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Abstract: Within the framework of multi-temporal Synthetic Aperture Radar (SAR) interferometric
processing, image coregistration is a fundamental operation that might be extremely time-consuming.
This paper explores the possibility of addressing fast and accurate SAR image geometric coregistra-
tion, with sub-pixel accuracy and in the presence of a complex 3-D object scene, by exploiting the
parallelism offered by shared-memory architectures. An efficient and scalable processor is proposed
by designing a parallel algorithm incorporating thread-level parallelism for solving the inherent
computationally intensive problem. The adopted functional scheme is first mathematically framed
and then investigated in detail in terms of its computational structures. Subsequently, a parallel
version of the algorithm is designed, according to a fork-join model, by suitably taking into account
the granularity of the decomposition, load-balancing, and different scheduling strategies. The de-
veloped parallel algorithm implements parallelism at the thread-level by using OpenMP (Open
Multi-Processing) and it is specifically targeted at shared-memory multiprocessors. The parallel
performance of the implemented multithreading-based SAR image coregistration prototype processor
is experimentally investigated and quantitatively assessed by processing high-resolution X-band
COSMO-SkyMed SAR data and using two different multicore architectures. The effectiveness of
the developed multithreaded prototype solution in fully benefitting from the computing power
offered by multicore processors has successfully been demonstrated via a suitable experimental
performance analysis conducted in terms of parallel speedup and efficiency. The demonstrated
scalable performance and portability of the developed parallel processor confirm its potential for
operational use in the interferometric SAR data processing at large scales.

Keywords: image coregistration; SAR registration; high performance computing (HPC); parallel
processing; multithreading; synthetic aperture radar (SAR); SAR interferometry (InSAR)

1. Introduction

Non-rigid SAR coregistration is the process of geometrically aligning complex image
pairs [1]. It is a procedure usually used for automatically matching two or more images
of the same scene acquired, for example, from different viewpoints, at different times,
or from different sensors (with different carrier frequencies and/or operational modes).
Accordingly, it constitutes a fundamental building block for the implementation of a
broad range of multichannel (i.e., multi-temporal, multisource, and multimode) Synthetic
Aperture Radar (SAR) image processing techniques; in this case, different images have
to be stacked so that homologous pixels in all images correspond to the same sensed
target on the ground. In particular, in SAR data processing, this is a fundamental step
both in interferometric (InSAR) and tomographic (TomoSAR) applications, where the
coregistration must be performed with a subpixel accuracy in order to preserve the phase
information. As a matter of fact, achieving a good SAR image coregistration accuracy is
one of the most critical issues for obtaining high-quality interferograms; as an example,
interferogram noise associated with misregistration errors may cause, in turn, problems in
the phase unwrapping process [2–4].
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A wide variety of approaches to the SAR image coregistration problem have been
proposed in the literature and different algorithmic solutions and implementations do
exist [5–13]. In particular, a geometrical SAR image coregistration method was proposed
in [9], a spectral diversity based one in [7], and a robust optimization based one in [12]. In
typical SAR interferometric studies, accurate registration of large-size (some gigabytes)
SAR images requires computationally intensive operations, thus making this task usually
extremely time-consuming. Due to the improved spatial resolution and reduced revisit
times of the nowadays available SAR platforms, the task of performing coregistration of
multiple SAR images for large-scale interferometric applications indeed poses a remarkable
computational challenge.

In recent years, the application of High Performance Computing (HPC) methodologies
in the SAR processing context has received considerable attention owing to its potential to
speed up applications [14–20]. Although multi-node and multi-core computer architectures
have enabled the acceleration of a wide variety of computationally intensive applications,
writing inherently parallel programs to take full advantage of the available parallelism
is still a challenge. Even though algorithms for image processing are in general good
candidates for parallelization, the parallel pattern design is not always a straightforward
task [21–30].

Within the SAR processing framework, parallel algorithms have been developed for
different problems, by using shared memory [17,18], distributed memory [19], or dual-level
parallel methodologies [4]. Several efficient algorithms have been proposed to face the
time-consuming nature of the coregistration problem, and most of them use dedicated
sequential strategies to improve the performance (e.g., [10]). Nonetheless, the parallel
computing for the SAR image coregistration problem has received less attention and the
potential of parallel coregistration algorithms still needs to be better investigated along
with the benefit of applying HPC techniques. In particular, applications amenable to
a high degree of parallelism can greatly benefit from modern hardware architectures
consisting of (multicore) multiple processors. However, the potential gain might only be
obtained if an implemented application is multithreaded, by the adoption of suitable and
specific parallelization techniques; conversely, sequentially designed applications running
on a multicore architecture usually cannot achieve a full exploitation of the available
computational resources. Furthermore, parallel algorithm design and optimization to
achieve a speedup on multicore computers have to take into account both cache memory
use and architecture memory bandwidth. It is clear that with the number of available
processors drastically increasing in the near future, the parallelism offered by current
multicore processors can be conveniently exploited by using multithreading [21–24].

To the best of our knowledge, the parallelization of the InSAR coregistration problem
on shared-memory multicore platforms has not been addressed in the literature. Nonethe-
less, this problem involves highly repetitive calculations on very large amounts of data.
Since both the accuracy demand for image coregistration and the amount of SAR data to
be registered are growing tremendously, the implementation of automatic image coregis-
tration methods on high-performance computers represents an effective way to improve
the overall processing performances of interferometric processing chains where multiple
registrations are needed.

In this paper, we explore the improvement of computational performances achievable
in the subpixel-level SAR image coregistration operation by adopting specific HPC method-
ologies that take full advantage of the parallelism offered by modern shared-memory
multiprocessors [26–30]. In particular, we consider the design of a parallel SAR coregistra-
tion algorithm by incorporating thread-level parallelism.

In this paper, the adopted functional scheme is first mathematically framed and then in-
vestigated in detail in terms of its computational structures. Subsequently, a parallel version
of the algorithm is designed by suitably taking into account different relevant aspects, such
as the problem decomposition, the granularity of the decomposition, the load balancing,
and scheduling strategies. OpenMP [30] and the modern Fortran programming language
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are employed to obtain a highly efficient and portable multithread prototype implemen-
tation. The parallel performance of the implemented multithreaded prototype processor
are experimentally investigated and quantitatively assessed, by processing high-resolution
X-band COSMO-SkyMed SAR data and using two different multicore architectures.

The paper is structured as follows. In Section 2, the adopted functional scheme is
formally described and its computational structure is analyzed. In Section 3, the proposed
parallel strategy is illustrated and the implementation of the multithreaded prototype is
presented. Experimental results, carried out on real SAR data and different computational
platforms, are presented in Section 4, along with a discussion on the achieved parallel
performance. Section 5 draws some conclusions.

2. Coregistration Functional Scheme

In this Section, we describes in detail the conceptual and computational structure of
the adopted coregistration algorithm in terms of its sequential procedure. The design of
the parallel counterpart is addressed in the next section.

In Section 2.1, the coarse registration step that implies a pixel-level registration is shortly
discussed. Refinement of the coarse registration up to subpixel accuracy is subsequently
considered (Section 2.2). Specifically, the consolidated geometrical model-based approach
is used for dealing with the problem of subpixel matching of the two images [9] and a 2D
interpolation-based approach is adopted for image reconstruction. A schematic diagram of
the adopted algorithm is synoptically represented in Figure 1, and the three main steps
are illustrated in detail in the following. In the coregistration procedures, one Single Look
Complex (SLC) image is not modified and is referred to as the reference (or primary) image,
while the other one, which is modified to match the reference geometry, is called the
secondary image. Accordingly, in Figure 1 the coarse registration block produces as an
output a shifted version of the secondary image, which is aligned with the reference one
within one pixel accuracy; conversely, the fine registration block outputs a secondary image
fully coregistered at the sub-pixel level via the resampling operation carried out on the
basis of the warping function information.
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2.1. Coarse Coregistration

As a first step, the coarse coregistration, which is a rigid coregistration to match two
SAR images with pixel-level accuracy, is performed. Accordingly, a constant (bias) value
that accounts for an absolute image offset between the two image pairs has to be estimated
from the SAR data. For such a purpose, an approach based on spatial cross-correlation
is widely employed [31]. Alternatively, the offset can also be directly computed via the
geometrical approach (see next section) when orbital and electronic parameters of the
system are accurate enough, or by a combination of the two approaches.
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Whatever method is used, the obtained offset does not necessarily result in an integer
number of sampling intervals and, therefore, is rounded to the nearest integer, since the
fine (sub-pixel) registration is performed subsequently. Finally, the secondary SAR image
is shifted according to the estimated (global) range and azimuth offsets, thus obtaining a
coarse registration up to a few pixels’ accuracy (Figure 1). This preliminary step usually
has the objective to perform a coarse alignment of the two images, in order to end up with
two images that are quite aligned at pixel level.

2.2. Sub-Pixel Coregistration

Fine coregistration is aimed at determining the local offsets needed to align the Single
Look Complex (SLC) SAR images at the subpixel level. As a matter of fact, two different
images of the same scene are not directly comparable, due to different local distortions. The
fine coregistration involves geometric transformation of the images, in order to relatively
compensate for these local distortions. Two main fundamental stages can be distinguished
in the adopted approach [32,33]. They are (see Figure 1): (I) warp function computation, (II)
secondary image resampling; and they will be addressed in the following. Accordingly, the
problem is first mathematically framed and then its computational structure is elucidated
in detail.

2.2.1. Problem Formulation

At a conceptual level, image warping is a transformation that maps all positions in
one (target) image plane to homologous positions in a second (reference) image plane [32].
From a mathematical point of view, a SAR image can be regarded as a continuous complex
function defined in R2. Accordingly, the first (primary) image, say IP, can be formally
defined as:

IP(x) : x ∈ ΩP ⊂ R2 → C (1)

where x ≡ (r, a) is a position vector in the primary image plane with the slant range and
azimuth radar coordinates indicated by r and a, respectively, and ΩP is the definition
domain. Similarly, the secondary image can be written as:

IS(y) : y ∈ ΩS ⊂ R2 → C, (2)

where y ≡ (r′, a′) describes a location in the target (secondary) image domain ΩS. The regis-
tration problem consists in finding a 2D spatial coordinate transformation τ : x ∈ ΩP ⊂ R2

→ y ∈ ΩS ⊂ R2 , which can be written as:

τ(x) = (τr(r, a), τa(r, a)), (3)

such that the transformed secondary image,

IS
τ(x) = IS(τ(x)) = IS(x− ρ(x)), (4)

is spatially aligned with IP(x). The vector function ρ(x) = x− τ(x) is usually referred to as
a displacement field. The two continuous functions τr(r, a) and τa(r, a) typically are referred
to as warp functions, and IS

τ(x) is the τ-warped (secondary) image [32,33]. Note also that
some references use a different terminology.

The mathematical transformation (4) represents the process of mapping one (sec-
ondary) image domain onto the other (primary) one (see Figure 2).

In practical cases, however, we deal with digital images that are sampled versions of
the so-defined continuous images; therefore, after the coarse alignment of the two images at
the pixel scale (see previous section), the fine coregistration operation is performed in two
steps: (1) warping function model and/or parameter estimation, and (2) data regridding
(interpolation and resampling).
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2.2.2. Warping Functions Evaluation

Several approaches for establishing the warping functions have been proposed in
the literature [32,33]. A classical approach is to make use of global bivariate polynomial
transformations to model the warp functions [33]; in this case, unknown polynomial
coefficients defining the spatial transformation have to be inferred by using a number of
control points.

This is usually accomplished by matching a number of small patches in both the
secondary and the reference images at the sub-pixel level, by means of cross correlation
techniques. To this end, an up-sampled version of the cross correlation between the
two patches being registered has to be computed; this can be easily achieved through a
zero padding operation applied in the spectral domain and by using conventional Fast
Fourier Transform (FFT). However, since large up-sampling factors are usually required,
the images’ oversampling computation may lead to heavy computing burdens and high
memory requirements [34]. Alternative and more efficient algorithms not based on FFT
and up-sampling approaches have also been presented in the literature [10].

Error sources in this case pertain to the results of the parameter estimation and to the
appropriateness of the chosen model. In fact, the accuracy of the measured offsets relies
on the data itself (SAR data-driven approach): patches covering poorly coherent areas (e.g.,
vegetated areas) and/or with significant image amplitude variations may lead to very
inaccurate offset estimations; therefore, not all of the measuring patches can be utilized,
thus making the parameter estimation less robust is some cases (for example, when large
forested areas cover the images). On the other hand, while polynomial models are excellent
for accommodating global translations, rotations, skews, and scale changes, they are less
suitable to represent fast varying functions, because of their unpredictable behavior for
large polynomial degrees. In fact, the spatially-variant characteristics of the warp function
are mainly related to local topographic reliefs and, therefore, if not properly handled,
can lead to large errors, especially in the presence of significant topographic reliefs and
long baselines.

A common way to circumvent this problem is to rely on a geometry-driven approach
for warping function computation, as proposed in [9]. In this case, the accurate evaluation
of the warping functions is obtained by using a Digital Elevation Model (DEM) and
precise information on sensor platform ephemerides. We use this approach in our parallel
implementation and, therefore, we present some more details in the next section.
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2.2.3. Warping Function Geometrical Computation

The geometrical approach computes the warping functions by finding the position in
both the primary and the secondary images of a given point on the ground. To do so, the
Range–Doppler equations are to be used [35]. Let P =

(
Px, Py, Pz

)
be a vector expressed

in a Cartesian coordinate system (e.g., the Earth Centered Earth Fixed (ECEF) system),
thus describing the position of a point target on the ground. The corresponding range
and azimuth image coordinates, indicated by r and a, respectively, satisfy the following
equations [9,35]: {

r = |P− S(a)|
^
v(a) · (P− S(a)) = 0

(5)

where the vector function S = S(a) describes the sensor trajectory and azimuth-variant unit

vector
^
v =

^
v(a) represents the orbital velocity direction. The second equation of (5) depends

on the azimuth position only and can be solved iteratively with a very fast convergence [35];
subsequently, the first equation of (5) is used to compute the range position. Therefore, the
Range–Doppler geolocation method based on Equations (5) converts Cartesian

(
Px, Py, Pz

)
coordinates into image (r, a) coordinates. Note that in order to define the actual position in
the image plane of the prescribed ground point, topography must be known, and hence
the need for a digital elevation model. Note also that for the sake of simplicity, we have
written (5) for a zero-Doppler focusing geometry [36], the extension to the general case
being straightforward [35].

The corresponding normalized image coordinates of the target are expressed as follows:

r̃ =
1

∆r
(r− r0) (6)

and
ã =

1
∆a

(a− a0), (7)

where r0 is the range at the early edge and a0 is the offset of the first azimuth line; moreover,
∆r = c

2FSAMP
is the pixel spacing in the range direction, where c is the speed of light and

FSAMP is the range sampling frequency, and ∆a = 1
PRF is the pixel spacing in the azimuth

direction, with PFR being the pulse repetition frequency. These four quantities are usually
derived from the radar system parameters.

By applying (5) to the secondary image and for the same point on the ground, we
similarly obtain the corresponding range and azimuth positions (r′ and a′, respectively)
in such an image. According to [9], we can compute the displacement field ρ = (ρr, ρa)
as follows: {

ρr = r′ − r
ρa = a′ − a

. (8)

Reference [9] shows that, with currently available DEMs and satellite orbit accuracy,
the geometric computation in (8) achieves the accuracy required for SAR interferometry.
Moreover, in some cases the accuracy of orbital parameters can be further improved by
using information from the SAR data [37]. In practical cases, when working with digital
images, the warping function has to be computed in terms of pixels. Consider, for example,
the azimuth case—the range case can be obtained similarly. By combining (7) and (8), the
expression of the azimuthal component of the normalized displacement field ρ̃a = ã′ − ã
can be obtained as follows:

ρ̃a = PRF
(
a′ − a

)
− biasaz, (9)

where biasaz= PRF(a′0 − a0) and, for the sake of simplicity, we have assumed that the pulse
repetition frequencies of the reference and secondary images are the same. Equation (9)
highlights that ρ̃a is formed by two terms: the first one depends on the image coordinates
of the considered ground point P through (5); the second one is a global constant that
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depends only on sensor parameters (i.e., PRF and azimuth offsets of both images). In some
cases, the knowledge of such parameters is not accurate enough for registration purposes
and this bias term has to be estimated from data [9]; however, this is not further discussed
here, since this operation consists essentially of a parameter calibration that is performed
once for all of the image pixels.

The obtained azimuth and range warping functions are subsequently used for resam-
pling the secondary image, as discussed in Section 2.2.4, in order to match the reference
one. It is important to note that the warping function computation can be carried out
point-by-point (for each point of the available DEM) and that computation for each point
can be conducted independently.

2.2.4. Secondary Image Resampling Scheme

Once the spatial transformation (warping function) is established, a resampling of the
secondary image is needed to complete the registration procedure (Figure 2).

Let L and Q be the size of the rectangular reference image along the range and azimuth
directions, respectively. Each pixel in the image can be associated with a discrete location
xij (with i = 1 . . . , L, j = 1, . . . , Q) representing a specific node of a regular grid inside
the domain ΩP. Similarly, the original secondary image IS(ymn) is defined over a discrete
regular grid {ymn : m = 1 . . . , M, n = 1, . . . , N} in the slave-image domain ΩS.

The complex-valued SAR image resampling process concerns the reconstruction of
a continuous (complex) function IS(τ(x)), from given samples of the original secondary
image IS(ymn), by using interpolation methods, followed by a sampling of the continuous
function to a new discrete regular grid

{
xij : i = 1 . . . , L, j = 1, . . . , Q

}
defined in the

reference-image domain ΩP, thus determining the values IS
τ

(
xij
)
= IS(τ(xij

))
according to

(4). It should be noted that the predictable mapped pixel positions, y = τ
(
xij
)
, constitute,

however, a set of irregularly-spaced data points in the domain ΩS, as pictorially illustrated
in Figure 2. As a matter of fact, the image-domain coregistration procedure is employed
to accommodate the topography-dependent translations of the points x defined by the
non-integer field of displacement ρ(x) = (ρr(r, a), ρa(r, a)), resulting from the two different
(reference and secondary) acquisition configurations.

The procedure to resample the secondary image to the regular (reference) grid is
now addressed. As illustrated in the coregistration model shown in Figure 2, resampling
is the process of computing the value IS(τ(xij

))
for every discrete location xij ∈ ΩP.

Conceptually, for each xij ∈ ΩP, the algorithmic structure involves: (1) The computation
of its transformed position y = τ

(
xij
)
; (2) the evaluation of the secondary image intensity

IS(y) by interpolation, since y ≡ (r′, a′) ∈ ΩS generally falls into non-integer coordinates;
and (3) the assignment of this value to the τ-warped secondary (output) image IS

τ

(
xij
)
.

Let us now discuss the two-dimensional (2D) interpolation procedure to reconstruct
the (band-limited) continuous signal IS(r′, a′) = IS(y) from its discrete samples IS

mn =
IS(ymn) = IS(r′m, a′n), associated with a regular lattice in the secondary image domain. The
interpolation operation is realized via convolution of the image with a 2D interpolation
kernel K(r′, a′) (Figure 3), which can be formalized as follows:

ÎS(r′, a′
)
= ∑

m,n
IS
mn K

(
r′ −m, a′ − n

)
. (10)

Note that it has been implicitly assumed that the original continuous function IS

is band-limited, and that the original sampling frequency is higher than the Nyquist
frequency, so that the continuous function can be precisely reconstructed by its samples, at
least in principle.
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Separable and symmetrical interpolation kernels are commonly used to reduce the
associated computational complexity. A kernel is said to be separable if K(r′, a′) =
Kr′(r′)Ka′(a′); accordingly, the previous formula (10) reduces to:

ÎS(r′, a′
)
= ∑

n

(
∑
m

IS
mnKr′

(
r′ −m

))
Ka′
(
a′ − n

)
= ∑

n
Zn
(
r′
)
Ka′
(
a′ − n

)
, (11)

where the function Zn(r′) is defined as:

Zn
(
r′
)
= ∑

m
IS
mnKr′

(
r′ −m

)
. (12)

In this case, the 2D interpolation is accomplished by performing a cascade of two
one-dimensional interpolations (separability): for a prescribed (r′, a′) point, the data ma-
trix can be processed line-by-line, column-by-column. This offers more flexibility in the
implementation, thus increasing the computational performance.

As sketched in Figure 3, the center of the kernel function is located at the (prescribed)
center of each output sample, and then a convolution with the input signal is calculated over
the filtering support (this is referred to as output-centered convolution [38]). Accordingly,
this interpolation scheme requires that the kernel function has to be recalculated for each
output (resampled) image pixel, which has an impact on the computation burden.

Other desirable characteristics of the kernel function are: (1) symmetry, i.e., Kx(x) =
Kx(−x), which implies that no phase distortions are introduced since the Fourier transform
of a real even function is real; and (2) partition of unity, i.e., the condition ∑

k
Kx(z− k) = 1

∀z ∈ R, which assures the reproduction of the constant (DC filter gain).
It is evident that the tradeoff between interpolation accuracy and computational

cost must be carefully considered when selecting interpolation kernels in SAR image
resampling. In this investigation, we use a separable interpolation kernel; accordingly,
for clarity and without loss of generality, in the following we limit our discussion to the
one-dimensional case.

It is well known that the rigorous interpolation of bandlimited signals is obtained
by using the ideal sin c(x) ≡ sin(πx)

πx interpolation kernel. Although this kernel provides
an ideal interpolation, it has a spatially infinite support, thus making its implementation
impractical. A more feasible implementation is achieved by truncating the sin c function
to a reasonable number of samples, thus leading to a filter with a finite support in the
spatial domain, i.e., a so-called Finite Impulse Response (FIR) filter (Figure 3). However,
this usually produces undesirable ringing effects in the frequency domain (Gibbs’s phe-
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nomenon), which can be mitigated by using an appropriate weighting function ψ(x) that
gently truncates the kernel. Therefore, the interpolation is written as:

f̂N(x) =
N

∑
k=−N

f (k∆x)sin c(x− k∆x)ψ(x− k∆x) , (13)

where we have assumed that f (x) is sampled at equally spaced points denoted by xk = k∆x,
∆x being the discretization interval, and 2N + 1 is the number of retained samples that is
set as a trade-off between accuracy and computational load.

Within the SAR interferometry context, the interpolation kernel selection has been
discussed in several papers [33,39–43]. For the truncated sin c scheme in (13), many window
functions (such as Kaiser–Bessel, Blackman–Harris, cosine-like, power-law, raised-cosine,
etc.) have been proposed [33]. Without loss of generality, in this paper we focus on the Knab
sampling window [39] since it shows good performance in the SAR context with respect to
other conventional kernels [43]. This kernel will be used for the numerical experiments
discussed in the next sections. It is given in terms of a hyperbolic cosine function as follows:

ψ(x) =
cos h

(
χ

√
1−

( x
N
)2
)

cos h(χ)
, (14)

where an adjustable factor χ = πNδ is present, and δ ε [0, 1] is a parameter related to the
oversampling factor β (i.e., the ratio between the sampling frequency and the Nyquist
frequency) as follows: δ = 1− 1

β . Another valid alternative is to resort to a raised-cosine
kernel [44].

As a final remark, we note that the interpolation schemes discussed above are all
suitable for baseband signals. However, although complex-valued SAR images are band-
limited data, their spectrums are generally non-baseband in the azimuth direction, because
they normally exhibit a non-zero Doppler acquisition centroid. Therefore, in order to avoid
spectral distortions, the spectrum of the SAR image has to be shifted to zero Doppler
(baseband) before performing the interpolation operation. Once the interpolation operation
is performed, the shift along the azimuth-frequency direction should be reversed in order
to restore the original center frequency of the image.

3. Parallel Scheme and Multithreading Implementation

In this Section, in order to define a parallel version of the algorithm, we first provide a
brief overview of some fundamental notions of parallel computing that are relevant for
our purposes [21–24] (Section 3.1); next, we present the proposed abstract parallel pat-
tern targeted at shared-memory architectures (Section 3.2); finally, specific considerations
for the practical OPENMP-based implementation in real parallel systems are addressed
(Section 3.3).

3.1. Overview of Parallel Algorithm Design

The first step in designing a parallel algorithm is the problem decomposition [21]. This
is the fundamental step since it has a crucial impact on the speedup and scalability that
the resulting parallel implementation can achieve. In fact, it consists in defining how
the computation can be effectively broken down into sub-parts that can be executed
independently and concurrently. This allows identifying portions of the computation that
can be assigned to different processing units and executed independently [21–28]. It is
clear that the adopted problem decomposition is strictly dependent on the structure of
the particular algorithm to be parallelized. Conversely, for a given problem, different
decompositions and mappings may yield different performances on a given computing
architecture. In the case of shared-memory architectures, mapping concerns assigning the
composite tasks identified in the previous step to available threads [21–24].
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After the algorithm decomposition in tasks and their assignment to the available
computing resources, a key problem in obtaining optimal performances on shared-memory
architectures is ensuing that the workload is well-balanced over the available processing
units. The load-balancing problem consists in ensuring that all of the threads do useful work
at any given time; on the contrary, an unbalanced workload implies that some threads
are overloaded while others are idle (load imbalance), with a consequent detriment of the
efficient use of the available computational resources [21–23].

Once the computational workload has been designed and decomposed in a set of
concurrent tasks, the scheduling problem, which is another key issue in parallel computing,
has to be addressed. The goal of scheduling is to determine an optimal assignment of tasks
(corresponding to a number of threads to be created) to the processing elements available
in the specific architecture and the order in which tasks should be executed.

Note that the possibility of achieving an effective load balancing is intimately con-
nected with both the adopted task decomposition and the selected scheduling strategy. It is
then clear that a key problem in obtaining optimal performance on shared-memory architec-
tures is ensuing that the workload results are evenly balanced and that the synchronization
overhead is reduced as much as possible [21–23].

As a final remark, it is worth emphasizing that problems in developing algorithms
for shared-memory systems are often quite different from the problems encountered in
distributed-memory programming. The reader is referred to the wide range of available
literature for a complete discussion on parallel design [21–30].

3.2. Parallel Pattern Design of the Coregistration Algorithm

In this section, we present the general logic adopted in designing the parallel patterns
for our specific SAR coregistration problem; we focus on the most relevant parts of the
algorithm and provide general design guidelines, without focusing on our particular
parallel algorithm implementation.

The computational problem at hand indeed involves regular structures and highly
repetitive calculations, thus naturally permitting to exploit the potential degree of paral-
lelism available in different ways and with varying degrees of coarseness. Therefore, here
the objective is to design a parallel pattern structure capable of efficiently exploiting this
potential parallelism, with the final goal of achieving high performance on multicore pro-
cessors.

Both the warping function calculation and the resampling procedure are amenable
to a convenient parallelization. In the following, we first discuss the parallel scheme of
the warping function computation operation discussed in Section 2.2.3. Subsequently, we
address a parallel pattern for the resampling procedure (see Section 2.2.4), which relies on
a 2D convolution in the spatial image domain using a separable kernel characterized by a
finite support (FIR filter), according to (11) and (12).

3.2.1. Shared-Memory Parallelism for Warping Function Computation

Parallelization of the warping function computation, which is obtained via the geomet-
rical approach described in Section 2.2.3, requires indeed a very easy style of parallelism
(nearly embarrassingly parallel scheme [21–24]). In particular, the equations in (5) have to be
solved for each point of the scene, and with respect to both reference and secondary image
domains; then the warp functions can be computed according to (6–8). It is important to
note that the solution of (5) can be carried out independently for each point of the scene.
Although the solution of (5) is iterative in nature and, therefore, in principle the associated
computation time can change with the particular point of the scene under analysis, this
variability is limited since the convergence is typically reached within a few iterations [9].
Moreover, the residual potential variability can be significantly mitigated by partitioning
the data into different chunks that are assigned to different processing units. This arrange-
ment is compatible with the granularity of the resulting decomposition; accordingly, we
can efficiently schedule well-balanced chunks in order to achieve high performances.
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3.2.2. Shared-Memory Parallelism for 2D Resampling Computation

We introduce here the parallel pattern adopted for the resampling procedure. The fact
that the computation inherent to each pixel of the resampled secondary image can be carried
out independently suggests a natural strategy to achieve the problem decomposition with
a suitable granularity. Specifically, the adopted arrangement relies on the decomposition of
the output image space domain.

Indeed, the computation of (11) for a given output pixel of the secondary image
involves only the processing of a limited portion (i.e., the filter kernel support) of the input
image centered on the location corresponding to the selected output pixel; this is pictorially
illustrated in Figure 4. Clearly, different processing units can execute such elementary
tasks simultaneously. However, the number of output pixels is generally rather larger
than the number of engaged threads and, therefore, each processing unit must execute
a certain number of the above-identified elementary tasks. In Figure 4, assuming eight
threads are available, the thread encoding rule is schematically illustrated according to a
color-coded representation: each color is associated with a distinct thread and each thread
is tasked to compute the result for several output domain pixels. Accordingly, the adopted
domain decomposition provides a convenient way of introducing parallelism. In fact,
the amount of processing to be assigned to each elementary tasks can be determined in
advance, since it depends on the image size and on the level of granularity, which is driven
by the adopted problem decomposition. Such an arrangement, therefore, allows achieving,
in principle, a well-balanced workload distribution across the available processing units as
the number of processing units increases, thus enabling a scalable performance on shared
memory architectures.
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For the considered decomposition strategy, the execution time of each elementary task
does not significantly depend on the considered output pixel, i.e., it exhibits a uniform
distribution. Moreover, the information about tasks to be scheduled and their relations to
each other is entirely known prior to the execution time. In such cases we might set up
a deterministic scheduling, which shows a very limited synchronization overhead. This
possibility reflects both the design options and the nature of the problem involving highly
repetitive calculations. The scheduling strategy is further investigated and discussed in
detail in Section 3.3.
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Finally, we emphasize that the adopted parallel pattern for the coregistration of an
image pair has been specifically targeted at shared-memory architectures. It is then clear
that the adopted strategy is not amenable to be straightforwardly extended to distributed-
memory architectures [15,22–25], due to the performance degradations associated with the
arising communication overhead.

3.3. OPENMP-Based Parallel Implementation

The developed prototype used for the experimental part of this study has been im-
plemented in the FORTRAN language, while OpenMP (Open Multi-Processing) has been
used to realize the shared-memory parallelism [30].

The FORTRAN programming language is widespread in the scientific community.
In fact, in the field of High Performance Computing (HPC), it has been one of the main
languages used in parallel programming for a long time.

In particular, the combined use of compiled languages (e.g., C or FORTRAN) and
OPENMP permits us to effectively define the parallelism in the code implementation in a
highly structured way. On the contrary, dynamically interpreted languages enabling fast
prototyping (e.g., Matlab, IDL, Python, etc.), which indeed are quite popular in the remote
sensing community, are generally not recommended for heavy numerical computation.

This is for two main reasons: First, they generally do not allow the programmer
to explicitly specify the desired parallelism scheme because of a general lack in specific
support for efficient parallel computing; second, they are significantly slower in terms of
execution time, thus in some cases suffering from severe performance penalties [45].

A programming paradigm targeted at shared-memory multi-processor computers is
multithreaded programming [21]. OpenMP is an explicit shared-memory programming
model for developing multi-threaded parallel applications, thus offering the programmer
full control over parallelization; it uses the fork-join model of parallel execution [29,30]
schematically illustrated in Figure 5. As a matter of fact, it has become the de facto
standard for developing portable applications among a variety of shared memory architec-
tures/platforms.
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We recall that a thread is a unit of execution that can be scheduled by an operating
system and that is able to independently execute a stream of instructions, and thus threads
running simultaneously on multiple processors or cores might work concurrently to ex-
ecute a task [21–24]. Thread handling (including synchronization), job assignments, and
access coordination to shared data are implemented through OpenMP, thus allowing full
specification of thread-level parallelism [30]. All threads share common memory, although
they may have a number of local (private) variables. Threads working on disjoint parts can
perform paralleled execution. Accordingly, the resulting implemented parallel algorithm
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can be executed on one or more processing units that share the available memory, by using
multiple independent threads.

In our implementation, we first eliminated any real data dependency [21–24] by adapting
the sequential code, and then we parallelized each processing step according to the adopted
decomposition. Subsequently, the outermost loops were parallelized, according to the best
practices for efficient parallel code development, thus minimizing the number of parallel
regions [26–30]. It should be noted that there is a tradeoff between taking advantage of
maximal parallelism and minimizing the synchronization overhead that contributes to the
overall execution time. As a matter of fact, the implementation of thread pools that do not
create and destruct threads frequently may mitigate this problem. Moreover, we highlight
that the already mentioned parallelization of the outermost loops also implies a minimal
overhead in thread handling and synchronization since the amount of work distributed
over the different threads is maximal.

The load balancing strategy is another critical issue in parallel processing, and its
implementation deserves a detailed discussion. For achieving a good load balancing,
different workloads might require different scheduling strategies, according to the actual
granularity of the resulting load distribution [21–24,28,30]. In particular, here we focus on
two different scheduling strategies: static and dynamic scheduling.

According to the number of threads and the total number of iterations, the static
scheduling strategy divides iterations into chunks, which are statically assigned to threads
in the team in round-robin fashion. Although static scheduling is the least flexible strategy,
it implies, however, a reduced scheduling overhead. On the contrary, in a more flexible
dynamic scheduling strategy each thread executes a chunk of iterations and then requests
another chunk until no chunks remain to be distributed [30].

The designed parallel pattern has been devised so that the resulting fine-grained
workload distribution results are evenly distributed naturally, thus being appropriate for
a static scheduling strategy. Nonetheless, to ascertain such an idea experimentally, both
mentioned scheduling strategies were implemented and their experimental performance is
discussed in Section 4.

Finally, it is also worth noting that we used the FFTW (Fastest Fourier Transform in
the West) library, which is indeed the fastest freely available implementation of Discrete
Fourier Transform (DFT) and is described in detail in [46].

4. Experimental Results and Performance Evaluation

In this Section, the implemented prototype is applied for processing real SAR data
and inherent parallel performance analysis is presented and discussed, by focusing on the
execution time, speedup, efficiency and scalability.

4.1. Processed SAR Data and Experimental Setup

In order to illustrate the performance of the proposed algorithm, we performed the
coregistration operation on a dataset of high-resolution SAR images.

In particular, we employed a pair of Single Look Complex (SLC) SAR images acquired
in the X-band by COSMO-SkyMed sensors over the volcanic Island of Fernandina in the
Galapagos Archipelago (Ecuador); the main acquisition system and processing parameters
are summarized in Table 1.
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Table 1. Parameters of the SAR dataset.

Parameter Reference Secondary

Acquisition Date 11-APR-2018 27-APR-2018

Orbit Direction descending

Image Size (range × azimuth) 16,600 × 14,200

Real Azimuth Antenna Dimension [m] 5.6

Carrier Frequency [GHz] 9.60

Range Sampling Frequency [MHz] 84.38

Pulse Repetition Frequency—PRF [Hz] 3114.62

Range Bandwidth [MHz] 69.73

Processed Range Bandwidth 100%

Azimuth Bandwidth [kHz] 2.60

Processed Azimuth Bandwidth 100%

Mean Doppler centroid [kHz] −417.19 −553.26

Azimuth Pixel Spacing [m] 2.33

Range Pixel Spacing [m] 1.78

Perpendicular Baseline [m] 441

Parallel Baseline [m] 625

A multi-look version of the SAR amplitude image is shown in Figure 6a, in radar
coordinates; the full resolution image size is 14,200 × 16,600 (~236 Mpixels). This dataset
is particularly suitable for testing the coregistration algorithm because the imaged area is
characterized by large topography variations (from sea level up to 1400 m on the top of
the volcano) and the baseline of the selected pair is quite large (the perpendicular baseline
is 441 m); both these characteristics imply that the warping effect is very pronounced
and significantly varying all over the image. For estimation of the warping functions, we
used the 0.4 arc sec Tandem-X DEM and precise orbital information. Additionally, for the
2D resampling step, we selected a rather long kernel, i.e., a 12-point Knab (2N = 12), to
preserve the fidelity of the resampled data. Figure 6b shows the coherence image after
registration. A coherence loss on the top of the volcano is noted (see Figure 6b).

The performance analysis was carried out on two different computational platforms
based on 64-bit machines (namely Platform A and Platform B).

Platform A consists of a node of an HPC cluster, equipped with two eight-core CPU
Intel® Xeon E5-2660 (2.60 GHz) processors, with three levels of caches (level 1: 64 kB; level
2: 256 kB; level 3: 20 MB) each, and 384 GB of RAM. It has a storage system including
an 8-TB disk and SATA (external Serial Advanced Technology Attachment) interface
disk drives (in a RAID-5 configuration). HPC systems are indeed clusters consisting
of several interconnected nodes. However, since this study was not concerned with
the distributed performance of the algorithms, only one node at a time was used for
performance evaluation.

Platform B is a laptop computer equipped with a quad-core Intel® Core™ i7-6700HQ
CPU (2.60 GHz) processor with three levels of caches (level 1: 256 kB; level 2: 1 MB; level 3:
6 MB) and 16 GB of RAM. The main characteristics of the computational platforms used in
this study are summarized in Table 2.
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Table 2. Utilized parallel architectures.

Platform CPU Number of
Processors

RAM Physical
Memory

Number of
Physical Cores

Number of
Logical Cores (1)

A Intel® Xeon CPU
E5-2660 @ 2.20 GHz

2 384 GB 16 32

B Intel® Core™
i7-6700HQ CPU @2.60 GHz

1 16 GB 4 8

1 Hyperthreading.

Nowadays, shared-memory architectures are designed to have a shared RAM accessed
by one or more CPUs through a hierarchy of cache memories internal to each CPU. In
particular, both of the employed platforms have three levels of caches (L3, L2, and L1)
organized so that L3 is the largest in size but the slowest in terms of access time, while L1
is the smallest but the fastest.

Typically, the number of processing elements (cores) on a platform determines how
much parallelism can be implemented. Nonetheless, many modern processors (as in the
case of both platforms used in this study) also offer virtual threads. This is a technology for
optimizing processor resources and hiding memory hierarchy latency; the net effect is that a
single physical processor virtually appears as a set of multiple logical processors. In Intel’s
terminology this is called hyper-threading, and corresponds to simultaneous multithreading
(SMT) [47].

4.2. Quantitative Analysis of Speedup, Parallel Efficiency, and Scalability

In order to illustrate the benefits of parallelization, in this section we quantitatively as-
sess the computational performance achievable by the developed multithreaded prototype
in terms of canonical performance metrics. Therefore, we first introduce the basic notions
of parallel speedup, efficiency and the scalability; afterwards we show the experimental
results carried out on the two different shared-memory architectures introduced earlier.

The speedup factor of a parallel program is defined by the ratio [28]:

S(N) =
T (1)
T (N)

, (15)
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where T (N) is the execution time on the parallel architecture, N is the number of computing
elements (processor cores) used to solve the problem, and T (1) is the execution time of
the sequential implementation for the same problem. Note that the upper bound for the
speedup is N, which is achieved only in ideal conditions. On the other hand, the speedup
becomes unitary when the execution time of the parallel and sequential processing are
the same (no improvements in the execution time). Typically, the speedup S = S(N)
has a sub-linear trend due to inevitable parallel inefficiencies and intrinsically sequential
parts [21,22]. In order to scale the speedup factor to a value between 0 and 1, the efficiency
factor is usually introduced by dividing the achieved speedup by the number of allocated
processing units. The efficiency is, therefore, defined as [28]:

ε(N) =
S(N)

N
. (16)

Obviously, the efficiency is maximal (unitary) if S(N) = N, i.e., if all allocated N cores
are fully exploited while executing the parallel application. Moreover, the lowest efficiency
(1/N) is achieved when an application is executed sequentially using one core, while the
remaining N − 1 cores are allocated and do not process any task.

Preliminarily, we have experimentally verified that the implemented parallel proto-
type preserves the accuracy of the result attainable with the original sequential version.
In addition, the experimental performance has been evaluated by averaging a sufficient
number of measurements. The performances experimentally measured on platforms A
and B are specifically presented and discussed in the following.

Parallel performances were evaluated in terms of speedup end efficiency, by com-
paring the measured execution time required for sequential and parallel implementation
using various numbers of engaged threads threads/cores (N). In fact, the conducted scala-
bility analysis, with respect to the computational resources, is aimed at investigating how
performance changes when the number of used processing elements increases.

We first address the experimental results obtained on platform A with the Linux
operative system. Figure 7 displays the achieved performance metrics as a function of the
number of engaged threads (N ∈ {1, 2, 3, 4, 8, 16, 32}), for both the static (blue) and dynamic
(red) scheduling strategies. In particular, Figure 7a shows the speedup function S(N), the
ideal speedup being represented by the dashed line as a reference. The evaluated efficiency
ε(N) is depicted in Figure 7b. Table 3 summarizes the numerical values of execution times
and performance metrics.
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Figure 7. Experimental performance measured on platform A as a function of the number of engaged threads/cores (N),
for both static (blue) and dynamic (red) scheduling strategies: (a) Speedup factor S(N) (continuous lines) and ideal speedup
(dashed line) shown as a reference; (b) efficiency ε(N). Shaded areas in the graphs corresponds to the number of additional
threads provided by the hyper-threading technology.
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Table 3. Averaged parallel performance achieved on the two eight-core Intel® Xeon CPU E5-2660 (2.20 GHz) CPU
architecture (Platform A) for a 16,600 × 14,200 image size.

Number of Engaged Threads 1 2 4 8 16 32 (1) Scheduling

Speedup 1 1.60 2.76 4.40 5.71 6.20

StaticEfficiency 1 0.78 0.60 0.45 0.35 0.19

Execution time (s) 327 204 118 74 57 52

Speedup 1 1.60 2.77 4.41 5.73 6.81

DynamicEfficiency 1 0.80 0.69 0.55 0.36 0.21

Execution time (s) 327 204 118 74 57 48

Estimated sequential time (s) 21
1 16 physical cores, 32 logical units.

As is evident in Figure 7a, the measured speedup depended on the number of threads
N that were used for parallel execution. It can be seen that using more threads steadily
increased the performance. Accordingly, a significant speedup and parallelization efficiency
was achieved, and the speedup remained very close to the theoretical limit (see dashed
line in Figure 7a), with the inherent discrepancy due to the unavoidable presence of
residual sequential parts and synchronization overheads. As is well known, the speedup
is limited by the inherent sequential fraction of an algorithm [21–24]. In this experiment,
the sequential time was estimated to be 21s, a large part of which (16 s) is due to I/O
operations. Hence, the overall estimated sequential fraction is about 6.5%. It is worth
noting that by engaging 16 threads on the 16-core machines at our disposal, an efficiency of
36% giving a speedup of a factor of 5.73 was achieved, which is indeed a remarkable result
on shared memory architectures. Moreover, by leveraging the hyper-threading technology
it was possible to achieve a 6.81 overall speedup factor (see Table 3), with is a further
significant improvement.

Finally, we stress that the sequential execution took 327 s, whereas the execution
time with the multi-threaded implementation reduced to only 48 s in the case in which
32 threads were used, thus showing a remarkable reduction in runtime (see Table 3). As it is
evident from Figure 7a, the achieved performance scaled to the number of the used threads.
Moreover, the performances obtained with a static and dynamic scheduling strategy are
quite comparable.

The considered case study (Platform A) shows that our parallel implementation
reduces the execution time by a factor ranging from 6 to 7, thus making the precise (at the
sub-pixel level) geometric coregistration of high-resolution SAR images practicable in a
timely fashion (indicatively under one minute).

We underline again that, on this architecture, about 30–40% of the execution time of
the best performance cases is spent in I/O operations; a discussion on this point is carried
out later on.

The experimental results carried out on platform B using a Windows 10 professional
operative system are now addressed. Figure 8 shows the achieved performance metrics as a
function of the number of engaged threads N ∈ {1, 2, 3, 4, 8}, for both the static and dynamic
scheduling strategies, as done for Figure 7. Table 4 summarize the numerical values
of execution times and performance metrics obtained with Platform B. Specifically, the
sequential time was estimated to be 10 s (of which 5 s are associated with I/O operations),
hence the overall sequential fraction was 2%.
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Table 4. Averaged parallel performance achieved on Intel® Core™ i7-6700HQ CPU (2.60 GHz)
architecture (Platform B) for a 16,600 × 14,200 image size.

Number of Engaged Threads 1 2 4 8 (1) Scheduling

Speedup 1 1.82 2.95 4.04

StaticEfficiency 1 0.91 0.74 0.50

Execution time (s) 517 284 175 128

Speedup 1 1.85 3.01 4.53

DynamicEfficiency 1 0.92 0.75 0.57

Execution time (s) 517 280 172 114

Estimated sequential time (s) 10
1 four physical cores, eight logical units.

From Figure 8 we see that by engaging four threads an efficiency of about 75% was
achieved with a corresponding speedup factor of about 3, for both the static and dynamic
scheduling. Indeed, this is a quite remarkable result for shared memory architectures.
Moreover, by leveraging the hyper-threading technology, it was possible to achieve a
4.53 overall speedup factor (see Table 4), with a relative improvement of about 30%; in
this case, the dynamic scheduling performed slightly better than the static one. As for the
experiments on platform A, the achieved performances scaled well with the number of
engaged processing units in this case, too.

It is worth stressing that up to four threads the performances obtained with the static
and dynamic scheduling strategies were quite comparable. This indicates that, according
to the adopted parallel pattern, the workload distribution is evenly balanced and, therefore,
a static scheduling strategy is appropriate, with no significant improvement with respect to
the more flexible dynamic scheduling. Conversely, as is evident from Figure 8 (see shaded
areas), the adoption of dynamic scheduling might be advantageous, when hyper-threading
is used.

It is worth emphasizing that the pertinent inefficiencies are mainly ascribable to the
(residual) sequential parts of the algorithm as well as to the unavoidable synchroniza-
tion overheads.

In this second case study (Platform B), the obtained execution time reduction was also
considerable, thus making the precise coregistration achievable very quickly even on a
low-cost laptop (indicatively about 100 s).

A discussion regarding the different performances is now in order. To this end, we
need to analyze the differences in the hardware characteristics of the two architectures.

Platform A has an overall better performing cache compared to platform B because
of the larger L3 cache (20 MB vs. 6 MB); this implies that more data can be stored in the
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L3 cache for access by each of the CPUs. Platform A also has a relatively larger memory
bandwidth (51.2 GB/s vs. 34.1 GB/s), which is the maximum rate at which data can be read
from or stored into memory. As a matter of fact, memory-intensive threaded applications
can suffer from memory bandwidth saturation as more threads are introduced [30]. In
addition, platform A has more processing physical cores (16 vs. 4) resulting in a wide
available parallelism. Conversely, platform B has a higher turbo clock speed (3.5 GHz vs.
3 GHz), which can boost to a higher clock speed in order to offer increased performance,
and a higher RAM speed (2133 MHz vs. 1600 MHz).

A crucial factor limiting the parallel performance obtained on platform A with respect
to platform B can be attributed to their different storage systems. In fact, platform A is
equipped with a set of hard disk drives (electro-mechanical) in a RAID-5 (Redundant
Array of Independent/Inexpensive Disks) configuration, while platform B has a solid-state
drive (SSD). It is well known that SSDs are substantially faster and more responsive than
electro-mechanical hard disk drives; moreover, a further loss of performance is due the
use of a redundant file system (RAID-5 configuration) that is designed and optimized
for increasing the robustness to hardware faults and not the data access speed. For these
reasons, as the inputs are loaded into the RAM before processing, or the coregistered image
is finally saved on the storage system, the relatively reduced I/O speed of platform A
turns out in an equivalent augmented sequential part of the workload, with consequent
detriment of the overall parallel efficiency in accordance with Amdahl’s law [24,28].

It is important to remark that the designed parallel algorithm largely relies on in-
memory data management and processing. Accordingly, it works mainly on data stored in
the RAM, thus reducing a large part of the slow data accesses (I/O). Nonetheless, some
I/O operations involving the large images to be processed (e.g., at the beginning and at the
end of processing) remain unavoidable.

The abovementioned differences in the storage systems mostly explain the relatively
slightly better performance in terms of scalability achieved on platform B with respect to
that of platform A. According to our results, a primary challenge in large-data processing
is to overcome the I/O bottleneck, and thus the use of SSDs may be suggested where
performance is critical.

As a final remark, we underline that the experiments carried out on both platforms
demonstrate that the developed parallel prototype is easily portable and effectively appli-
cable, with scalable performance, to available multiprocessor platforms, which might have
different operative systems and architectures, and a variable number of processing cores.

5. Conclusions

In this paper, a parallel approach to the SAR image coregistration problem was
explored with the objective of taking advantage of the parallelism offered by currently and
widely available shared-memory multicore architectures. Specifically, we have proposed
a rigorous and efficient parallel algorithm based on multithreading by relying on high-
performance computing (HPC) methods [21–30] and with no accuracy loss.

Methodologically, the algorithm was preliminarily framed mathematically. Subse-
quently, a parallel version was proposed by suitably designing its parallel pattern and
implementing the parallelism at the thread level. OpenMP and the modern Fortran pro-
gramming language were employed to develop a highly efficient and portable multithread
prototype processing code.

The parallel performance of the implemented prototype processor was experimentally
investigated and quantitatively assessed by processing real high resolution SAR data and
using two different multicore architectures. The experimental analysis was conducted
by evaluating suitable performance metrics, which demonstrated the effectiveness of the
adopted parallel strategy. The scalable performance of the proposed solution has also
been investigated.

The implemented thread-level parallelism exhibited significant speedup and scalable
performances, thus enabling the full exploitation of the ubiquitous availability of shared
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memory computing platforms, such as general-purpose multicore CPUs. Moreover, the
parallel prototype offers a high degree of portability on different operating systems (e.g.,
Windows and Linux) as well.

As a result, the developed high performance prototype enables large scale and fast SAR
image coregistration operation on shared-memory multiprocessor systems; for this reason,
it can be advantageously and systematically applied in the interferometric processing of
multi-pass SAR datasets.

The implemented parallel pattern may be easily extended to different SAR config-
urations, and future developments will be specifically devoted to the application of the
implemented prototype solution to data of other SAR sensors (e.g., Sentinel-1) and multi-
mode configurations [48].
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