 Initial phase 2

Value 2 6 m 25 rad/s π/2 3π/2

The simulation experiments are composed of five parts: (1) simulations to analyze
the influence of the transform order on parameter estimation; (2) simulations to select the
parameters of the OMP reconstruction algorithm in the estimation of matched transform
order; (3) simulations to validate the effectiveness of the proposed algorithm; (4) compar-
ative experiments of parameter estimation among time–frequency analysis algorithms;
(5) verification experiment based on measured data.

4.1. Influence Analysis of the Transform Order on Parameter Estimation

In the experiment, we consider the noise-free case and investigate the influence of the
transform order used in STFRFT on the estimation of the rotational angular velocity. The
rotating part consists of two blades with the same rotational angular velocity ω = 25 rad/s
and different initial phase π/2 and 3π/2. Therefore, two different micro-Doppler com-
ponents caused by them in the echo signal have different chirp rates, corresponding to
different matched transform orders. According to the parameters of radar transmitting
signal and Equation (9), we can calculate that the matched transform orders of echo com-
ponents with initial phases of π/2 and 3π/2 are p01 = 0.9535 and p02 = 1.0465, respectively.
We take the transform order as a variable, which is ranged from 0.91 to 0.99 with a step
size of 0.05, and each transform order is used as the optimal transform order in STFRFT.
Therefore, multiple time–FRFD–frequency spectra corresponding to different transform
orders can be obtained, and then the rotational angular velocity of the rotor target can
be estimated by Hough transform and energy peak search. The simulation result of the
estimation error of rotational angular velocity is shown in Figure 7, from which one can see
that the estimation error of rotational angular velocity is the smallest when the transform
order is 0.955, which is close to the matched transform order p01. We can also see that
the farther the transform order is away from the matched transform order, the greater the
estimation error of the rotational angular velocity is. Therefore, it can be concluded that:
(1) the matched transform order is the optimal transform order because of the smallest
estimation error of the rotational angular velocity; (2) when STFRFT is used in parameter
estimation, it is not only necessary to estimate the matched transform order to improve the
estimation accuracy of the rotational angular velocity but also to reduce the computational
complexity of the algorithm, that is, to solve the contradiction between the estimation
accuracy and the calculation speed.

Figure 8 shows the results of the time–FRFD–frequency spectrum of target echo signal
under different transform orders. For the echo signal with multiple micro-Doppler com-
ponents, each matched transform order can only ensure that the time–FRFD–frequency
spectrum of the corresponding echo component has a higher time–FRFD–frequency res-
olution, while the other echo components cannot be effectively accumulated due to the
mismatch of the rotation angle. Figure 8a is the result of STFRFT with the transform order
of 0.955, since the transform order 0.955 is closer to the matched transform order of the
echo component with the initial phase π/2, the time–FRFD–frequency resolution of this
component is higher, while that of the echo component with initial phase 3π/2 is lower.
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However, this result does not degrade the estimation accuracy of the rotational angular
velocity, because these echo components are from different blades of the same rotating part
with the same rotational angular velocity. As long as one echo component has the highest
time–FRFD–frequency resolution, it can accurately estimate the rotational angular velocity
through the signal energy peak accumulated by the Hough transform. In Figure 7, the
estimation error of the rotational angular velocity is the smallest with the transform order
of 0.955, which can also be confirmed from Figure 8a. Compared with the time–FRFD–
frequency spectrum with the transform order of 0.91 in Figure 8b, the closer the transform
order is to the matched transform order, the higher the time–FRFD–frequency resolution,
and the more concentrated the echo signal energy accumulated by the Hough transform.
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Figure 7. Estimation error of the rotational angular velocity.
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Figure 8. Normalized time–FRFD–frequency spectrum of target echo signal under different transform orders. (a) Transform
order p = 0.955; (b) transform order p = 0.91.

4.2. Parameters Selection of OMP Reconstruction Algorithm in the Estimation of Matched
Transform Order

In order to solve the contradiction between the estimation accuracy and the com-
putational complexity, an OMP-based matched transform order estimation algorithm is
presented in the proposed M-STFRFT algorithm, in which transform order candidate val-
ues with a certain ratio are randomly selected from the search range from 0 to 2, and the
entropy value of each searched transform order’s FRFT result is calculated. Then, based on
the compression sensing theory, the OMP algorithm is used to reconstruct the complete
entropy vector, and the matched transform order is estimated according to the position
of the minimum entropy. There is no doubt that the reconstruction data radio and the
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search step size of the transform order are the key factors that directly affect the estimation
accuracy and the computational complexity.

In this experiment, we first investigate the influence of the reconstruction data ratio
of transform order on the estimation accuracy of the rotational angular velocity in a noise
environment. It is assumed that the search step size of the transform order is a constant
value of 0.001, and the received signal is added with white Gaussian noise and the signal-
to-noise (SNR) is defined as SNR = ‖sr

(
t̂, tm

)
‖2

2/
(

Mσ0
2), where sr

(
t̂, tm

)
is the echo signal

without pulse compression in Equation (3) and σ0
2 is the variance of the noise. Figure 9 plots

the estimation error, such as root-mean-square error (RMSE) and standard deviation (SD),
of rotational angular velocity varying different reconstruction data ratio of the transform

order. The calculation formulas of RMSE and SD are RMSE =

√
N
∑

n=1
(ω̂n −ω)2/N and

SD =

√
N
∑

n=1
(ω̂n −ω)2/N, where ω̂n, ω, and ω denote estimated value, mean of the

estimated value, and true value of the rotational angular velocity, respectively. N = 1000
is the number of estimated values, that is, each value of RMSE and SD is obtained and
averaged by 1000 Monte-Carlo trials.
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Figure 9. Estimation error of rotational angular velocity varying different reconstruction data ratios and SNR. (a) RMSE;
(b) SD.

As we can see from Figure 9, on the one hand, with the increase of reconstruction
data ratio of transform order from 0.05 to 0.8, the estimated RMSE and SD of rotational
angular velocity decrease gradually under the same SNR. We can also see that the smaller
the reconstruction data ratio, the larger the estimation error of rotational angular velocity,
the more unstable the estimation, and the greater the change of estimated RMSE and SD. In
addition, when the reconstruction data ratio of transform order exceeds 0.5, the change of
estimated RMSE and SD is very small. On the other hand, under the same reconstruction
data ratio of transform order, the lower the SNR of the target echo, the greater the change
of the estimated RMSE and SD. Moreover, one can see that the estimated RMSE and SD
of the rotational angular velocity with the contrastive SNR of 0 dB and −5 dB are similar.
However, for the same SNR variation of 5 dB, the estimated RMSE and SD corresponding
to the SNR of −10 dB and −15 dB change greatly, which shows that the effect of the SNR
on estimated RMSE and SD of rotational angular velocity changes nonlinearly.

In order to investigate the influence of both the search step size and reconstruction
data radio of the transform order on the estimation of rotational angular velocity, we do
this experiment in a noise environment with an SNR of 0 dB. The results of the estimated
RMSE and SD of the rotational angular velocity are shown in Figure 10, which varies
both reconstruction data ratio and search step size of the transform order. As we can see
from Figure 10, with the increase of the reconstruction data ratio of transform order, the
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estimated RMSE and SD of rotational angular velocity decrease gradually and change more
slowly under the same search step size of transform order. When a lower reconstruction
data ratio is adopted to estimate the optimal transform order, there will be a larger deviation
between the estimated optimal transform order and the real matched transform order, and
a larger estimation error of rotational angular velocity. Additionally, it is easily found that
when the search step size of transform order is 0.001, the trend and value of the estimation
error of rotational angular velocity in Figure 10 are the same as that in Figure 9. Moreover,
with the same reconstruction data ratio, the larger search step size of the transform order
can lead to the larger estimation error of the rotational angular velocity. It can be concluded
from this experiment that (1) the larger the reconstruction data ratio and the smaller the
search step size of the transform order, the more accurate and stable the estimation of the
rotational angular velocity, but it will lead to a large amount of computational complexity.
(2) When the reconstruction data ratio and the search step size of transform order are 0.5
and 0.001, respectively, the estimated RMSE and SD are not only small but also stable,
which shows that the rotational angular velocity estimation is more efficient under this
parameters selection.
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Figure 10. Estimation error of rotational angular velocity varying different reconstruction data ratios and search step sizes
of transform order. (a) RMSE; (b) SD.

4.3. Effectiveness Validation of the Proposed Algorithm

In this experiment, two aspects of comparative simulation experiments are imple-
mented to verify the effectiveness of the proposed OMP-based algorithm in estimating
the matched transform order. They are the computation time of the algorithm and the
estimation error of rotational angular velocity. Firstly, we consider the noise-free case
and compare the computation time between the proposed OMP-based method and the
traditional search method in the estimation of the matched transform order. The exper-
iments are implemented by using MATLAB 2014a on a PC (Intel Celeron CPU 1007U
1.5 GHz and a 4096-MB memory capacity), and results are shown in Figure 11. Figure 11a
plots the comparison of the computation time among the proposed OMP-based algorithm
with different reconstruction data ratios of 10%, 50%, and 90%, and Figure 11b plots the
comparison of the computation time between the proposed OMP-based algorithm and the
traditional search method. It should be pointed out that the difference among the compara-
tive experiments in Figure 11b is the solution of the matched transform order, which can be
described as follows: (1) the proposed OMP-based algorithm with the reconstruction data
ratio of 50% is utilized to estimate the matched transform order; (2) 50% of transform order
candidate values are selected randomly and used to search for the matched transform order
in the traditional search method; (3) 100% of transform order candidate values are used for
estimating the matched transform order in the traditional search method.
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Figure 11. Comparison of computation time among different methods in estimating the matched transform order. (a) Differ-
ent reconstruction data ratios; (b) different estimation methods.

As we can see from Figure 11a, different reconstruction data ratios of 10%, 50%,
and 90% are adopted in the proposed OMP-based algorithm in estimating the matched
transform order, and the computation time varies with the different reconstruction data
ratios and search step sizes. For the same reconstruction data ratio, with the increase of
the search step size, the computation time decreases gradually, because the increase of the
search step size leads to the decrease of the number of the transform order candidates. We
can also see that for the same search step size, the larger the reconstruction data ratio of the
selected transform order candidate values, the more FRFT times need to be calculated, so
the computation time will be increased. From Figure 11b, we can see that in accordance
with the OMP-based algorithm proposed in this paper, no matter whether 50% or 100%
of the transform order candidate values are selected in the traditional search method,
with the increase of the search step size, the computation time is also gradually reduced.
Moreover, under the same search step size, the computation time of the proposed OMP-
based algorithm with the reconstruction data ratio of 50% is slightly higher than that of the
traditional search method where 50% transform order candidate values are selected, but
it is significantly lower than that of the traditional search method where 100% transform
order candidate values are utilized, which shows that in order to reduce the computational
complexity or computation time in estimating the matched transform order, the OMP-based
algorithm proposed in this paper is effective to estimate the matched transform order.

Secondly, we compare the estimation error of the rotational angular velocity between
the proposed OMP-based algorithm and the traditional search method. In this comparative
experiment, the candidate values of the transform order are from 0 to 2 with a step size
of 0.001, and the three estimation methods are the same as mentioned in Figure 11b and
are implemented to estimate the matched transform order. Then, the estimated matched
transform orders obtained from the above three methods are used in the STFRFT algorithm
for obtaining the time–FRFD–frequency spectrum, and the Hough transform is adopted to
estimate the rotational angular velocity. The results of the estimation error of rotational
angular velocity are shown in Figure 12.

As we can see from Figure 12, with the increase of SNR, the estimation error of
rotational angular velocity obtained by any method mentioned above decreases. The
reason is that the higher the SNR, the higher the estimation accuracy of the matched
transform order whether 50% or 100% of the candidate values are selected in the traditional
search method. We can also conclude from Figure 12 that the higher the SNR is, the
slower the change of estimation error of RMSE or SD is. Compared with the traditional
search method where 100% transform order candidate values are utilized, the traditional
search method where 50% transform order candidate values are selected reduces the
computational complexity or the computation time displayed in Figure 11b by reducing
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the number of solutions of optimal transform order. It is actually a kind of increasing the
search step size of transform order candidate values in a disguised way, which will lead to
the increase of the estimation error between the estimated optimal transform order and the
real matched transform order. Then, the resolution of the time–FRFD–frequency spectrum
and the estimation accuracy of rotational angular velocity are both reduced, which are
confirmed in the results of Figure 12.
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Figure 12. Estimation error of rotational angular velocity among different methods. (a) RMSE; (b) SD.

Although the OMP-based algorithm proposed in this paper only uses 50% of the trans-
form order candidate values to estimate the optimal transform order in this experiment, it
is different from the traditional search method for which 50% transform order candidate
values are selected. This proposed OMP-based algorithm combines the compressed sens-
ing theory and estimates the optimal transform order through the OMP reconstruction
algorithm, which not only reduces the computational complexity of the algorithm but also
can get the optimal transform order more accurately than the traditional search method for
which 50% transform order candidate values are selected. It can be seen from Figure 12 that
the estimation error of the rotational angular velocity obtained by the proposed OMP-based
algorithm in this paper is significantly lower than that of the traditional search method
where 50% transform order candidate values are selected but slightly higher than that of
the traditional search method with 100% of transform order candidate values are utilized
to estimate the optimal transform order. The reason why the estimation accuracy of the
rotational angular velocity of the proposed OMP-based algorithm is not up to that of the
traditional search method where 100% transform order candidate values are utilized lies
in the existence of reconstruction error. It can be concluded from the experimental results
that the OMP-based algorithm proposed in this paper is better than the traditional search
method using the same data ratio of transform order candidate values in estimating the
rotational angular velocity, which indicates that the proposed algorithm can estimate the
rotational angular velocity quickly and effectively while ensuring the estimation accuracy.

4.4. Comparative Experiments of Parameter Estimation among Time-Frequency
Analysis Algorithms

In this experiment, we first consider the noise-free case and compare the results
obtained by the Hough–STFT, the Hough–WVD, the Hough–PWVD, the Hough–RSPWVD,
and the proposed algorithm, and then evaluate the estimation error of rotational angular
velocity among the aforementioned algorithms in a noise environment. It is assumed that
there are two scatterers at the end of the rotor blade on a rotor target with the rotational
angular velocity ω = 25 rad/s and the initial phases of each blade at the beginning of the
observation are π/2 and 3π/2, respectively, and the blade length is 6 m. Additionally, it
is assumed that the translational compensation is carried out to the target echo, so it can
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be calculated that the maximal Doppler frequency of each rotor echo is 1000 Hz. In the
proposed algorithm, the candidate values of the transform order are from 0 to 2 with a
search step size of 0.001, and the reconstruction data ratio is set as 50%.

The results obtained by the Hough–STFT, the Hough–WVD, the Hough–PWVD, the
Hough–RSPWVD, and the proposed algorithm are provided in Figures 13–17, respectively.
Figures 13a, 14a, 15a, 16a and 17a show the time–frequency characteristics of the received
rotor echo obtained by the STFT, WVD, PWVD, RSPWVD, and the proposed M-STFRFT
algorithm, respectively, where the two micro-Doppler components can be seen clearly
and the maximal micro-Doppler frequency of each micro-Doppler components is close to
the theoretical value 1000Hz. However, as we can see from the figures, STFT and WVD
have the problems of low time–frequency resolution and cross-term interference, respec-
tively. To some extent, PWVD and RSPWVD reduce the cross-term interference, but at
the same time, the time–frequency resolution is reduced, which is not conducive to the
estimation of micro-Doppler parameters. As we can see from Figure 17a, although the
resolution of the time–frequency characteristics of a micro-Doppler component is low due
to the mismatch with the estimated optimal transform order, the time–FRFD–frequency
resolution of another micro-Doppler component corresponding to the estimated optimal
transform order is higher than the STFT, PWVD, and RSPWVD algorithm, and there is
no cross-term interference in the result obtained by the proposed M-STFRFT algorithm.
Therefore, we can estimate the rotational angular velocity effectively by using the high-
resolution micro-Doppler component. Compared with the Hough accumulation results in
Figures 13b, 14b, 15b and 16b, which display the energy distribution in parameter space
{r,θ} and are obtained by Hough transform, the energy of the micro-Doppler component
with the highest time–frequency resolution of the proposed algorithm in Figure 17b is
more concentrated in the coordinate of the correct value of {r,θ}. Although the energy
concentration of the micro-Doppler component with low time–frequency resolution is
relatively low, this does not affect the estimation performance of the rotational angular
velocity. According to the above simulation results, it can be concluded that the afore-
mentioned time–frequency algorithms are effective for the micro-Doppler parameter of
rotational angular velocity estimation and the proposed M-STFRFT algorithm performs
more efficiently than the other four algorithms.
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Figure 13. Results obtained by Hough–STFT algorithm. (a) Normalized time–frequency spectrum obtained by STFT;
(b) parameter space {r,θ} obtained by Hough transform.
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Figure 14. Results obtained by Hough–WVD algorithm. (a) Normalized time–frequency spectrum obtained by WVD;
(b) parameter space {r,θ} obtained by Hough transform.
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Figure 15. Results obtained by Hough–PWVD algorithm. (a) Normalized time–frequency spectrum obtained by PWVD;
(b) parameter space {r,θ} obtained by Hough transform.
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Figure 16. Results obtained by Hough–RSPWVD algorithm. (a) Normalized time–frequency spectrum obtained by
RSPWVD; (b) parameter space {r,θ} obtained by Hough transform.
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Figure 17. Results obtained by the proposed algorithm. (a) Normalized time–frequency spectrum obtained by M-STFRFT;
(b) parameter space {r,θ} obtained by Hough transform.

Figure 18 shows the estimated RMSE and SD of rotational angular velocity among the
proposed algorithm, the Hough–GSS-based STFRFT algorithm, and other time–frequency
analysis algorithms, where the received signal is added with white Gaussian noise, and
each value of RMSE and SD are obtained and averaged by 1000 Monte-Carlo trails. It
should be pointed out that the rotational angular velocity estimation process of the Hough–
GSS-based STFRFT algorithm is the same as that of the algorithm proposed in this paper,
except that the Hough–GSS-based STFRFT algorithm adopts the GSS-based FRFT method
proposed in [35] when estimating the matched transform order. As a comparison, we give
the rotational angular velocity estimation results of the method described in Section 3.1, in
which the matched transform order is estimated by searching the maximum amplitude
value of FRFT in the traditional method, which is labeled as Hough–Max-STFRFT in
Figure 18.
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Figure 18. Estimation error of rotational angular velocity among different parameter estimation methods. (a) RMSE; (b) SD.

As we can see from Figure 18a,b that with the increase of SNR, the accuracy and
stability of the aforementioned estimation algorithms and the proposed algorithm are
improved, and finally tend to be stable. We can also see that the Hough–WVD algorithm is
more accurate in rotational angular velocity estimation than Hough–STFT, Hough–PWVD,
and Hough–RSPWVD algorithms because of the higher time–frequency resolution, while
the Hough–STFT algorithm is the least. However, there exists cross-term interference in
the WVD algorithm, and the resolution of the WVD algorithm is obviously reduced at the
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beginning and ending of the observation time, which will lead to the incorrect estimation
of the rotational angular velocity and will increase the estimation error of RMSE and SD.
By comparing and observing the results of Hough–Max-STFRFT method, we find that the
matched transform order estimation method of searching the maximum of FRFT results
is easily affected by noise, which leads to inaccurate and unstable estimation of matched
transformation order and is not conducive to the estimation of rotational angular velocity.
Compared with other time–frequency analysis algorithms, the Hough–GSS-based STFRFT
algorithm has a smaller and more stable estimation error under the condition of a low SNR,
but it is larger when the SNR is high. Moreover, the estimated RMSE and SD of the Hough–
GSS-based STFRFT algorithm in the range of SNR from −30 dB to 0 dB are significantly
larger than those of the proposed algorithm. The main reason for this result is that the
GSS-based matched transform order estimation algorithm used in the Hough–GSS-based
STFRFT algorithm has a local iterative convergence problem.

In the algorithm proposed in this paper, although one micro-Doppler component
does not match the estimated optimal transform order, another micro-Doppler component
matching the optimal transform order has the highest time–FRFD–frequency resolution,
and there is no cross-term interference. Therefore, the proposed algorithm has a higher
estimation accuracy of rotational angular velocity than other aforementioned algorithms,
which can be reflected in Figure 18a. We can also see that compared with the Hough–GSS-
based STFRFT algorithm and other time–frequency analysis algorithms mentioned in this
paper, the algorithm proposed in this paper also has better rotational angular velocity
estimation performance in the case of low SNR. In summary, we can conclude that the
proposed modified short-time fractional Fourier transform has a good performance on
rotational angular velocity estimation, which can verify the effectiveness and stability of
the algorithm proposed in this paper.

4.5. Verification Experiment based on Measured Data

We now present the experimental results based on measured data collected by fre-
quency modulated continuous wave radar, where the carrier frequency is 24 GHz and
the pulse repetition interval is 600 µs. The experimental target is a corner reflector with
the circular motion. The schematic diagram of experimental scene is shown in Figure 19,
where ABCDEF denotes the corner reflector with a circular motion around point O under
the action of human factors and traction rope AH, and it moves to A′B′C′D′E′F′ after half a
cycle; G is the center of the scatterer; ω denotes the rotational angular velocity.
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Figure 19. The schematic diagram of experimental scene.

Figure 20a shows the time–frequency spectrum of the target echo. It can be seen
from Figure 20 that the echo Doppler frequency of the corner reflector is approximately
sinusoidal signal, which is consistent with the echo Doppler frequency of the scatterer in
the theoretical derivation in this paper, which also verifies the accuracy of using this scene
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to simulate the real radar observation process of the rotor target. However, we can also
see from the figure that the echo of the corner reflector has strong fixed ground clutter
near the zero frequency, and there is translational radial motion, because the center of the
sinusoidal signal is not at the zero frequency, which are all not conducive to the estimation
of rotational angular velocity.
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Figure 20. Normalized time–frequency spectrum of the target echo. (a) Original target echo; (b) target echo after preprocessing.

In this experiment, moving target indication processing is used to filter the clutter
near zero frequency in the echo, and translational compensation is utilized to remove
the influence of translational motion on the Doppler frequency of the echo, that is, the
echo signal is multiplied by the translational compensation term exp(−j4πvtm/λ), where
v denotes the translational radial velocity. After these two steps of preprocessing, the
time–frequency spectrum of the echo is shown in Figure 20b. Comparing Figure 20a,b, it
can be found that the clutter of fixed ground objects and translational motion are basically
eliminated.

It should be pointed out that the measured data is collected on the frequency mod-
ulated continuous wave radar platform, which can realize the continuous observation
of the corner reflector. However, in the actual observation process of the narrowband
early warning radar on the rotor target, due to the limitation of antenna rotation and
target distance, the continuous observation of the target cannot be realized. In order to
simulate the real scene, we extract four effective segments from the measured data echo
to verify the effectiveness of the proposed algorithm, which are shown in Figure 21 of the
time–frequency spectrum marked with a red box.

Four echo segments marked with a red box in the time–frequency spectrum of
Figure 21 are intercepted from the original target echo, and the rotational angular ve-
locity of the corner reflector is estimated according to the algorithm proposed in this paper.
The results are shown in Table 2. As a comparison, the experimental results of other
time–frequency analysis algorithms mentioned in Section 4.4 are given.

From the simulation results in Table 2, it can be seen that compared with other
time–frequency analysis algorithms, the algorithm based on M-STFRFT proposed in this
paper is more stable for the estimation of the rotational angular velocity of the echoes
in four segments. In order to verify the correctness of the estimation results, we fit a
sinusoidal Doppler frequency curve fd = A sin(ωtm + φ), where the amplitude is A = 494,
the rotational angular velocity is ω = 13.2 rad/s, and the initial phase angle is φ = 131

◦
.

The fitting result of Doppler frequency of the corner reflector is shown in Figure 22, in
which the black scattered points represent the real Doppler frequency of the corner reflector
estimated from the time–frequency spectrum, the red scattered points represent that the
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Doppler frequency value is zero, and the blue scattered points represent the fitting Doppler
frequency value of the corner reflector.
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Figure 21. Extracted segments from the measured data.

Table 2. Main steps of the OMP algorithm to reconstruct the complete entropy vector.

Algorithms
Rotational Angular Velocity (rad/s)

Segment 1 Segment 2 Segment 3 Segment 4

Hough–STFT 15 11 11.3 12.4

Hough–WVD 14 11.6 15.7 11.7

Hough–PWVD 12 12.7 15.9 12.2

Hough–RSPWVD 12.6 12.2 15.4 12.3

Proposed algorithm 13.2 12.8 12.9 13.3
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According to our verification, under the Doppler frequency fitting of this group of
parameters, the coincidence degree of blue scattered points and black scattered points is the
highest, especially in the four segments marked in Figure 21. Therefore, it can be concluded
that the rotational angular velocity of the corner reflector in the measured data is about
13.2 rad/s, which can demonstrate the correctness of the estimation results in Table 2, thus
verifying the effectiveness of the algorithm proposed in this paper.
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5. Conclusions

In this paper, we have presented a novel modified short-time fractional Fourier trans-
form algorithm for efficient rotational angular velocity estimation of the rotor target. The
OMP-based algorithm is used to estimate the matched transform order in the proposed
M-STFRFT algorithm, and the problem of searching the maximum amplitude in FRFT is
converted into the entropy minimization problem. Compared with the traditional search
method, the proposed method is computationally efficient, because partial transform order
candidate values are selected randomly to estimate the matched transform order through
the OMP-based algorithm. The estimated matched transform order and STFRFT are ap-
plied to obtain the time–FRFD–frequency spectrum with the highest time–FRFD–frequency
resolution, and the rotational angular velocity can be estimated through searching the peak
value from the energy accumulation spectrum obtained by Hough transform. Simulations
results demonstrate that the proposed algorithm yields better time–FRFD–frequency res-
olution in comparison with other mentioned time–frequency analysis algorithms, faster
estimation of matched transform order than the traditional search method and more accu-
rate rotational angular velocity estimation than the Hough–GSS-based STFRFT algorithm
and other time–frequency analysis algorithms mentioned in this paper. Moreover, experi-
mental results based on measured data collected by frequency modulated continuous wave
radar validate the effectiveness of the proposed algorithm.

Although our proposed algorithm is effective in rotational angular velocity estimation,
it can still be improved further. In the future, we will not only focus on the more effective
estimation of the matched transform order but also verify the effectiveness of the proposed
algorithm in the actual radar equipment by experimenting with measured data.
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Abbreviations
Abbreviations of nouns and algorithms mentioned in this paper are as follows.

Abbreviations Full Name
M-STFRFT Modified Short-Time Fractional Fourier Transform
FRFT Fractional Fourier Transform
STFRFT Short-Time FRFT
FRFD FRFT Domain
OMP Orthogonal Matching Pursuit
m-D micro-Doppler
FT Fourier Transform
CWT Continuous Wavelet Transform
STFT Short-Time Fourier Transform
WVD Wigner–Ville Distribution
PWVD Pseudo Wigner–Ville Distribution
RSPWVD Reassigned Smoothed Pseudo Wigner–Ville Distribution
Hough-STFT Combination of Hough Transform and STFT
Hough-WVD Combination of Hough Transform and WVD
Hough-PWVD Combination of Hough Transform and PWVD
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Hough-RSPWVD Combination of Hough Transform and RSPWVD
SFT Sparse Fourier Transform
SDFRFT Sparse Discrete FRFT
GSS Golden Section Search
SNR Signal-to-Noise
RMSE Root-Mean-Square Error
SD Standard Deviation
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