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Abstract: In recent years, there have been rapid improvements in both remote sensing methods and
satellite image availability that have the potential to massively improve burn severity assessments
of the Alaskan boreal forest. In this study, we utilized recent pre- and post-fire Sentinel-2 satellite
imagery of the 2019 Nugget Creek and Shovel Creek burn scars located in Interior Alaska to both
assess burn severity across the burn scars and test the effectiveness of several remote sensing methods
for generating accurate map products: Normalized Difference Vegetation Index (NDVI), Normalized
Burn Ratio (NBR), and Random Forest (RF) and Support Vector Machine (SVM) supervised classifica-
tion. We used 52 Composite Burn Index (CBI) plots from the Shovel Creek burn scar and 28 from the
Nugget Creek burn scar for training classifiers and product validation. For the Shovel Creek burn
scar, the RF and SVM machine learning (ML) classification methods outperformed the traditional
spectral indices that use linear regression to separate burn severity classes (RF and SVM accuracy,
83.33%, versus NBR accuracy, 73.08%). However, for the Nugget Creek burn scar, the NDVI product
(accuracy: 96%) outperformed the other indices and ML classifiers. In this study, we demonstrated
that when sufficient ground truth data is available, the ML classifiers can be very effective for reliable
mapping of burn severity in the Alaskan boreal forest. Since the performance of ML classifiers are
dependent on the quantity of ground truth data, when sufficient ground truth data is available, the
ML classification methods would be better at assessing burn severity, whereas with limited ground
truth data the traditional spectral indices would be better suited. We also looked at the relationship
between burn severity, fuel type, and topography (aspect and slope) and found that the relationship
is site-dependent.
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1. Introduction

The circumpolar north has experienced a temperature change 1.5 times higher than the
global average [1,2]. The intensification of global climate change is leading to an increase
in frequency, size, severity, and duration of boreal forest fires due to the warming summer
temperatures (hot, dry, and windy conditions), earlier snowmelt that lengthens the fire
season, and variable precipitation [2–6]. In the past 20 years (2001–2020), wildfires in
Alaska burned 30.9 million acres, which is 2.1 times more acres burned than during the
previous two decades (1981–2000: 14.6 million acres burned). In 2019, 721 fires burned
2,671,604 acres across the state of Alaska [7]. These fires caused major property damage and
placed a significant strain on local and national firefighting resources already spread thin
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to meet increasing demands. Among these fires, a large number of them were located near
major population centers at the Wildland Urban Interface (WUI) [8]. The Shovel Creek and
Nugget Creek fires near Fairbanks, Alaska, were two such examples. Smoke resulting from
wildfires can have serious health and economic consequences [9]. Unhealthy air quality
from the 2019 fires lasted for weeks, prompting health issues such as eye and respiratory
irritation along with worsening of chronic heart and lung diseases [10]. These fires not
only put human health and safety at risk, but also release CO2 and other greenhouse
gases during combustion, creating a positive feedback loop that further contributes to the
warming of the climate [11]. Moreover, increases in lightning activity were observed in
Alaska between 1985 and 2015 [12], with lightning-caused ignitions increasing in Alaska
since 1975 [13]. This combination of rapidly changing environmental conditions that
contribute to wildfires necessitates novel studies that advance our understanding of fire
severity and post-fire effects. By using satellite data, we can generate products that provide
insight for post-fire risk mitigation, forest restoration practices, and adaptive management
strategies that all help reduce the long-term impacts of wildfires [2].

The immediate societal impacts of wildland fires can also be reduced with access
to accurate vegetation, fuel, and burn severity risk data at a local scale appropriate for
decision making. Variation in fire behavior, which is largely driven by fuels, terrain, and
weather, leads to various degrees of burn severity across the landscape [14,15]. However,
the influence and relative importance of these factors on burn severity are not clear. In this
study, we used two recent fires, the 2019 Shovel Creek and Nugget Creek fires, to advance
research on burn severity mapping in boreal forests. We hope to better understand the
complex relationship between burn severity, fuel type, and terrain along with how fire
severity is influenced by environmental characteristics, which will potentially help fire
managers identify areas at risk of high-severity fires.

There are two major types of studies used to map burn severity, physical process-
based modeling studies and empirical studies. Physical process modeling looks for certain
conditions that a fire would have, such as an increase in soil covered by charcoal and
an increase in drying and consumption of leaves as burn severity increases [16]. These
methods also help identify bands that are sensitive to changes in burn severity [16]. These
models are time and cost effective because they do not need field data and can be replicated
at other study sites [16–18]. However, these models still require field data for product
validation [17]. Empirical studies, on the other hand, try to find a correlation between field
data and remotely sensed data to map burn severity, and the results are site-dependent [17].
When sufficient field data are available to build a statistically significant empirical model,
an empirical modeling approach can be easier to implement for mapping burn severity
and yields higher accuracy [17]. Most recently, a number of studies have used Spectral
Mixture Analysis (SMA) for mapping burn severity at the sub-pixel level [19–21]. SMA
can be very effective for severity assessment with the additional advantage that it outputs
estimates of the sub-pixel fraction of ground cover classes [22,23].

Remote sensing spectral indices using visible, near-infrared (NIR), and shortwave
infrared (SWIR) bands, such as the Normalized Difference Vegetation Index (NDVI), Nor-
malized Burn Ratio (NBR), and differenced (preburn − postburn) indices, have been
commonly used to assess burn severity in the boreal forest [24–26]. Particularly, NBR
has been heavily used due to the SWIR band’s sensitivity in detecting changes within
fire disturbances [27]. Ground truth burn severity data in the boreal forest are limited
for several reasons. Firstly, many burn scars are remote, making them difficult to access.
Secondly, vegetation regrowth occurs quickly, limiting the timeframe in which accurate
ground-based data can be collected to about 2 years after a fire event [28]. Fortunately,
the two recent fires (Shovel Creek and Nugget Creek) identified for this research occurred
close to Fairbanks and are accessible by road (Figure 1). These burn scars offer a unique
opportunity to test remote sensing methods for mapping boreal fire burn severity and
understanding burn severity’s relationship to environmental factors.
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Figure 1. Location of 2019 Shovel Creek fire and Nugget Creek fire burn scars in relationship to the Alaskan Boreal Forest
and Fairbanks.

Application of advanced machine learning algorithms, such as Random Forest (RF)
and Support Vector Machine (SVM), for mapping and assessing burn severity in the boreal
forest has been limited [29]. The RF classifier is a supervised classification algorithm that
uses decision trees to classify pixels into classes [30]. It has the ability to effectively process
large volume datasets while avoiding overfitting [31], making RF an ideal classifier if a large
amount of training data is available. Though only a few studies have used RF to classify
burn severity [29], there is a volume of literature demonstrating its efficiency in mapping
land cover, making it a good candidate for testing burn severity assessments [30,32,33].
Support Vector Machine (SVM) is another machine learning classifier that learns to label
objects into classes using previously provided examples [34]. For remote sensing image
classifications, SVM has been demonstrated to be one of the most successful classifiers [35].
SVM is an ideal classifier when training data is limited, runs on datasets with high di-
mensionality, and has been used previously to generate land cover maps [35–38]. It uses
training sites to find the optimal separating hyperplane between classes [39]. Although RF
and SVM have not been heavily used to study burn severity, they both have great potential
for this application [29].

The primary goal of this study is to determine which of the aforementioned remote
sensing techniques produce the most accurate products for assessing wildfire burn severity
in the boreal forest. The secondary goal is to investigate how burn severity relates to fuel
type and topography. To address these goals, we collected ground-based data within the
Nugget Creek and Shovel Creek burn scars, trained the classifiers using this data, and then
validated the performance of the classifiers with accuracy assessments. By performing this
investigation of burn severity within the 2019 Nugget Creek and Shovel Creek fires, we
hope to identify which remote sensing methods are best for assessing burn severity and to
better understand how fuel type and topography influence burn severity.
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2. Materials and Methods
2.1. Study Area

The Shovel Creek burn scar is located approximately 20 miles northwest of Fairbanks
and was ignited by a lightning strike. The fire started June 21, 2019 and burned 91 km2 [40].
The Nugget Creek burn scar is located 35 miles east of Fairbanks and was also started by a
lightning strike on June 21, 2019 and consumed 77 km2 [41]. The suppression cost of the
Nugget Creek fire was around USD 56,000 while the suppression cost for the Shovel Creek
fire was over USD 25 million [42,43]. The Shovel Creek fire was suppressed more heavily
as it threatened life and property in the Murphy Dome community.

2.2. Field Work

During the summer of 2020, we surveyed burn severity within the Nugget Creek and
Shovel Creek burn scars following the Composite Burn Index (CBI) protocol modified
for Alaska [28,44] (Supplementary Figure S1). CBI is a standard survey protocol used to
assess ecological changes following a wildfire [20]. The modified CBI is broken into five
different strata, including (a) substrates; (b) herbs, low shrubs, and trees less than 1 m;
(c) tall shrubs > 1 m and trees 1 to 2 m; (d) intermediate trees 2–8 m; and (e) big trees > 8 m.
Each stratum contains 4–5 variables that assess the amount of change by looking at various
factors, such as species mortality, char height, changes to soil and duff layers, changes in
species composition, and several other factors that are rated by the surveyor [38,44]. CBI
takes the average score of all the factors rated to assign a burn severity value that can range
from 0 to 3.0. At Nugget Creek, the CBI values for the fire-disturbed plots ranged from
0.34 to 2.46, and at Shovel Creek the values ranged from 0.09 to 2.38. We used a Trimble R10
RTK GPS to get the precise locations of the field plots (30 m in diameter). The location of
the plots surveyed was based on site accessibility and visual interpretation of burn severity
from pre- and post-fire images in order to capture the range of severity. At Shovel Creek,
we surveyed 52 CBI plots while at the Nugget Creek burn scar, we surveyed 28 CBI plots
(Figure 2). We grouped the CBI values into four classes, taking into account the impact of
fire on the five strata that were rated as part of the CBI assessment and the spread of the
CBI values within the two burn scars: unburned (CBI = 0), low (CBI = 0.01–1.49), moderate
(CBI = 1.50–1.99), and high (CBI = 2.0–3.0) (Table 1).

Figure 2. The 52 CBI plots (yellow = training; blue = non-training) surveyed within the Shovel Creek burn scar (left); and
the 28 CBI plots surveyed within the Nugget Creek burn scar (right) (red: burn scar outlines).
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Table 1. Number of plots surveyed by CBI severity class for the Shovel Creek and Nugget Creek fires.

Shovel Creek Fire Nugget Creek Fire
Unburned

CBI = 0 14 10

Low
CBI = 0.010–1.49 12 4

Moderate
CBI = 1.50–1.99 12 7

High
CBI = 2.0–3.0 14 7

2.3. Burn Severity Mapping from Sentinel-2 Images

Optical satellite images with bands that cover the visible, near-infrared, and shortwave
infrared wavelengths are ideal for mapping and assessing burn severity as vegetation and
burned areas can be accurately differentiated using these bands [45]. We used Sentinel-2
Level 1-C reflectance satellite imagery, publicly available on the USGS EarthExplorer portal
(source: https://earthexplorer.usgs.gov/). The Sentinel-2 bands used in this study had a
spatial resolution of 10–20 m. Bands 2, 3, 4, and 8 have a 10-m pixel size while bands 5, 6,
7, 8A, 11, and 12 have a pixel size of 20 m. For the Shovel Creek fire, we used a pre-fire
image collected on May 16, 2019 and a post-fire image acquired on May 20, 2020. For the
Nugget Creek fire, we used a pre-fire image collected July 24, 2018 and a post-fire image
collected May 17, 2020. The pre- and post-fire images were adequate for assessing burn
severity because the images were collected in the summer season and the vegetation was
in a similar growth stage.

For both burn scars, we generated pre- and post-fire NDVI and NBR maps, as well
as differenced NDVI (dNDVI = preNDVI—postNDVI) and differenced NBR (dNBR =
preNBR − postNBR) maps (Table 2 and Figure 3). We used linear models to link spectral
indices with CBI values. The estimated CBI values were then broken into three burn
severity classes: low-severity (CBI: 0.01–1.49), moderate-severity (1.5–1.99), and high-
severity (2.0–3.0). We used all the CBI plots to assess the user, producer, and overall
accuracy of the spectral indices-based burn severity maps (Nugget Creek: 28 plots; Shovel
Creek: 52 plots). The Sentinel-2 sensor is designed to register image products to a global
reference image framework that usually has a residual geolocation error. The absolute
geolocation performance specification for Sentinel-2 is 12.5 m [46]. We used a Trimble
R10 RTK GPS (with mm accuracy) to get the precise locations of field CBI plots (30 m in
diameter). In order to account for the location offset between the surveyed CBI plots and
image pixel, we used a 20-m buffer around each plot for accuracy assessment [46,47].

Table 2. Table showing the indices tested and the formula used to calculate them.

Index Formula

NDVI (B4-B8)/(B4+B8)

NBR (B8-B12)/(B8+B12)

dNDVI Pre-fire NDVI—Post-fire NDVI

dNBR Pre-fire NBR—Post-fire NBR

For running supervised classifications, we first removed the unburned pixels from the
image. In order to mask out unburned pixels, we tested different indices and threshold
values by visually inspecting how well they masked out the unburned pixels. The NDVI
index with a threshold of 0.4 was most effective for the Nugget Creek burn scar (all
10 unburned CBI plots are correctly identified; Supplementary Table S7) while at the
Shovel Creek burn scar the dNBR index with a threshold of 0.24 was the most effective
(all 14 unburned CBI plots are correctly identified; Supplementary Table S4). We removed
unburned areas to avoid potential misclassification of the low severity class as unburned.

https://earthexplorer.usgs.gov/
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Sentinel-2 bands 1, 9, and 10 are mainly used for atmospheric corrections and cirrus-cloud
screening and are not useful for land cover classification; therefore, we removed them
from the image classification [48]. We used only post-fire images to run the SVM and RF
(500 trees, 30 rules per tree) supervised classifications [49]. We used half of the burned CBI
plots surveyed at each site (9 at Nugget Creek and 20 at Shovel Creek) to train the classifiers.
Each CBI plot that was used for training contained 2–4 pixels. While the remaining half
of the CBI plots were used for accuracy assessment. We classified the images into low,
moderate, and high burn severity classes based on the CBI values (see values in Table 1).
We used the remaining CBI plots (9 at Nugget Creek and 18 at Shovel Creek) with a 20-m
buffer (to account for image positional offset) to assess the classification accuracy. For
RF classification, we also tested if including elevation, aspect, and slope as dependent
variables with the Sentinel-2 bands would improve the overall mapping accuracy. Since
it did not, we did not use this mapping technique for downstream analysis, and only
reported the results from Sentinel-2 bands products. We reported accuracy as the percent of
correctly mapped CBI plots. We used ESRI’s ArcMap 10.7 software for all image processing
and analyses.

Figure 3. Image processing workflow for burn severity mapping and accuracy assessment.

2.4. Burn Severity Relationship to Environmental Factors

Using the 2019 Alaska Vegetation and Wetland Composite (AVWC) map we calculated
the percent area occupied by each level II vegetation class within the Nugget Creek and
Shovel Creek burn scars. The AVWC maps vegetation at a scale analogous to level IV of the
Alaska Vegetation Classification [50,51]. We analyzed the relationship between vegetation
type, topography (aspect and slope), and burn severity. We used a 2 m Arctic Digital
Elevation Model (DEM) as a source for generating the slope and aspect maps of the burn
scars (source: Polar Geospatial Center, University of Minnesota). We used ESRI’s ArcMap
10.7 [49] software for image processing, and RStudio 1.2.5019 [52] for all statistical analyses.
We generated plots visualizing these relationships between environmental variables (slope
grade, aspect, and fuel type) and burn severity class using ggplot2 version 3.3.2 [53].
Regression analysis, namely ordinal regression, has been used in previous remote sensing
studies to generate predictive models with fire severity using an ordinal scale [54,55]. We
used Ordinal Logistic Regressions (OLR) to generate models with burn severity classes as
the response, and aspect, slope, burn scar site (Nugget Creek or Shovel Creek), and fuel
type as the explanatory variables, using the plor function in the MASS package (version
7.3-51.5). We used a two-way ANOVA test to quantify the effect of each explanatory
variable on severity class with a type III sums of squares, which identifies the variables
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that are significant independently of one another. Lastly, we performed model selection
using the Akaike Information Criterion (AIC), which is a common model selection tool
used to test the quality of ecological models relative to other models generated using a
single dataset [56]. We used AIC to test the statistical significance of the full model (severity
class ~ aspect + slope + site + fuel type), and all combinations of the third-, second-, and
first-order models. This model selection allowed us to determine which combination of
explanatory environmental variables are best at explaining burn severity in our dataset.

3. Results
3.1. Nugget Creek Burn Severity Mapping

At Nugget Creek, all of the indices (NDVI, NBR, dNDVI, and dNBR) had a high
correlation to CBI (|r| > 0.75), with dNDVI having the highest (|r| = 0.80) and NDVI
the lowest (|r| = 0.75) (Figure 4). Linear models produced for each index indicated a
significant relationship between the respective indices and CBI (p < 0.05) that were then
used to produce burn severity maps. The best performing index using only a post-fire
image was NDVI, with a 96.43% accuracy while the NBR had an accuracy of 75% (Table 3).
The dNBR (89.29% accuracy) was the best performing differenced index while the dNDVI
had a 71.43% accuracy. Both supervised classification products had a 66.67% accuracy
(Table 3 and Figure 5). Overall, the NDVI-based burn severity map was the best product at
Nugget Creek (Table 3).

Figure 4. Correlation between CBI values and indices with Pearson correlation coefficients for the
Nugget Creek fire plots.

Table 3. Accuracy table of the burn severity map products for the Nugget Creek and Shovel
Creek fires.

Product Nugget Creek Shovel Creek

NDVI 96% 65%
dNBR 89% 73%

RF 67% 83%
NBR 75% 73%

dNDVI 71% 60%
SVM 67% 83%
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Figure 5. Comparison of the Nugget Creek burn severity map products.

3.2. Shovel Creek Burn Severity Mapping

At Shovel Creek, the indices had low to moderate correlations (r: 0.33–0.66) to CBI
(Figure 6). The NDVI had the highest correlation (|r| = 0.66) and dNDVI the lowest
correlation (|r| = 0.34) (Figure 6). Linear models at Shovel Creek produced for each index
had a significant relationship between the respective indices and CBI values (p < 0.05). Out
of all indices, the post-fire NBR-based severity map had the highest accuracy (73.08%) and
the dNDVI had the lowest accuracy (65.38%). The RF and SVM supervised classification
map products performed similarly with both of the products, having an 83.33% accuracy
(Table 3 and Figure 7). Overall, the RF and SVM supervised map products outperformed
all other products at assessing burn severity within the Shovel Creek fire (Table 3).

Figure 6. Correlation between the CBI values and indices with Pearson correlation coefficients for
the Shovel Creek fire plots.
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Figure 7. Comparison of the Shovel Creek burn severity map products.

3.3. Burn Severity Relationship to Environmental Factors

According to the AVWC, 80.1% of the pre-fire vegetation cover in the Shovel Creek
burn scar was conifer forest and 11.8% was mixed forest (conifer and deciduous) (Table 4).
In the Nugget Creek burn scar, 72.8% of the area was conifer forest while 25.5% mixed forest
(Table 4). In both fires, conifer forest occupied the majority of the burn scars, confirming
that both fires mostly burned conifer vegetation.

Table 4. Pre-fire vegetation cover by fuel type in the Shovel Creek and Nugget Creek burn scars as
per the AVWC map.

Fuel Type Shovel Creek Cover (%) Nugget Creek Cover (%)

Conifer Forest 80.085 72.728
Mixed Forest 11.781 25.495

Shrub 4.427 1.424
Deciduous Forest 3.370 0.290

Bare 0.337 0.061
Grass 0 0.003

We conducted several statistical tests to investigate the relationship of fuel type, slope,
aspect, and burn scar site with burn severity classes (unburned, low, moderate, and high).
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First, we used type III sums of squares with all explanatory variables. We found that
aspect and burn site (Shovel Creek and Nugget Creek) were the two statistically significant
explanatory variables for burn severity classes (Table 5). We used AIC to determine which
regression model best explained burn severity; of all possible models, the model with
aspect and burn scar site as explanatory variables had the lowest AIC value and best fit.
When we visualize the relationships between burn severity and aspect at both burn scar
sites, we can see that aspect and burn severity classes have a stronger relationship at the
Nugget Creek burn scar (R = 0.44, p = 0.02) than at the Shovel Creek burn scar (R = 0.095,
p = 0.5 Figure 8). The slope had a statistically significant relationship with burn severity
classes (R = 0.38, p = 0.049) only at Nugget Creek. Fuel type did not have a statistically
significant relationship with burn severity classes at either site. These observations suggest
that models for predicting burn severity using environmental variables are site-dependent,
and likely unsuited for modeling risk of high burn severity at a larger scale.

Figure 8. Graphs showing the relationship between slope gradient and burn severity classes (top
plots) by site (left: Nugget Creek; right: Shovel Creek) and aspect by burn severity classes (bottom
plots). Top left in each panel shows the Spearman correlation and significance of the relationship.
Pink lines show the regression.
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Table 5. Type III sums of squares ANOVA results for a full model with burn severity classes
(unburned, low, moderate, and high) as response, and aspect, slope, fuel type, and burn scar site as
explanatory variables. * indicates significant p-value of less than 0.05.

LR Chisq Df Pr (>Chisq)

Aspect 5.23 1 0.022 *

Slope Gradient 0.03 1 0.87

Fuel Type 0.55 2 0.761

Site 4.27 1 0.039 *

4. Discussion
4.1. Burn Severity Mapping

Several previous studies used traditional spectral index-based remote sensing meth-
ods to map burn severity in the boreal forest [57,58]. Epting et al. (2005) identified NBR as
a better index for assessing burn severity than NDVI in the boreal forest [57]. Furthermore,
they found the differenced indices (dNDVI and dNBR) outperformed post-fire indices
(NDVI and NBR). The differenced indices are better than post-fire indices because they mea-
sure the amount of change over time [59]. Using 347 sites across 6 fires, Murphy et al. (2008)
found that dNBR had a relatively weak correlation with CBI (R2 adjusted, 0.11–0.64) [58].
In our study, we found that the post-fire NDVI and NBR indices outperformed the differ-
enced indices at Shovel Creek, and the post-fire NDVI index outperformed the differenced
NDVI (dNDVI) at Nugget Creek (Table 3). In fact, the NDVI-based burn severity map for
the Nugget Creek burn scar had the highest accuracy (96%) between the two sites. Burn
severity factors such as vegetation type and location impact the performance of the spectral
indices and are not transferable between sites [29,58].

At the Shovel Creek burn scar, the RF and SVM (83%) outperformed all index products.
Parks et al. (2019) used 19 fires to predict burn severity in Alaska using RF and had a R2

value of 0.62 between the observed vs. predicted CBI, which is similar to the R2 values of the
dNBR index and CBI reported by Murphy et al. (2008) [29,58]. The supervised classification
(RF and SVM) products outperformed the traditional index products at Shovel Creek as
more CBI training plots (20) were available for this site compared to the Nugget Creek
site (9 plots). At Nugget Creek, the traditional index-based burn severity map products
(NDVI: 96%; dNBR: 89%) outperformed the RF and SVM products. We had only 9 CBI
plots to train the RF and SVM classifiers for the Nugget Creek site, which may have caused
the lower accuracy (RF: 67%; SVM: 67%) for the classified map products compared to the
index-based map products. Field surveys of burn severity at remote sites are not always
feasible due to logistical and funding challenges. So, when adequate field data to train
a supervised classifier are not available, the index-based burn severity mapping would
be ideal. Field surveys of burn scars to train supervised classifiers are time consuming
and expensive but can result in accurate map products. The differences in the accuracy
between the burn severity map products may also be the results of the spatial spread of the
CBI plots collected. Our findings suggest that index-based methods can result in reliable
burn severity map products, and offer insights on fire damage. However, if adequate field
data are available to train supervised machine learning classifiers, then the classifiers can
outperform index-based methods.

At the Nugget Creek fire, the SVM and RF mapped more of the moderate burn severity
class and less of the low and high burn severity classes compared to the traditional indices
(Table 6). This may be the result of the classifiers having limited training plots (2) to use
to train the low burn severity class. At the Shovel Creek fire, the SVM and RF mapped
more of the high burn severity class and less of the low burn severity class compared
to the indices (Table 7). A common misclassification was CBI plots with values close to
the edge of the class boundary (i.e., a CBI 1.49 being misclassified in the moderate class)
(Tables S1–S12). In most products, a high burn severity was the most accurate class. This is
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likely a result of the high burn severity class being the most spectrally distinct from the
other burn severity classes. In some applications, more than three burn severity classes may
be needed. Overall, we found that both spectral indices and machine learning classifiers
can adequately assess burn severity.

Table 6. Percent area of each burn severity class by product for the Nugget Creek fire.

Nugget Creek Fire Percent Area by Severity Class

RF SVM NDVI NBR dNDVI dNBR

Unburned (CBI = 0) 11% 11% 6% 9% 9% 8%

Low (CBI = 0.01–1.49) 22% 19% 30% 35% 38% 32%

Moderate (CBI = 1.50–1.99) 43% 39% 20% 20% 24% 21%

High (CBI = 2–3) 25% 32% 45% 35% 29% 39%

Table 7. Percent area of each burn severity class by product for the Shovel Creek fire.

Shovel Creek Fire Percent Area by Severity Class

RF SVM NDVI NBR dNDVI dNBR

Unburned (CBI = 0) 21% 21% 18% 21% 16% 21%

Low (CBI = 0.01–1.49) 8% 8% 28% 21% 13% 23%

Moderate (CBI = 1.50–1.99) 19% 13% 18% 9% 5% 13%

High (CBI = 2–3) 52% 58% 35% 49% 66% 43%

4.2. Burn Severity Relationship to Environmental Factors

The relationship between fire and environmental factors is complex and varies across a
landscape [60]. Looking at the vegetation classes that were in the burn scar prior to the fire
shows that the classes that contain conifer species (conifer and mixed forest) appear to be
more likely to burn than other vegetation types and is consistent with a previous study [61].
Needles and branches of coniferous species are more flammable due to the presence of the
resinous substance and are also distributed continuously from ground to treetop, allowing
the fire to easily spread to the tree crowns [62]. In the Alaskan boreal forest, north-facing
slopes are more conducive for black spruce growth because of colder soil conditions, lower
solar insolation, and being less productive, whereas the dry south-facing slopes are more
conducive for hardwood growth [63]. Hardwoods are less flammable fuel types (more
moisture) while black spruce are incredibly flammable due to their lower moisture content,
resin production, and low branches that promote crown fires [62]. Presence of diseased
trees and dead trees can alter the relationship between burn severity and environmental
factors. A case study on the basin complex fire in California suggested that a disease-
caused increase in wildfire fuels can result in increased burn severity [64]. At Shovel
Creek, there was not a significant relationship between burn severity and topography
(aspect and slope). While at Nugget Creek, aspect had a strong correlation with burn
severity, showing that the burn severity and topography relationship is site-dependent.
The Nugget Creek fire was located far away from human infrastructure and little effort
was put into containing the fire compared to the Shovel Creek fire that was suppressed
aggressively as it was close to human infrastructure. For the Shovel Creek fire, the total
suppression cost was over USD 25 million while at Nugget Creek the suppression cost
was USD 56,000 [42,43]. The efforts to contain the fire may have caused the burn severity
relationship with environmental factors to appear insignificant for the Shovel Creek fire.
Therefore, the inclusion of topography to predict burn severity or create a burn severity
probability map over a large landscape or region can be problematic.

Understanding the relationship between burn severity and environmental variables
will help researchers and fire managers predict areas most at risk of high-severity fires,
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allowing for proper mitigation and restoration strategies that reduce the negative effects
of fire. Topography has a complex relationship with fire that varies across landscapes
and with daily climatic conditions, making it hard to model fire and severity risks [60,65].
Mapping burn severity helps managers see the effects that fires have on the landscape and
allow managers to better understand changes to ecosystem functions and services caused
by the fire. By creating accurate burn severity maps in the boreal forest that consider
the environmental factors and their relationship to burn severity, we gain insight into
what factors favor more severe impacts from fires. Areas with a high burn severity are
of particular interest to land managers as they indicate areas with the largest amount of
change to vegetation ecosystem properties due to fire. These areas are more susceptible
to the colonization of invasive species, permafrost thaw, erosion, and potential vegetation
type conversions [59]. Land managers are also interested in the changes to wildlife habitat
and recreational activities caused by fire [59]. The relationship between burn severity, envi-
ronmental factors, and vegetation recovery should continue to be investigated to advance
the understanding of ecosystem responses to fire and ability to predict burn severity.

5. Conclusions

In this study, we were able to show that both supervised classification methods and
spectral indices can accurately map burn severity in the boreal forest. At the Nugget
Creek fire, with 28 CBI plots, the spectral indices NDVI (96%) and dNBR (89%) produced
higher accuracy products than the supervised classification RF product (78%). While at
the Shovel Creek fire, where we sampled 52 CBI plots, the RF and SVM products (83%)
outperformed the spectral index-based burn severity maps. This shows that when we have
more ground truth field data, the better the supervised classifier performs in assigning
pixels to a burn severity class. In most cases, using pre- and post-fire images to create a
differenced index did not improve the accuracy of assessing burn severity. Overall, both
supervised classification and spectral indices create highly accurate burn severity maps
in the boreal forest. Based on our study, coniferous forests appear more likely to burn
than other vegetation types. We also found that the influence of environmental variables
on burn severity is site-dependent and further research needs to be done to understand
this relationship and explore additional factors in order to predict burn severity on the
landscape. The products from this study will help fire managers identify areas of concern
based on burn severity information that can then be integrated into management practices
that will help mitigate and reduce the negative effects of fire.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13101966/s1, Figure S1: CBI data sheet used to survey wildfire burn severity at the Shovel
Creek and Nugget Creek burn scars. The data sheet was originally created by Key and Benson (2006)
and modified by Barnes et al., (2020) for boreal forest in Alaska, Table S1: Shovel Creek Fire NDVI
burn severity error matrix, Table S2: Shovel Creek Fire NBR burn severity error matrix, Table S3:
Shovel Creek Fire dNDVI burn severity error matrix, Table S4: Shovel Creek Fire dNBR burn severity
error matrix, Table S5: Shovel Creek Fire RF burn severity error matrix, Table S6: Shovel Creek
Fire SVM burn severity error matrix, Table S7: Nugget Creek Fire NDVI burn severity error matrix,
Table S8: Nugget Creek Fire NBR burn severity error matrix, Table S9: Nugget Creek Fire dNDVI
burn severity error matrix, Table S10: Nugget Creek Fire dNBR burn severity error matrix, Table S11:
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error matrix.
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Abbreviation

ML Machine Learning
CBI Composite Burn Index
RF Random Forest
SVM Support Vector Machine
NDVI Normalized Difference Vegetation Index
WUI Wildland Urban Interface
NBR Normalized Burn Ratio
dNDVI Differenced Normalized DifferenceVegetation Index
dNBR Differenced Normalized Burn Ratio
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