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Abstract: Range cell migration and Doppler frequency migration induced by the target maneuver-
ability are two difficulties of target signal enhancement and radar detection performance. In order
to resolve them, a novel subaperture joint coherent integration (SJCI) algorithm is proposed in this
article, which consists of three stages. Firstly, it divides the target signal into several subapertures,
in which the Doppler frequency dispersions can be neglected. Afterward, coherent integration
within each subaperture is implemented via scaled Fourier transform. Finally, correcting the Doppler
frequency shifts and phase differences via axis rotation and phase compensation technology, the
joint coherent integration among the subapertures can be achieved effectively. Based on the SJCI
algorithm, an upgrade algorithm named subspace SJCI (SSJCI) is presented. Through acceleration
space division and subspace translation, the SSJCI algorithm extends the subaperture time and opti-
mizes the computation complexity significantly. Theoretical analyses and performance comparisons
demonstrate that the SSJCI algorithm can accomplish a good trade-off among signal-to-noise ratio
gain, detection capability, resolution, and computation complexity. In addition, the results of the
numerical experiments further verify the effectiveness of the proposed algorithm.

Keywords: coherent integration; Doppler frequency migration; range cell migration; target detection

1. Introduction

In recent years, a large number of weak, high-speed, and high-maneuvering targets
have emerged, which is a great challenge for radar detection and parameter estimation.
According to the current research, long-time integration-based algorithms can effectively
accumulate their echo energy and improve the radar performance [1–6]. On the basis of
the phase information utilization, they can be categorized into two kinds: incoherent inte-
gration and coherent integration [7,8]. In general, incoherent integration-based algorithms
are relatively easy to implement because they do not need to achieve phase adjustments.
Nevertheless, the possible signal-to-noise ratio (SNR) loss makes them unsuitable for the
low SNR scenario. By contrast, coherent-integration-based algorithms are more advanta-
geous, which have received rapid developments in the past decades. However, superior
coherent-integration-based algorithms must resolve two main problems induced by the
target maneuverability, i.e., range cell migration (RCM) and Doppler frequency migration
(DFM) [9–12].

Keystone transform (KT) [13,14], axis rotation (AR) [15,16], and Radon Fourier
transform (RFT) [17–19] are three conventional methods, which can effectively address
RCM and achieve coherent integration for the target with uniform velocity. However,
they are invalid for the high-order maneuvering target because they cannot cope with
DFM. In a phased-array radar system, some methods are developed to resolve RCM. For
example, the authors of [20] divide the high-range resolution range profiles into low-range
resolution segments, and the authors of [21] formulate the detection problem as a multiple
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hypothesis test and solve it with model order selection rules. Furthermore, the code phase
migration effect similar to RCM, which is induced by the motion in the direct-sequence
spread-spectrum signal, is analyzed detailedly in [22].

As for DFM compensation, several representative algorithms are presented, including
fractional Fourier transform (FRFT) [23] and Lv’s distribution (LVD) [24]. In the face
of accelerated targets, some methods are generated via combing the RCM and DFM
compensation algorithms directly, for example, second-order KT-FRFT (SKT-FRFT) [25] and
improved AR-FRFT (IAR-FRFT) [26]. Apparently, in these methods, the DFM correction
performance may be affected by the previous RCM correction process. In order to eliminate
them simultaneously, several Radon-based methods are proposed, including generalized
RFT (GRFT) [27], Radon FRFT (RFRFT) [28], and Radon LVD (RLVD) [29]. These methods
obtain excellent integration performance via three-dimensional (3-D) ergodic searching
in the parameter space. Unfortunately, with the extension of the 3-D parameter space,
their computation complexities may become large. In addition, the blind speed side lobe
may induce severe false alarm. These issues greatly limit their applications. In order to
avoid searching, a variety of correlation-function-based methods are researched, including
adjacent cross-correlation function (ACCF)-based [30] methods, 3-D scaled transform
(TDST) [31], and 3-D coherent integration (TDCI) [32]. Nevertheless, due to the applications
of the correlation functions, these methods may not be appropriate for the low SNR scenario.
Moreover, the cross-terms may appear in these methods, degrading their performances.

In addition to incoherent integration and coherent integration, several methods be-
tween them are studied, including hybrid integration (HI) [33] and subspace HI (SHI) [34].
They divide the radar echoes into several subapertures. In each subaperture, the target
signal stays in a single range and Doppler unit so that it can be coherently integrated via
moving target detection (MTD) technology directly without any compensation. Afterward,
incoherent integration is adopted among the subapertures to achieve signal enhancement
further. These methods strike a good balance between integration performance and compu-
tation complexity. However, their anti-noise performance relies heavily on the subaperture
length. Therefore, they may be inappropriate for the low SNR scenario also.

In this article, we propose a novel subaperture joint coherent integration (SJCI) algo-
rithm. It divides the target signal into several subapertures, in which the proper subaperture
time guarantees the Doppler frequency concentration. Thereafter, it cancels the RCM and
DFM issues and achieves full coherent integrations within and among the subapertures.
Therefore, the SJCI algorithm acquires significant SNR gain. Based on the SJCI algorithm,
we present an upgrade algorithm, i.e., subspace SJCI (SSJCI) algorithm. Its core ideas are
acceleration space division (ASD) and subspace translation (ST), which help to extend
the subaperture time, optimize the detection accuracy and reduce the computation com-
plexity. Theoretical analyses and performance comparisons are provided, leading us to
the conclusion that the SSJCI algorithm can accomplish a good compromise among SNR
gain, detection performance, resolution, and computation complexity. Finally, numerical
experiments are carried out, which further prove the effectiveness of the SSJCI algorithm.

The remainder of this article is organized in the following manner: Section 2 estab-
lishes the mathematical model for the received target signal. Section 3 presents the theory
of the SJCI algorithm. In Section 4, the SSJCI algorithm is proposed. In Section 5, theo-
retical subaperture time, SNR gain, detection performance, resolution, and computation
complexity are analyzed and compared. In Section 6, some numerical experiments are
carried out to demonstrate the effectiveness and advantages of the SSJCI algorithm. Finally,
conclusions are drawn in Section 7.

Notation 1. In the sequel, variables are denoted by the symbols in italics. Invariants and functions
are denoted by the symbols in non-italics. The symbols | · |, ⊗, max(·), and (·)−1 denote modulus
value, convolution, maximum value, and inverse function, respectively. [·, ·] and {·, ·, · · · , ·}
denote interval and set, respectively.
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2. Mathematical Model

Suppose the radar transmits a linear frequency modulated signal, which has the
following form

St(t) = rect
(

t
TP

)
exp

[
j2π

(
fct +

1
2

γt2
)]

, (1)

where t denotes the fast time variable, rect
(

t
TP

)
=

{
1, |t| ≤ TP/2,

0, |t| > TP/2.
denotes the rectan-

gular pulse function, TP denotes the time width, fc denotes the carrier frequency, and γ
denotes the chirp rate.

Suppose that K maneuvering targets appear in the radar surveillance area. The
received echoes from them can be formulated as

Sr(t, tm) =
K

∑
k=1

Akrect
(

t− τk
TP

)
exp

[
j2π

(
fc(t− τk) +

1
2

γ(t− τk)
2
)]

, (2)

where tm ∈ [0, T] denotes the azimuth slow time variable, T denotes the integration time,
Ak denotes the backscatter coefficient of the k-th target, k ∈ {1, · · ·, K}, τk =

2Rk(tm)
c denotes

the time delay, Rk(tm) denotes the instantaneous radial range between the k-th target and
the radar, and c denotes the speed of light.

After down-conversion by multiplying Equation (2) with the reference signal
exp(−j2π fct), we obtain

Sb(t, tm) =
K

∑
k=1

Akrect
(

t− τk
TP

)
exp

[
j2π

(
− fcτk +

1
2

γ(t− τk)
2
)]

. (3)

By performing pulse compression in the time domain, one has

Spc(t, tm) = Sb(t, tm)
⊗

rect
(

t
TP

)
exp(−jπγt2)

=
K

∑
k=1

A1ksinc[B(t− τk)]exp(−j2π fcτk),
(4)

where
⊗

denotes convolution operation, A1k denotes the amplitude after pulse compres-
sion, sinc(·) denotes the sinc function, and B denotes the bandwidth.

In order to simplify the mathematical model, we ignore the motion higher than
acceleration. Then Rk(tm) can be approximately expressed as

Rk(tm) = R0k + vktm +
1
2

akt2
m, (5)

where R0k denotes the initial radial range between the k-th target and the radar, vk and ak
denote the radial velocity and acceleration, respectively.

Substituting Equation (5) into (4), we obtain

Spc(t, tm) =
K

∑
k=1

A1ksinc
[

B(t− 2R0k + 2vktm + akt2
m

c
)

]
exp

(
−j2π fc

2R0k + 2vktm + akt2
m

c

)
. (6)

Then the Doppler frequency of the k-th target can be acquired, expressed as

fD = −2vk + 2aktm

λ
, (7)

where λ = c/ fc denotes the wavelength.
It is observed from Equations (6) and (7) that due to the maneuverabilities, the en-

velopes and the Doppler frequencies of the targets are varying with the slow time variable,
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i.e., both RCM and DFM occur, which will greatly deteriorate the integration performance.
Thus, they must be resolved.

3. SJCI Algorithm

By performing Fourier transform (FT) to Equation (6) with respect to t, the signal is
transformed into the range frequency domain, expressed as

Sf( f , tm) = FTt[Spc(t, tm)]

=
K

∑
k=1

A2krect
(

f
B

)
exp

[
−j2π( f + fc)

2R0k + 2vktm + akt2
m

c

]
,

(8)

where f denotes the range frequency variable, FTt[·] denotes the FT operation with respect
to t, and A2k denotes the amplitude in the range frequency domain.

Inspired by the HI algorithm [33], we divide the integration time T into PSJCI subaper-
tures to weaken the impacts of the accelerations. In each subaperture, the integration time
can be calculated as

TSJCI =
T

PSJCI
. (9)

Then, a 3-D signal is formed by the subapertures, which is expressed as

Ss( f , ts, τs) = DIVPSJCI [Sf( f , tm)]

=
K

∑
k=1

A2krect
(

f
B

)
exp

[
−j2π( f + fc)

2R0k
c

]
× exp

(
−j2π

f + fc

fc

2vkts + 2aktsτs + akt2
s

λ

)
exp

(
−j2π

f + fc

fc

2vkτs + akτ2
s

λ

)
,

(10)

where ts ∈ [0, TSJCI] denotes the slow time variable in the subaperture, τs = {0, TSJCI, 2TSJCI,
· · · , (PSJCI − 1)TSJCI} denotes the lag time variable generated by the division operation,
and DIVPSJCI [·] denotes the division operation.

Define the acceleration space by Aspace = [aL, aR], where aL and aR denote its
lower and upper boundaries, respectively. While TSJCI satisfies the condition given in
Equation (11), Equation (10) can be simplified, as expressed as Equation (12).

2amaxTSJCI

λ
<

1
TSJCI

, (11)

Ss( f , ts, τs) =
K

∑
k=1

A2krect
(

f
B

)
exp

[
−j2π( f + fc)

2R0k
c

]
× exp

(
−j2π

f + fc

fc

2vkts + 2aktsτs

λ

)
exp

(
−j2π

f + fc

fc

2vkτs + akτ2
s

λ

)
,

(12)

where amax = max{|aL|, |aR|} denotes the maximum acceleration.
Obviously, the second-order term with respect to ts in Equation (10) is neglected. Thus,

the coherent integration along ts-axis can be accomplished by scaled FT (SFT), expressed as

SSFT( f , ft, τs) = SFTts [Ss( f , ts, τs)]

=
∫

Ss( f , ts, τs)exp
(

j2π
f + fc

fc
ftts

)
dts

=
K

∑
k=1

A3krect
(

f
B

)
exp

[
−j2π( f + fc)

2R0k
c

]
exp

(
−j2π

f + fc

fc

2vkτs + akτ2
s

λ

)
× sinc

[
TSJCI

(
ft −

2vk + 2akτs

λ

)]
,

(13)
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where ft denotes the scaled Doppler frequency variable, SFTts [·] denotes SFT operation
with respect to ts, and A3k denotes the amplitude after SFT operation.

It can be observed from Equation (13) that the energies of the target signals are
concentrated into planes ft =

2vi+2aiτs
λ (i = 1, 2, · · ·, K), which are not parallel to the f − τs

plane. Thus, they cannot acquire further coherent integrations. In order to correct the
planes, AR operation is employed, which is expressed as

SAR( f , f ′t , τs) = ARka [SSFT( f , ft, τs)] = SSFT( f , ft − kaτs, τs), (14)

where f ′t denotes the rotated scaled Doppler frequency variable, ARka [·] denotes the AR
operation with respect to ka, and ka denotes the rotation factor.

Thereafter, phase compensation technology is adopted, expressed as

Scom( f , f ′t , τs) = SAR( f , f ′t , τs)exp
[

j2π
f + fc

fc

(
kaτ2

s
2

+ f ′t τs

)]
. (15)

When ka = 2ak
λ , Equation (15) can be written as

Scom( f , f ′t , τs) =A3krect
(

f
B

)
exp

[
−j2π( f + fc)

2R0k
c

]
exp

[
j2π

f + fc

fc

(
f ′t −

2vk
λ

)
τs

]
× sinc

[
TSJCI

(
f ′t −

2vk
λ

)]
+ Scom−others( f , f ′t , τs),

(16)

where Scom−others( f , f ′t , τs) denotes the acceleration-uncompensated target signals.
Then, the energy along the τs-axis can be accumulated via the complex addition

operation. Accordingly, the dimension is reduced, represented as

Sadd( f , f ′t ) = addτs [Scom( f , f ′t , τs)]

= A4krect
(

f
B

)
exp

[
−j2π( f + fc)

2R0k
c

]
sinc

[
T
(

f ′t −
2vk
λ

)]
× sinc

[
TSJCI

(
f ′t −

2vk
λ

)]
+ Sadd−others( f , f ′t ),

(17)

where addτs [·] denotes the complex addition operation with respect to τs, A4k denotes the
amplitude after the complex addition operation, Sadd−others( f , f ′t ) denotes the acceleration-
uncompensated target signals.

Finally, the coherent integration along the f -axis can be achieved via inverse FT (IFT),
expressed as Equation (18).

SIFT(t′, f ′t ) = IFT f [Sadd( f , f ′t )]

=
∫

Sadd( f , f ′t )exp
(

j2π f t′
)
d f

= A5kexp
[
−j2π

2R0k
λ

]
sinc

[
B
(

t′ − 2R0k
c

)]
sinc

[
T
(

f ′t −
2vk
λ

)]
× sinc

[
TSJCI

(
f ′t −

2vk
λ

)]
+ SIFT−others(t′, f ′t ),

(18)

where t′ denotes the new fast time variable, IFT f [·] denotes the IFT function with respect
to f , A5k denotes the amplitude after IFT operation, and SIFT−others(t′, f ′t ) denotes the
acceleration-uncompensated target signals.

In order to illustrate the procedures above clearly, the target signal energy distributions
by different processing stages are given in Figure 1, where the dark shadings represent the
target signal energy.
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Figure 1. Target signal energy distributions by different processing stages: (a) target signal energy
distribution in the range frequency domain; (b) target signal energy distribution in the subapertures;
(c) target signal energy distribution after SFT operation; (d) target signal energy distribution after
AR operation; (e) target signal energy distribution after phase compensation and complex addition
operations; (f) target signal energy distribution after IFT operation.

It can be observed from Equation (18) that when ka = 2ak
λ , the k-th target signal is

well focused by the SJCI algorithm, whereas due to the influences of the mismatched
accelerations, the other target signals cannot. Therefore, in order to guarantee effective
integrations for all the targets, the SJCI algorithm needs to traverse the acceleration space,
which can be represented as

SSJCI(t′, f ′t , ap)

= IFT f

[
addτs

[
AR 2ap

λ

[
SFTts

[
DIVPSJCI [Sf( f , tm)]

]]
exp

[
j2π

f + fc

fc

( ap

λ
τ2

s + f ′t τs

)]]]
,

(19)

where ap ∈ Aspace denotes the potential acceleration.
Obviously, by going through the acceleration space, the SJCI algorithm generates a

3-D domain, where all the target signals can be effectively integrated into distinct peaks
whose coordinates reflect their motion parameters accurately. For instance, the k-th target
is integrated in ( 2R0k

c , 2vk
λ , ak), by which R0k, vk, and ak can be estimated. The flow chart of

the SJCI algorithm is given in Figure 2.

Figure 2. The flow chart of the SJCI algorithm.

In terms of the fast-moving target, due to the limited pulse repetition frequency Fp,
Doppler ambiguity may occur. In this case, vk should be rewritten as

vk = v0k + Nkvb, (20)
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where v0k denotes the base band velocity of vk, Nk denotes the fold factor, and vb =
Fpλ

2
denotes the blind velocity.

Substituting Equation (20) and the special relationship exp
(

j2π 2Nkvbtm
λ

)
= 1 into

Equation (8), one has

Sf( f , tm) =
K

∑
k=1

A2krect
(

f
B

)
exp

[
−j2π( f + fc)

2R0k + 2v0ktm + akt2
m

c

]
exp

(
−j2π f

2Nkvbtm

c

)
. (21)

Under this circumstance, the SJCI algorithm cannot be used directly. Thus, before
the SJCI algorithm, the Doppler ambiguity must be compensated. Define a normalized
matched filtering function as

HNk ( f , tm) = exp
(

j2π f
2Nkvbtm

c

)
. (22)

Multiplying Equation (21) with (22), one has

SMF( f , tm) = Sf( f , tm)HNk ( f , tm)

= A2krect
(

f
B

)
exp

[
−j2π( f + fc)

2R0k + 2v0ktm + akt2
m

c

]
+ SMF−others( f , tm),

(23)

where SMF−others( f , tm) denotes the ambiguity-uncompensated target signals.
It can be observed that the Doppler ambiguity of the k-th target is canceled by the

simple multiplication. Afterward, the SJCI algorithm can be utilized normally. Notably, in
order to guarantee the effective integrations for all the targets, a few searches for the fold
factors based on the potential velocities are needed, which may increase the computation
cost to some extent.

4. SSJCI Algorithm

According to the theory of the SJCI algorithm, the maximum acceleration determines
the subaperture time. Large maximum accelerations lead to short subaperture times, few
sampling points, and poor detection accuracies. In this situation, supply-zero operation for
the subapertures is always needed to satisfy the detection accuracy requirement, which
may induce a massive computation burden. In order to address this issue, we propose the
SSJCI algorithm in this section, where ASD and ST operations are accomplished to reduce
the maximum acceleration. In this way, the subaperture time is extended, the sampling
points are increased, and the detection accuracy is improved, which reduce or even cancel
the supply-zero operation, relieving the calculating pressure to some extent. It is proved
in Section 5 that with the same detection accuracy, the SSJCI algorithm can inherit all the
advantages of the SJCI algorithm with lower computation complexity. Therefore, the SSJCI
algorithm can be considered as an upgrade of the SJCI algorithm. Detailed steps of the
SSJCI algorithm are given as follows.

Step 1. Divide the acceleration space Aspace into KSSJCI subspaces by ASD operation,
expressed as Equation (24). The diagram of ASD operation is shown in Figure 3a. The
length of each subspace is4aSSJCI =

aR−aL
KSSJCI

.

Aspace
ASD−→ {Asub−1, Asub−2, · · ·, Asub−i, · · ·, Asub−KSSJCI

}, (24)

where Asub−i = [aL + (i − 1)4aSSJCI, aL + i4aSSJCI] denotes the i-th subspace,
i ∈ {1, 2, · · · , KSSJCI}.



Remote Sens. 2021, 13, 1948 8 of 19

Figure 3. The diagrams of ASD and ST operations: (a) the diagram of ASD operation; (b) the diagram
of ST operation.

Step 2. Translate the subspaces to the center subspace Acenter = [−4aSSJCI
2 , 4aSSJCI

2 ]
by ST operation. The diagram of the ST operation is shown in Figure 3b. In this way,
the maximum acceleration is maximally decreased to 4aSSJCI

2 . Accordingly, the constraint
condition given in Equation (11) is changed into Equation (25), where the subaperture time
TSSJCI is effectively improved.

4aSSJCITSSJCI

λ
<

1
TSSJCI

. (25)

The translation amounts can be expressed as

{ata−1, ata−2, · · · , ata−i, · · ·, ata−KSSJCI}, (26)

where ata−i denotes the translation amount of the i-th subspace, which can be calculated by

ata−i = aL +

(
i− 1

2

)
4aSSJCI. (27)

Corresponding to each subspace, the target signal must be compensated by the transla-
tion amount. For instance, the compensation for the i-th subspace can be expressed as

Sf−i( f , tm) = Sf( f , tm)exp
[

j2π( f + fc)
ata−it2

m
c

]
. (28)

Step 3. Implement the SJCI algorithm on every subspace and acquire the SJCI results.

S i
SJCI(t

′, f ′t , apc)

= IFT f

[
addτs

[
AR 2apc

λ

[
SFTts

[
DIVPSSJCI [Sf−i( f , tm)]

]]
exp

[
j2π

f + fc

fc

( apc

λ
τ2

s + f ′t τs

)]]]
,

(29)

where apc ∈ Acenter denotes the potential acceleration in the center subspace, and
PSSJCI =

T
TSSJCI

denotes the number of the subapertures in the SSJCI algorithm.
Step 4. Rearrange the SJCI results by order of the subspaces and output the SSJCI

result SSSJCI(t′, f ′t , ap). The flow chart of the SSJCI algorithm is given in Figure 4.
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Figure 4. The flow chart of the SSJCI algorithm.

5. Theoretical Analyses and Performance Comparisons

In this section, the performances of HI, SHI, SJCI, SSJCI, and GRFT algorithms are an-
alyzed and compared theoretically. Specifically, the five compared aspects are subaperture
time, SNR gain, detection probability, resolution, and computation complexity, respectively.

5.1. Subaperture Time

The subaperture time of the HI algorithm denoted as THI is constrained by [33]

vmaxTHI +
1
2

amaxT2
HI <

c
2Fs

2amaxTHI

λ
<

1
THI

,
(30)

where vmax and amax denote the maximum radial velocity and acceleration, respectively, Fs
denotes the sampling frequency.

The subaperture time of the SHI algorithm denoted as TSHI is constrained by [34]

1
2

(
4vSHITSHI +

1
2
4aSHIT2

SHI

)
<

c
2Fs

4aSHITSHI

λ
<

1
TSHI

,
(31)

where 4vSHI and 4aSHI denote the lengths of the velocity and acceleration subinter-
vals, respectively.

The SHI algorithm is an upgrade for the HI algorithm, where 1
24vSHI ≤ vmax and

1
24aSHI ≤ amax. Thus, TSHI ≥ THI. The subaperture times of SJCI and SSJCI algorithms are
constrained by Equations (11) and (25), where 1

24aSSJCI ≤ amax. Obviously, TSSJCI ≥ TSJCI.
Due to the absence of the velocity constraint, TSJCI ≥ THI. Similarly, under the circumstance
that4aSHI = 4aSSJCI, TSSJCI ≥ TSHI. Thanks to the complete aperture, the GRFT algorithm
has the best subaperture time TGRFT = T. Since TSJCI and TSHI cannot be compared directly,
we sort the subaperture times of the five algorithms by the following two orders

TGRFT ≥ TSSJCI ≥ TSHI ≥ THI, (32)

TGRFT ≥ TSSJCI ≥ TSJCI ≥ THI. (33)
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5.2. SNR Gain

The SNR gain of the HI algorithm is calculated as

GSNR,HI =
SNRHI

SNRPC
=
√

PHIMHI =
√

MMHI, (34)

where SNRHI and SNRPC denote the SNRs after the HI algorithm and pulse compression,
respectively, PHI denotes the number of the subapertures in the HI algorithm, MHI = THIFp
denotes the number of the pulses in each subaperture, M = TFp denotes the total number
of the pulses.

The SNR gain of the SHI algorithm is calculated as

GSNR,SHI =
SNRSHI

SNRPC
=
√

PSHIMSHI =
√

MMSHI, (35)

where SNRSHI denotes the SNR after the SHI algorithm, PSHI denotes the number of the
subapertures in the SHI algorithm, and MSHI = TSHIFp denotes the number of the pulses
in each subaperture.

In SJCI, the operations acquiring SNR gains include: SFT, complex addition, and IFT
operations, which can be calculated as

GSNR,SFT =
SNRSFT

SNRf
= MSJCI, (36)

GSNR,add =
SNRadd
SNRSFT

= PSJCI, (37)

GSNR,IFT =
SNRSJCI

SNRadd
=

NB
Fs

, (38)

where SNRf denotes the SNR after pulse compression in the range frequency domain,
SNRSFT, SNRadd, and SNRSJCI denote the SNRs after SFT, complex addition, and SJCI
operations, respectively, MSJCI = TSJCIFP denotes the number of the pulses in each sub-
aperture, PSJCI denotes the number of the subapertures in the SJCI algorithm, and N and B
denote the number of the samplings in each pulse and bandwidth, respectively.

Considering the relationship SNRf
SNRPC

= Fs
NB , the SNR gain of the SJCI algorithm can be

obtained by

GSNR,SJCI =
SNRSJCI

SNRPC
= MSJCI × PSJCI ×

NB
Fs
× Fs

NB
= M. (39)

Similarly, the SNR gain of the SSJCI algorithm can be accomplished, expressed as

GSNR,SSJCI =
SNRSSJCI

SNRPC
= MSSJCI × PSSJCI ×

NB
Fs
× Fs

NB
= M, (40)

where SNRSSJCI denotes the SNR after the SSJCI algorithm, MSSJCI = TSSJCIFP denotes the
number of the pulses in each subaperture, PSSJCI denotes the number of the subapertures
in the SSJCI algorithm.

In the GRFT algorithm, the SNR gain can be calculated as

GSNR,GRFT =
SNRGRFT

SNRPC
= M, (41)

where SNRGRFT denotes the SNR after the GRFT algorithm.
Considering that T ≥ TSHI ≥ THI, the SNR gains can be easily sorted, expressed as

GSNR,GRFT = GSNR,SSJCI = GSNR,SJCI ≥ GSNR,SHI ≥ GSNR,HI. (42)
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5.3. Detection Probability

HI and SHI algorithms combine the coherent and incoherent integrations. After coher-
ent integrations, the SNRs can be expressed as MHISNRPC and MSHISNRPC, respectively.
The square-law detectors by their incoherent integrations among PHI and PSHI subapertures
can be represented as

PHI

∑
m=1
|zHI,m|2

H1
>

<
H0

σ2
HIYHI, (43)

PSHI

∑
m=1
|zSHI,m|2

H1
>

<
H0

σ2
SHIYSHI, (44)

where zHI,m and zSHI,m denote the detection samples in the m-th subaperture by the HI
and SHI algorithms, respectively, H1 and H0 denote the target existing and nonexisting hy-
potheses, σ2

HI and σ2
SHI denote the noise variances, and YHI and YSHI denote the normalized

detection thresholds.
The false alarm probability denoted as PFA and the normalization detection thresholds

can be derived in the following relationships [35].

PFA = F(PHI, YHI) =
PHI−1

∑
m=0

e−YHI
Ym

HI
m!

, (45)

PFA = F(PSHI, YSHI) =
PSHI−1

∑
m=0

e−YSHI
Ym

SHI
m!

. (46)

According to the derivation given in [35], their detection probabilities can be calculated,
represented as

PD,HI = QPHI(
√

2PHIMHISNRPC,
√

2YHI) = QPHI(
√

2MSNRPC,
√

2F−1(PHI, PFA)), (47)

PD,SHI = QPSHI(
√

2PSHIMSHISNRPC,
√

2YSHI) = QPSHI(
√

2MSNRPC,
√

2F−1(PSHI, PFA)), (48)

where Q(·) denotes the Marcum Q function, F−1(·) denotes the inverse function of F(·).
Despite full coherent integrations, GRFT, SSJCI, and SJCI algorithms can be regarded

with incoherent integration of one sampling point. Accordingly, their square-law detectors
can be represented as

|zGRFT|2
H1
>

<
H0

σ2
GRFTYGRFT, (49)

|zSSJCI|2
H1
>

<
H0

σ2
SSJCIYSSJCI, (50)

|zSJCI|2
H1
>

<
H0

σ2
SJCIYSJCI, (51)

where zGRFT, zSSJCI, zSJCI denote the detection samples by GRFT, SSJCI, and SJCI algorithms,
respectively, σ2

GRFT, σ2
SSJCI, σ2

SJCI denote the noise variances, and YGRFT, YSSJCI, YSJCI denote
the normalized detection thresholds.

Similarly, their detection probabilities can also be obtained, expressed as

PD,GRFT = Q1(
√

2MSNRPC,
√

2F−1(1, PFA)), (52)
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PD,SSJCI = Q1(
√

2MSNRPC,
√

2F−1(1, PFA)), (53)

PD,SJCI = Q1(
√

2MSNRPC,
√

2F−1(1, PFA)). (54)

Considering PHI ≥ PSHI ≥ 1, the detection probabilities by the same false alarm
probability can be easily sorted, expressed as

PD,GRFT = PD,SSJCI = PD,SJCI ≥ PD,SHI ≥ PD,HI. (55)

5.4. Resolution

The resolutions of range, velocity, and acceleration of the HI algorithm denoted as
Rr,HI, Rv,HI, and Ra,HI are expressed as [36]

Rr,HI =
c

2B
, Rv,HI =

λ

2THI
, Ra,HI =

λ

PHIT2
HI

=
λ

MTHI
FP

. (56)

The resolutions of range, velocity, and acceleration of the SHI algorithm denoted as
Rr,SHI, Rv,SHI, and Ra,SHI are expressed as [34]

Rr,SHI =
c

2B
, Rv,SHI =

λ

2TSHI
, Ra,SHI =

λ

PSHIT2
SHI

=
λ

MTSHI
FP

. (57)

In order to simplify the derivation, we take the k-th target as an example to analyze
the resolutions of the SJCI algorithm. Let f ′t =

2vk
λ and ap = ak; therefore, SSJCI

(
t′, 2vk

λ , ak

)
can be derived as

SSJCI

(
t′,

2vk
λ

, ak

)
= A5kexp

[
−j2π

2R0k
λ

]
sinc

[
B
(

t′ − 2R0k
c

)]
. (58)

Thus, the range resolution Rr,SJCI can be calculated as

Rr,SJCI =
c

2B
. (59)

Let t′ = 2R0k
c and ap = ak, thus SSJCI

(
2R0k

c , f ′t , ak

)
can be derived as

SSJCI

(
2R0k

c
, f ′t , ak

)
= A5kexp

[
−j2π

2R0k
λ

]
sinc

[
TSJCI

(
f ′t −

2vk
λ

)]
sinc

[
T
(

f ′t −
2vk
λ

)]
. (60)

Accordingly, the velocity resolution Rv,SJCI can be derived as

Rv,SJCI =
λ

2T
. (61)

Without consideration of the AR operation, let t′ = 2R0k
c and f ′t = 2vk

λ , thus

SSJCI

(
2R0k

c , 2vk
λ , ap

)
can be derived as

SSJCI

(
2R0k

c
,

2vk
λ

, ap

)
= A5kexp

[
−j2π

2R0k
λ

]
sinc

(
T2 ap − ak

λ

)
. (62)

Thus, the acceleration resolution Ra,SJCI can be obtained, expressed as

Ra,SJCI =
λ

T2 . (63)
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On the basis of the theory given in Section 4, the resolutions of range, velocity, and
acceleration of the SSJCI algorithm denoted as Rr,SSJCI, Rv,SSJCI, and Ra,SSJCI can be accom-
plished similarly, expressed as

Rr,SSJCI =
c

2B
, Rv,SSJCI =

λ

2T
, Ra,SSJCI =

λ

T2 . (64)

The resolutions of range, velocity, and acceleration of the GRFT algorithm denoted as
Rr,GRFT, Rv,GRFT, and Ra,GRFT are expressed as [34]

Rr,GRFT =
c

2B
, Rv,GRFT =

λ

2T
, Ra,GRFT =

λ

T2 . (65)

Based on the relationship T ≥ TSHI ≥ THI, the resolutions can be compared, ex-
pressed as

Rr,GRFT = Rr,SSJCI = Rr,SJCI =Rr,SHI = Rr,HI,

Rv,GRFT = Rv,SSJCI = Rv,SJCI ≤Rv,SHI ≤ Rv,HI,

Ra,GRFT = Ra,SSJCI = Ra,SJCI ≤Ra,SHI ≤ Ra,HI.

(66)

5.5. Computation Complexity

In this subsection, the number of the real number operation is considered as a criterion
to evaluate the computation costs. Denote the numbers of the search fold factors and accel-
erations by NF and Na, respectively. Then, the computation costs of the main procedures in
the SJCI algorithm can be calculated and listed in Table 1.

Table 1. Computation costs of the SJCI algorithm.

Procedure Computation Cost

Doppler ambiguity compensation 6NFMN
SFT operation 5NFMNlog2MSJCI

Phase compensation 6NFNaMN
Complex addition operation 2NFNaMN

IFT operation 5NFNaMSJCINlog2N

Thus, the total computation cost of the SJCI algorithm can be concluded, expressed as

ISJCI ≈ 5NFMNlog2MSJCI + 8NFNaMN + 5NFNaMSJCINlog2N. (67)

The computation costs of the main procedures in the SSJCI algorithm are listed in
Table 2.

Table 2. Computation costs of the SSJCI algorithm.

Procedure Computation Cost

ST compensation 6KSSJCIMN
SJCI operation 5KSSJCINFMNlog2MSSJCI + 8NFNaMN + 5NFNaMSSJCINlog2N

Therefore, the overall computation cost of the SSJCI algorithm can be approximately
calculated by

ISSJCI ≈ 5KSSJCINFMNlog2MSSJCI + 8NFNaMN + 5NFNaMSSJCINlog2N. (68)

To guarantee the rationality of the comparison among HI, SHI, SJCI, SSJCI, and
GRFT algorithms, the same detection accuracy is required. With the criterion of the SSJCI
algorithm, the numbers of the search grids in HI, SHI, and GRFT algorithms are all set
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as NFNaMSSJCIN, and MSJCI is supplied to MSSJCI via supply-zero operation. Under this
circumstance, the computation costs of the five algorithms are re-calculated, presented in
Table 3, where Q denotes the number of the subspaces in the SHI algorithm.

Table 3. Computation costs comparison.

Method Computation Cost

HI 5MNlog2MHI + PHINFNaMSSJCIN
SHI QMN[5log2N + 5log2MSHI + 6] + PSHINFNaMSSJCIN
SJCI 5NFNMSSJCIPSJCIlog2MSSJCI + 8NFNaNMSSJCIPSJCI + 5NFNaNMSSJCIlog2N

SSJCI 5KSSJCINFNMlog2MSSJCI + 8NFNaNM + 5NFNaNMSSJCIlog2N
GRFT 8MNFNaMSSJCIN

Without losing generality, we give a set of typical values to analyze the computation
costs of SJCI and SSJCI algorithms: N = 1200, M = 4000, NF = 3, Na = 1200, PSJCI = 40.
KSSJCI varies from 1 to 100. In this case, their computation costs are numerically calculated,
shown in Figure 5. It can be observed that compared with the SJCI algorithm, the SSJCI
algorithm acquires significant computation cost optimization.

Figure 5. Computation complexity comparison between SJCI and SSJCI algorithms.

Thereafter, we compare the computation costs of HI, SHI, SJCI, SSJCI, and GRFT
algorithms. Similarly, a set of typical values are given: N = 1200, NF = 3, Na = 1200,
Q = 256, KSSJCI = 16, MHI = MSJCI = 100, MSHI = MSSJCI = 400. M varies from 400 to
10,000. In this case, the computation costs of the five algorithms are numerically calculated,
as shown in Figure 6.
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Figure 6. Computation complexity comparison among HI, SHI, SJCI, SSJCI, and GRFT algorithms.

The HI algorithm can be effectively implemented, where only fast FT (FFT) and real
addition operations are employed. Apparently, it asks for the lowest computation cost.
On the contrary, the implementation of the GRFT algorithm cannot be sped up, which
requires the most complex addition and multiplication operations. Thus, it holds the
highest computation complexity. Due to the large amount of coherent compensations and
transforms, the computation burdens of SJCI and SSJCI algorithms are heavier than those of
SHI and HI algorithms. Based on the typical values, we sort the computation complexities
as follows

IGRFT > ISJCI > ISSJCI > ISHI > IHI. (69)

6. Numerical Experiments and Results Analyses
6.1. Multiple Targets Detection

In this subsection, four targets denoted as Target A–D are simulated to demonstrate
the validity of the SSJCI algorithm for multiple targets. The radar parameters are given as
follows: fc = 1 GHz, B = 5 MHz, Fs = 10 MHz, Fp = 1000 Hz, T = 2.5 s. The parameters of
the four targets are given in Table 4.

Table 4. Parameters of the four targets.

Target Range (m) Velocity (m/s) Acceleration (m/s2) SNR (dB)

Target A 5000 540 54 −10
Target B 5000 540 45 −10
Target C 5000 630 45 −10
Target D 5450 540 45 −10

The SSJCI outputs of the four targets are shown in Figure 7. In order to present the
processing results clearly, velocity–acceleration, range–acceleration, and range–velocity
slices are extracted, respectively. It can be observed that the four targets are all integrated
into distinct peaks, whose locations reflect their motion parameters accurately. The sim-
ulation experiment demonstrates that the SSJCI algorithm can effectively cope with the
multi-target scenario.
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Figure 7. SSJCI outputs of the four targets: (a) the velocity–acceleration slice with the range being 5000 m; (b) the velocity–
acceleration slice with the range being 5450 m; (c) the range–acceleration slice with the velocity being 540 m/s; (d) the
range–acceleration slice with the velocity being 630 m/s; (e) the range–velocity slice with the acceleration being 45 m/s2;
(f) the range–velocity slice with the acceleration being 54 m/s2.

6.2. Detection Performance Comparison

In this subsection, the detection probabilities of HI, SHI, SSJCI, and GRFT algorithms
are compared by 1000 Monte Carlo runs. The radar parameters are the same as those of the
experiment in Section 6.1. The false alarm probability is set as 10−6. The motion parameters
of the target are given as follows: R0 = 5 km, v = 120 m/s, and a = 40 m/s2. The input SNR
varies from −33 dB∼−9 dB. The subaperture times of HI, SHI, and SSJCI algorithms are
0.025 s, 0.1 s, and 0.1 s, respectively. The simulation result is shown in Figure 8.

Figure 8. Detection probabilities of HI, SHI, SSJCI, and GRFT algorithms.
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Thanks to the full coherent integration, GRFT and SSJCI algorithms show almost
the same detection performance. However, as illustrated in Section 5.5, the computation
burden of GRFT is much heavier. As to the detection probability PD = 0.8, the required
SNR of the SHI algorithm is 4dB higher than that of the SSJCI algorithm, which is induced
by the incoherent integration among the subapertures. According to the parameters, the
HI algorithm employs much more subapertures. Thus, it cannot perform as well as the
SHI algorithm. Obviously, the simulation result is consistent with the theoretical analysis
given in Section 5.3. The comparison reflects the excellent detection performance of the
SSJCI algorithm.

6.3. Real Measured Data Processing

In this section, we investigate the performance of the SSJCI algorithm by processing a
set of real measured data, which was recorded by an X-band radar whose parameters are
given as follows: fc = 8.85 GHz, B = 40 MHz, Fs = 60 MHz, Fp = 1000 Hz. In the outfield
experiment, one cooperative car was tested. We extracted and processed 1000 continuous
pulses from the data, the results of which are shown in Figure 9.

Figure 9. Real measured data processing results: (a) received radar signal after pulse compression;
(b) the range–velocity slice with the acceleration being 1.4 m/s2; (c) the range–acceleration slice with
the velocity being 3.814 m/s; (d) the acceleration–velocity slice with the range gate being 31.

The extracted radar echoes are shown in Figure 9a, where the target signal is sub-
merged in the powerful noise. It can be observed from Figure 9b–d that the test target is
effectively integrated by the SSJCI algorithm with its motion parameters estimated accu-
rately. Moreover, we compare the required minimum false alarm probabilities to achieve
target detection by HI, SHI, SSJCI, and GRFT algorithms, the results of which are given in
Table 5. Obviously, GRFT and SSJCI algorithms perform much better. It is worth noting
that the SSJCI algorithm requires much lower computation complexity, which has been
proved in Section 5.5. Combining the results of Sections 5 and 6, the SSJCI algorithm can
be a good candidate for the maneuvering target detection.
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Table 5. Real data processing by the four algorithms.

Algorithm HI SHI SSJCI GRFT

Required false alarm probability 10−3 10−4 10−7 10−7

7. Conclusions

This article proposes a novel SJCI algorithm for the maneuvering target detection. It
can effectively cope with the RCM and DFM issues and achieve full coherent integration
with superior anti-noise performance. In addition, an upgraded algorithm is presented,
namely, the SSJCI algorithm. It retains the advantages of the SJCI algorithm with longer
subaperture time, better detection accuracy, and lower computation cost. Theoretical
analyses and performance comparisons demonstrate that the SSJCI algorithm can strike
a good balance among SNR gain, detection performance, resolution, and computation
complexity. Finally, numerical experiment results further verify the effectiveness of the
SSJCI algorithm.
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