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Abstract: The traditional frequency-modulated continuous wave (FMCW) multiple-input multiple-
output (MIMO) radar two-dimensional (2D) super-resolution (SR) estimation algorithm for target
localization has high computational complexity, which runs counter to the increasing demand for
real-time radar imaging. In this paper, a fast joint direction-of-arrival (DOA) and range estimation
framework for target localization is proposed; it utilizes a very deep super-resolution (VDSR) neural
network (NN) framework to accelerate the imaging process while ensuring estimation accuracy.
Firstly, we propose a fast low-resolution imaging algorithm based on the Nystrom method. The
approximate signal subspace matrix is obtained from partial data, and low-resolution imaging is
performed on a low-density grid. Then, the bicubic interpolation algorithm is used to expand
the low-resolution image to the desired dimensions. Next, the deep SR network is used to obtain
the high-resolution image, and the final joint DOA and range estimation is achieved based on the
reconstructed image. Simulations and experiments were carried out to validate the computational
efficiency and effectiveness of the proposed framework.

Keywords: FMCW MIMO radar; joint DOA and range estimation; VDSR; Nystrom

1. Introduction

Frequency-modulated continuous wave (FMCW) has achieved great success in the
field of communications and has broad prospects in applications such as altimeters [1],
vehicle radars [2—-4] and synthetic aperture radars (SARs) [5-9]. The merits of FMCW
radars lie in their ranging ability and low power consumption [10,11]. Recently, the FMCW
multiple-input multiple-output (MIMO) radar was investigated, and it has an equivalent
virtual antenna array, which independently pairs transmitting and receiving elements as
virtual elements [12-14]. This greatly expands the aperture of the array, but is accompanied
by a sharp increase in data dimensions. Moreover, the received signal of FMCW MIMO
radar contains the information of direction-of-arrival (DOA) and range, which can be
used for target localization. It is indicated that the resolution of range is proportional
to the number of snapshots, which leads to a greatly reduced real-time performance
of the system when expanding the dimensions of the data for target localization using
traditional algorithms.

In order to achieve high accuracy target localization, joint DOA and range estimation
with high resolution is the key issue. As solutions to joint DOA and range estimation, 2D
algorithms have been proposed [13,15,16]. The 2D Fast Fourier Transformation (2D-FFT),
which is a fast algorithm, is used to estimate DOA and range. Unfortunately, due to
the limitations of the Rayleigh criterion and the bandwidth of FMCW MIMO systems,
the resolution is not satisfactory. In order to improve the resolution, a 2D multiple signal
classification (2D-MUSIC) algorithm for the joint angle and range estimation was presented,
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which was able to achieve good performance in the experimental data scenarios. However,
as for the algorithm in [16], a huge covariance matrix and 2D spectral peak search are
needed, which lead to high computational complexity. Thus, these methods make it
difficult to meet the real-time requirements.

In recent years, with the rapid development of machine learning, super-resolution
methods based on deep learning have become a hot spot [17], and the performances of these
methods have come to significantly surpass those of common methods [18-21]. In [18],
an SR algorithm based on sparse dictionary and anchored neighborhood regression (ANK)
was proposed. It has superior reconstruction speed and quality. However, the anchored
neighborhood projections of ANR are unstable for covering varieties of mapping relation-
ships, so is not suitable for dealing with practical engineering problems. In [19], an image
SR algorithm based on local linear regression and random forests was proposed. The stabil-
ity of this method is higher than the method in [18], but it cannot deal with SR tasks with
different magnifications either. In [20], an improved self-similarity based SR algorithm was
proposed, which exploits the statistical prior of the same image. However, the internal
dictionary is not always suitable, which leads to performance loss. In [21], a convolutional
neural network (CNN) was firstly used to implement image SR. Although this method
has excellent results due to its shallow network depth, it cannot achieve sufficient field of
vision, and cannot support multiple high-definition. As a result, this method is difficult to
use in SR tasks involving radar images with multiple sizes and grids. The emergence of
very deep super resolution (VDSR) [17] was a qualitative leap for networks based on a pure
CNN architecture. Whether it is an ultra-deep network structure or flexible image magnifi-
cation, VDSR is more suitable for dealing with the problem of radar image super-resolution.
This approach focuses on the brightness channel information of the image, reconstructs
the brightness residual between the high-resolution image and the low-resolution image
and finally obtains the high-resolution image. It is worth noting that the radar image can
be regarded as a color image with only the brightness channel; thus, the VDSR framework
is a more suitable representation of the reconstructed radar image.

In this paper, we propose a fast joint DOA and range estimation framework based
on a VDSR neural network to accelerate the estimation process without precision loss.
The proposed framework splits the estimation process into two parts: In the first part,
to solve the problem that the traditional 2D-MUSIC algorithm incurs a high computational
cost during covariance decomposition, the Nystrom method [22] is introduced to use the
covariance of partial data and obtain an approximate signal subspace. This procedure
avoids the calculation of the original covariance matrix. Then, a low-density grid is used
to generate small size and low-resolution images to avoid a massive 2D peak search.
The second part focuses on improving the estimation accuracy of the whole framework.
The VDSR network is used to construct a high-resolution image from the low-resolution
image achieved in the first part. Finally, the DOA and range are estimated from peaks of
the reconstructed image. The simulation results show that the proposed algorithm is much
faster than the traditional high precision solutions and the experimental results further
verify its performance.

The main contributions of our work are summarized as follows:

(1) A fast joint DOA and range estimation framework based on a VDSR neural network
is proposed. The framework can estimate the DOA and the range of FMCW MIMO radar
in a computationally efficient manner without precision loss.

(2) The proposed framework uses the Nystrom method to reduce the computational
complexity of the high-dimensional matrix signal subspace, and VDSR to ensure the
accuracy of the estimation.

(3) Simulations and experiments were carried out to validate the proposed framework,
and it is demonstrated that running time is greatly reduced without loss of accuracy.

The rest of the paper is organized as follows. In Section 2, the problem is formulated
and the data model is presented. A fast imaging algorithm based on Nystrom method and
a super-resolution imaging based VDSR method for FMCW MIMO radar are presented in
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Section 3. The training strategies are introduced in Section 4. Simulation and experimental
results are used to demonstrate the superiority of the proposed method compared to the
traditional 2D-MUSIC method. The paper is concluded in Section 5.

The notation related to this paper is shown in Table 1.

Table 1. Related notation.

Notations Definitions
capital bold italic letters matrices
lowercase bold italic letters vectors
j imaginary unit
e Euler number
t time
()H conjugate transpose operator
()T transpose operator
vec(-) vectorization operator
CM*N M x N dimensional complex matrix set
II-1l2 2-norm operator
E{-} mathematical expectation
® Kronecker product
® Khatri-Rao product
{3} Moore-Penrose Inverse
span{-} expansion space operator
min{-} minimum value
max{-} maximum value
Ipm Identity matrix of order M
ReLU Rectified Linear Units

2. Data Model

Consider a Texas Instruments (TI) Cascade FMCW MIMO Radar system consisting of
MMWAVCAS-RF-EVM and MMWAVCAS-DSP-EVM, shown in Figure 1, with 12 trans-
mitting elements and 16 receiving elements. As shown in Figure 2, the transmitting and
receiving elements form a huge virtual array; i.e., each virtual element will be generated at
the midpoint of any two transmit and receive elements. A denotes wavelength. We selected
arow of M purple virtual array elements to form a uniform linear array (ULA).

Receiving Elements

Transmitting Elements

Figure 1. TI Cascade FMCW MIMO Radar system.
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Figure 2. Virtual antenna array of TI Cascade FMCW MIMO Radar.

As shown in Figure 3, where 6 and d denote the DOA and interspacings of the element,
respectively, the FMCW signal transmitted from the transmitting element can be expressed

as follows: ' ,
S(t) _ e](anct+7rkst ) 1)

where f; and ks denote the carrier frequency and the slope of the chirps, respectively.
For K far-field narrow-band stationary targets, the transmit signal is reflected in K far-field
narrow-band stationary targets and the received signal of the m-th receiving element can
be represented as:

K
rm(t) = Z YiS(t — Tuk) + 1 () )
k=1
where 7y is the complex reflection coefficient of the k-th target, n,,(t) is the additive white
Gaussian noise (AWGN) at the m-th receiving element and the time delay T, is the time
taken for the signal radiated from the transmitting element to be reflected on the k-th target
and received by the m-th receiving element, given as:

2 Rm
Tk = z (Rk + Tk) (3)
~ 2(Ry+ % sinfy)
where c is the speed of light; Ry is the distance between the transmitting element and k-th
target; R, is the distance between the receiving element and the k-th target; and 6 denotes
the DOA of the k-th target. oy, is the relative positions of the m-th receiving element with
respect to the transmitting element. Then the time delay 7, can be expressed as:

2R d(m—1)sin®
ka:%_,_w @)

c
The received signals x,,(t) are then multiplied by the transmitted signal and run
through a low-pass filter (LPF), and with a sampling time Ts; the x,,(t) can be sampled as:

Xm[n] = xp [0 Ts] ' .
K ) j2rf. (@4» d(m—1) sin 0 ) 27tk (@4» d(m—1)sin 6 )nTS

©)

c c

+ 1y (nTs)

%mg", ignoring noise for the moment,
the received signal of the m-th element at time n can be expressed as:

where 1,,(nT;) is the sampled noise. As @ > d(m—1)
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K . ) 2Ry . 2R
xm[n] _ Z ,),ke]nﬂ%d(mfl)sm9k+]27rf57k+]27rk57knTs (6)
k=1

Based on Equation (6), for L snapshots, the matrix form of the received signal with
additive white Gaussian noise (AWGN) can be expressed as:

X = AS+ N e CMxL 7)

, . . ) T
where A = [ay, - ,ak], a; = [Leﬂﬂfcdsmﬂ,v/cl. .. ,6]27chd(M71)sm9i/c} i=12--,K
S ,SK}T, s = ej47rfcR,-/c[ej47tk5Ri/cTs,. B ,ej47rkSLR,-/cTs},i —1,2,.--,Kand N is

complex Gaussian noise with covariance 2.
In order to achieve super-resolution imaging, a new receiving data model is obtained
by transposition and vectorization:

X = vec (XT) e ciMx1 (8)
X=AS+N 9)
where A = ETOER, S = [5,...,5]", § = 7R/, ET = [eT(6),--,eT(6x)],

, . , . T
ER — [eR(Rl), o ,eR(RK)], eT(Gi) _ [1,6]27rfcdsm6,-/c/ . /e]27rfcd(Mfl)sm9,-/c} ,

eR(R;) = {ej47rk5R,-/cTsl, . ,ej47rk5LR,-/cT5}'

Transmitting/Receiving
Element

Receiving Element

Received Signal

/ Transmitted Signal

- od o~

Figure 3. A schematic diagram of the target localization system.

3. Fast Joint DOA and Range Estimation

Consider the data model of Equation (9). The sampling covariance can be expressed as:
R = XXH = ARAM + ¢21),, € CMIXML (10)

where Ry = E{S$S} is the signal covariance.
The above equation can be decomposed into the signal subspace and the noise sub-
space using eigenvalue decomposition:

R = U, A UH+u, A U

= U AU 02Ty )

where A is a diagonal matrix composed of the K largest eigenvalues. A, is a diagonal
matrix composed of the LM — K smaller eigenvalues. U; is the signal subspace composed
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of the eigenvectors corresponding to the largest K eigenvalues, and U, is the noise subspace
composed of the remaining eigenvectors.
Since the signal subspace is orthogonal to the noise subspace, i.e., AN U, = 0, the spa-
tial spectrum function of the 2D-MUSIC algorithm is:
1

PO(B/R) = [eT(Q) ® eR(R)]HUnU?EI[ET(G) X ER(R)] "

Therefore, the K largest peaks of Py are the DOA and range estimation of the targets.
The computation of 2D-MUSIC focuses on 2D spatial searching and matrix decomposi-
tion, whose computational complexities are O{ M?L? + g[ML(ML — K) + ML — K]} and
O{ M3L3}, respectively, where ¢ is the number of grids. It can be seen that as the snapshot
number and grid density increase, the amount of calculations will grow exponentially,
which seriously affects the real-time performance of the system.

To solve this problem, we propose a framework of fast joint DOA and range estimation
via Nytrom and VDSR. The structure of the proposed framework is shown in Figure 4,
and is divided into four parts: reshaping the received data, using the Nystrom method for
estimating subspace, using 2D-MUSIC for low-resolution imaging and using VDSR for
reconstructing a high-resolution image.

Receive Signals Reshaped Data
FMCW MIMO
Nystrom
—
Signal Subspace

Y

High-Resolution Low-Resolution /——
DOA & Range [«——=% VDSR mage | 9p-MUSIC

Figure 4. The structure of the proposed framework.

The reshaping part transforms the original data into the partitioned sampling convari-
ance matrix, as shown in Equations (8) and (10). The signal subspace is obtained using a
low-dimensional approximation in the Nystrom part, which reduces the computational
load of eigenvalue decomposition. In the 2D-MUSIC part, low-resolution imaging with low
grid density is obtained using the signal subspace. The joint DOA and range estimation can
be obtained from the VSDR part through a 2D peak search on the high-resolution image.

3.1. Nystrom-Based Low-Resolution Imaging

In this part, the Nystrom method is used to estimate the signal subspace. Then,
the 2D-MUSIC spatial spectrum function is formulated based on the signal subspace and
the low-resolution image is obtained.

The covariance matrix R is partitioned as follows:

R;; RH ]
R = 21 13
[ Ry1 Ry (13)

where Ry; € C#%%, Ryy € CML-2)xz R, e CML-2)x(ML-2) K < 7 < ML. The approxi-
mate signal subspace of the covariance matrix R is obtained by using the Nystrom method,
which only requires the information of Ry; and Ryp;. Thus, it is not necessary to calculate
the covariance matrix R. This information can be obtained by partitioning the received
data X as follows: _

X = { X } (14)

X>

where X] S CZXL, Xz S (C<ML72)XL.
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According to Equations (13) and (14), we have:
Ry = E{XlX{{} = A R.AM+02L (15)

Ry = E{%X}!} = AR, AT (16)

where A; and A; are matrices composed of the first z rows and the last ML — z rows of A,
respectively.
By applying eigenvalue decomposition on R;, we obtain:

Ry = UpApuil (17)

The approximate characteristic matrix is obtained using the Nystrom extension:

~ Uy, }
u= _ 18
{ RlenAn1 (18)

In Equation (18), matrix U does not satisfy the mutual orthogonality of the column

vectors, so the following orthogonalization operation is adopted. Let G:flA%{ % and

decompose the eigenvalue of GH'G:
GHG=U;AUY (19)

The approximate eigenmatrix satisfying the orthogonality of columns can be obtained
as follows:
U = UUcA;'? (20)

The approximate signal subspace comprises the last K columns of U.

Lemma 1 ([22]). We extend the lemma from the array to FMCW MIMO. In the equivalent virtual
array of FMCW MIMO radar, if there are K targets, we have span{U;} = span{Fx}, where Fx
represents the first K columns of U.

From Equations (17) and (19), it can be deduced that:

Uy H Hy 1 -1/2
u-= A U5 (AU U-A
{ R21U11A1—11 } 1 11( 11 11) GG

Ry } Hy -1 ~1/2
= AU U-A 21
{Rﬂ ( 11 11) GA¢g (21)

Rqq }
= D
{ Ry

where D = (A UH) ' UGAZY2.
According to Equations (14) and (15), we have:

[RH } B { A;R,A! ] +[ 21, }
Ry A2R5A11{ Opmr—z
N ol |
— ARAH + : (22)

By introducing Equations (22) into (21), we obtain the following results:

U=A(R +02(AMA) ") AlD

A (23)
= AHA]'D
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where H=R; + 02 (AHA) -1

According to Equation (10) and Equation (11), we have:
AR ANU,=U;A; — 02U, (24)
Then, Rs can be expressed as:
Ry = ATUs (A5 — 02Ty ) UH (AH) "

— ATUAUH(AY)T - 2Atuul (AH) T (25)
= ATUAUN(AN)T — o2 (AHA)

By introducing Equation (25) into H=R, + 02 (AHA) ! we have:
_ e\t
H=A"U,A,u" (AH> (26)

As span{Us} = span{A}, there exists a nonsingular matrix T such that Us = AT holds.
Substituting this matrix into Equation (26), we have:

H=TA*TH (27)

From the above analysis, we see that in the Nystrom approximate eigenmatrix U = AHA?I

D=AJ, where ] = HA''D, the first K columns of AH are independent and H and D are nonsin-
gular matrices because At has a K x z Vandermonde structure. Then, we have:

Fy = AT (28)
where T represents the first K columns of J, and span{Us} = span{Fx} holds.

Using the approximate signal subspace and setting low-density grids, the following
2D-MUSIC spatial spectrum function is formulated:

Prow(6,R) = H [eT(6) ® eR(R)]HFKHZ (29)

A low-resolution gray image can be obtained by normalizing the above equation as

follows: .
Prow — mln{PLow}ELow

max{ Prog } — min{Proq }

where Ej,,, is a matrix in which all elements of the same dimension as Pj,, are 1.

Prow = (30)

3.2. VDSR-Based High-Resolution Imaging

VDSR is a CNN architecture designed to perform single-image SR [17]. A VDSR
network can elicit the mapping relationship between a high-resolution image and a
low-resolution image through a very deep CNN structure. Different from traditional
CNNss [21], VDSR aims to reconstruct the residual between the low-resolution image and
high-resolution image. This residual contains deep high-frequency information. By using
bicubic interpolation to upscale the low-resolution image, the dimensions of the input
image and the desired output image can be matched. In addition, we use the bicubic
interpolation method to generate the training set. If the interpolation method changes, it
only needs to keep the same interpolation algorithm when generating the training set and
the actual super-resolution.

The small-size, low-resolution FMCW MIMO radar image obtained using the method
of the previous section is gray and can be regarded as an RBG image with only a brightness
channel. The VDSR network extracts the residual image from the luminance of a color
image; thus, the VDSR framework is very suitable for SR tasks.
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As shown in Figure 5, the VDSR is a cascaded pair of convolutional and ReLU layers.
It takes an interpolated low-resolution image as input and predicts a residual image as the
regression output. By superimposing the images, a high-resolution image can be obtained.
It should be noted that to maintain the sizes of all feature maps, zeros need to be padded
before convolutions. Some sample feature maps were drawn for visualization, most of
which were zero after applying the ReLU.

High-Resolution Image

Figure 5. The structure of VDSR.

The detailed structural parameters of the VDSR are shown in Table 2, and the train-
ing dataset can be found in [23], and consists of 20,000 natural images. The experimen-
tal platform was a PC with an Intel 19-10920X CPU, RTX3090 GPU and 64 GB of RAM.
The stochastic gradient descent algorithm with momentum (SGDM) 0.9 and a learning
rate of 0.1 was used to reduce learn the rate every 10 epochs. The maximum number of
epochs for training was set to 100, and a mini-batch with 64 observations was used at each
iteration. Training took about 2.1 h. The training procedure was offline and the training
time was not considered in the proposed method.

Table 2. Detailed structural parameters of VDSR.

Name Type Activations Learnables
Input Image Image Input 41 x41x1 -
Image Size: 41 x 41 x 1
Conv.1 Convolution 41 x 41 x 64 Weights 3 x 3 x 1 x 64
Number of Filters: 64, Filter Size: 3 x 3
with stride [1 1] and padding [111 1] Bias1 x 1 x 64
ReLU.1 ReLU 41 x 41 x 64 -
Conv.2 Convolution 41 x 41 x 64 Weights 3 x 3 x 64 x 64
Number of Filters: 64, Filter Size: 3 x 3
with stride [1 1] and padding [111 1] Bias1 x 1 x 64
ReLU.2 ReLU 41 x 41 x 64 -
Conv.3 Convolution 41 x 41 x 64 Weights 3 x 3 x 64 x 64
Number of Filters: 64, Filter Size: 3 x 3
with stride [1 1] and padding [111 1] Bias1 x 1 x 64
ReLU.3 ReLU 41 x 41 x 64 -
Conv.19 Convolution 41 x 41 x 64 Weights 3 x 3 x 64 x 64
Number of Filters: 64, Filter Size: 3 x 3
with stride [1 1] and padding [111 1] Bias1 x 1 x 64
ReLU.19 ReLU 41 x 41 x 64 -
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Table 2. Cont.
Name Type Activations Learnables
Conv.20 Convolution 41 x41x1 Weights 3 x 3 x 64
Number of Filters: 1, Filter Size: 3 x 3
with stride [1 1] and padding [111 1] Bias1 x 1
Residual Output Regression Output - -

mean—squared-err or

with response “Responselmage”

4. Simulations and Experiments

Several simulations and experiments were carried out to validate the performance
of the proposed method. First, we compare the accuracy of the proposed algorithm with
the original 2D-MUSIC algorithm [15], and then the computational complexity is verified.
Finally, the algorithms were applied to experimental data. The TI Cascade FMCW MIMO
Radar parameters shared by the simulations and experiments are shown in Table 3.

Table 3. TI Cascade FMCW MIMO Radar parameters.

Parameter Value Parameter Value
c 3x108m/s Ts 125 ns
fe 78.737692 GHz A 3.8 mm
d 1.9 mm M 86
ks 7.8986 MHz/ us L 75

4.1. Simulations

To verify the performance of the overall framework, consider two far-field narrow-
band stationary targets at (—14.5°,4.5 m) and (5.5°,6.5 m). The locationing effect was
evaluated using the root mean square error (RMSE) metric. Differently from the single
parameter estimation in [24,25], for the multi-parameter estimation problem, we defined
the RMSE of the DOA and the RMSE of the range as follows:

1 K MC
RMSEpoa = 1\TK Z Z 0 — th (31)
RMSEg — | —— & f 3y (Ry — Ry )? (32)
MCK = 5 '

where 6, and Ry are the k-th actual DOA and range, and @k/t, and Rk,t are the k-th estimated
values of DOA and range in the ¢-th Monte Carlo (MC) trial. The selection of the number of
MC depends on the stability of the algorithm. When the number of MC experiments is large
enough, the RMSE curves of the estimated parameters remain almost unchanged. After the
number of MC experiments exceeds 200, the RMSE curve of the proposed algorithm and
the comparison algorithm no longer changes with the increase of the number of MC
experiments, so the number of MC experiments was set to 200. In addition, the running
time of the algorithm was selected as performance metric of the real-time performance of
the algorithms.

For the sake of fairness, we considered the original 2D-MUSIC with different grids of
[1°,1m] and [0.1°, 0.1 m]. We set the low-density grid for the proposed algorithm in the
first stage as [1°, 1 m] and the super-resolution high-density as [0.1°, 0.1 m]. The parameter
z of the Nystrom method for solving the approximate signal subspace was 86, and the
number of snapshots was 75. As shown in Figures 6 and 7, the RMSE of the proposed
algorithm is better than that of 2D-MUSIC with a low-density grid but worse than that of
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2D-MUSIC with a high-density grid. Due to the existence of grid errors, the estimation error
of 2D-MUSIC with grids of [1°, 1 m] cannot be reduced beyond a certain value through the
increase of SNR. Moreover, as shown in Figure 8, the runtime of our proposed algorithm
was shorter than that of 2D-MUSIC.

1.2 T T T T T T T T T
—EO— 2D-MUSIC with girds of [1°, 1 m]
(¢ —f3— 2D-MUSIC with grids of [0.1°, 0.1 m]

b —fe— VDSR Based 2D-MUSIC |

<o

0
T

1

RMSE (deg)
e
[o)}

o o %))
\J \J \
04 A
0. 27— — e ! \ .
(E | D | 1 E | 1 D 1 1 .Ij
0 2 4 6 8 10 12 14 16 18 20
SNR (dB)
Figure 6. RMSE of DOA versus SNR.
oP——o0 o o )
—E&— 2D-MUSIC with girds of [1°, 1 m]
~—3— 2D-MUSIC with grids of [0.1°, 0.1 m]
04l —sfe— VDSR Based 2D-MUSIC i
é 03 i
58]
2]
=
~
0. b
0.1
(El L L E Il L E 1 L E Il L D
0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

Figure 7. RMSE of DOA versus SNR.
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104 -
2D-MUSIC with with grids of [1°, 1 m]
+  2D-MUSIC with with grids of [0.1°, 0.1 m]
VDSR Based 2D-MUSIC
1 03 e HHHHHH R AR R R
I Ll T S eoetl
5}
£
[_4
=}
=
o~ 101 L
10°
10—1 L L L 1 [ 1 1 I 1 1

10 20 30 40 50 60 70 80 90 100
Index

Figure 8. Simulation runtime.

4.2. Experiments

The experimental data were from the TI Cascade FMCW MIMO Radar shown in
Figure 1. The experimental site was a microwave anechoic chamber with metal reflectors.
The number of snapshots was 75. First, the 2D-MUSIC algorithm is compared with the
Nystrom-based 2D-MUSIC algorithm, and then the 2D-MUSIC algorithm is compared
with the VDSR-based 2D-MUSIC algorithm.

4.2.1. Comparisons of the 2D-MUSIC Algorithm and the Nystrom-Based
2D-MUSIC Algorithm

As shown in Figures 9 and 10, we set up two scenarios, one with a single target at
(0.7°,4.5 m) and one with two targets at (—6.4°,5.2 m)&(4.7°,5.3 m), respectively. In this
part, the locationing effect was selected as the performance metric.

Figure 9. Single target scenario.
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Figure 10. Double target scenario.

We set the grid for both the original 2D-MUSIC algorithm and the Nystrom-based 2D-
MUSIC algorithm as [0.1°, 0.1 m]. As shown in Figure 11a—d, although the Nystrom-based
2D-MUSIC algorithm has more sidelobes than that of the 2D-MUSIC algorithm, it does not

affect target discrimination.
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Figure 11. Imaging: (a) Single target with Nystrom-based 2D-MUSIC. (b) Two targets with Nystrom-based 2D-MUSIC.
(c) Single target with 2D-MUSIC. (d) Two targets with 2D-MUSIC.
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Figure 12a,b shows comparisons between 2D-MUSIC algorithm and the Nystrom-
based 2D-MUSIC algorithm for the localization results of one and two targets with experi-
mental data. It can be seen from the figures that the performance of the Nystrom-based
2D-MUSIC algorithm is similar to that of 2D-MUSIC, which shows that the subspace
obtained by Nystrom method has high accuracy in practical applications.
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Figure 12. A comparison of target localization Results: (a) Single target. (b) Two Targets.
4.2.2. Comparisons of the 2D-MUSIC Algorithm and the VDSR-Based
2D-MUSIC Algorithm

As shown in Figures 13 and 14, we set up two scenarios, one with a single target at
(0°,5 m) and one with two targets at (—13.7°,4.22 m)&(6.27°,5.03 m), respectively. In this
part, the locationing effect and running time were selected as performance metrics.

Figure 13. Single-target scenario for dataset collection.
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Figure 14. Two-target scenario for dataset collection.

To obtain the low-resolution image, the low-density intervals were set as [1°, 1m)].
Figure 15a,b shows the low-resolution imaging results obtained from the experimental data
of one and two targets, respectively, using the method proposed in Section 3.1. It is obvious
that the peak value in the 2D image does not represent the targets’ positions accurately due
to the large grid division.
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Figure 15. Low-resolution imaging: (a) Single target. (b) Two targets.

Figure 16a,b shows the residual images obtained via VDSR from the low-resolution
images of the one and two-target experimental data, with resolutions of 0.1° and 0.1 m,
respectively. It can be obviously observed that the missing high-frequency information of
the low-resolution image was reconstructed to correct the peaks and edges.
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Figure 16. Residuals of low-resolution: (a) Single target. (b) Two targets.

Figure 17a,b shows the high-resolution images of the single and double-target exper-
imental data, respectively, which complement the details of the low-resolution images.
As can be seen from the figures, the image peaks are not very sharp, which indicates that
with the decrease of the distance between targets, the grid needs to be further refined to
achieve better results also.
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Figure 17. High-resolution imaging results: (a) Single target. (b) Two targets.

As the validation of experimental data does not require a large number of Monte Carlo
experiments, a fine grid [0.1°, 0.1 m] was adopted. As shown in Figure 18, the estimation
with 2D-MUSIC needed several minutes; in contrast, the proposed algorithm only took
0.45 s, which shows the real-time advantage of the algorithm. Figure 19a,b shows the
imaging results of the one and two-target experimental data obtained using the original
2D-MUSIC. It can be seen that with a complete noise subspace and a fine grid, 2D-MUSIC
can achieve very sharp spatial spectrum peaks. However, these results are obtained at the
cost of extremely long running times, and the real-time performance is extremely poor.
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Figure 18. Experimental runtime.
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Figure 19. 2D-MUSIC imaging results with a fine grid: (a) Single target. (b) Two targets.

Figure 20a,b shows comparisons between the 2D-MUSIC algorithm and the proposed
algorithm for the localization results of one and two targets with experimental data. It can
be seen from the figures that the performance of the proposed algorithm is similar to that of
2D-MUSIC, despite the fact that our algorithm is much faster than 2D-MUSIC. In addition,
as both algorithms present similar offsets, the calibration of the radar needs to be improved
in future work.
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Figure 20. A comparison of target localization results: (a) Single target. (b) Two targets.

5. Conclusions

In this paper, a fast joint direction-of-arrival (DOA) and range estimation framework
for target localization based on a VDSR neural network was proposed. With the proposed
algorithm, both the estimation error and the running time can be effectively decreased.
Simulations and experiments have proved that real-time performance of the proposed
algorithm is more plausible than with the traditional 2D-MUSIC algorithm. Although the
proposed method has achieved good results, it is still limited to the X86 platform and has
not been implemented in embedded hardware such as FPGA. In addition, the network
structure is not optimal. Some excellent compact network structures in [26,27] could be
used to further improve network efficiency. Therefore, in future work, improvements to
this method will be made, and real-time signal processing will be implemented on the
embedded hardware platform.
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