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Abstract: Three-dimensional (3D) building models are closely related to human activities in urban
environments. Due to the variations in building styles and complexity in roof structures, automati-
cally reconstructing 3D buildings with semantics and topology information still faces big challenges.
In this paper, we present an automated modeling approach that can semantically decompose and
reconstruct the complex building light detection and ranging (LiDAR) point clouds into simple
parametric structures, and each generated structure is an unambiguous roof semantic unit without
overlapping planar primitive. The proposed method starts by extracting roof planes using a multi-
label energy minimization solution, followed by constructing a roof connection graph associated
with proximity, similarity, and consistency attributes. Furthermore, a progressive decomposition
and reconstruction algorithm is introduced to generate explicit semantic subparts and hierarchical
representation of an isolated building. The proposed approach is performed on two various datasets
and compared with the state-of-the-art reconstruction techniques. The experimental modeling results,
including the assessment using the International Society for Photogrammetry and Remote Sensing
(ISPRS) benchmark LiDAR datasets, demonstrate that the proposed modeling method can efficiently
decompose complex building models into interpretable semantic structures.

Keywords: compound building reconstruction; LiDAR; point clouds; semantic decomposition

1. Introduction

Buildings are the most prominent features in an urban environment. Due to its vast
application demands, such as solar radiation estimation [1], visibility analysis [2], and
disaster management [3]. The three-dimensional (3D) reconstruction and modeling have
received intensive attention in city planning, geomatics, architectonics, computer vision,
photogrammetry, and remote sensing. The rapid data acquisition technology from the
optical image and light detection and ranging (LiDAR) can produce increasingly dense and
reliable point clouds, making it possible to automatically reconstruct 3D building models
in a large area. During past decades, various 3D modeling approaches in interactive [4] or
automatic [5,6] have been proposed to reconstruct 3D building models using the satellite
and aerial optical images [7–9], LiDAR [5,10], and combined images and LiDAR [11,12],
resulting in full 3D or 2.5D building models at the scale of a city [13,14] and an individual
building [4,15]. Even though much progress has been made to produce building models
better and faster, the reliable and automatic reconstruction of detailed building models
remains a challenging issue [16,17]. In particular, the reconstructed purely geometric model
is usually a combination of planar patches or a set of polygons, which is difficult for many
disciplines such as urban planning and land management to further semantically interpret
and edit the types and structures of buildings.

In this work, we present a novel unsupervised approach to reconstruct the point
clouds into semantic structures (e.g., dormer, hipped roof), purely using the geometric
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constraints. Departing from previous studies, our approach can directly recognize and
interpret meaningful roof semantic subparts and their hierarchical topology for a com-
pound 3D building, which can be further used to enrich the building model library or
construct public training data for supervised learning. The main contributions of this work
are twofold:

(1) a progressive grouping algorithm is applied to automatically decompose com-
pound buildings into subparts, thereby generating a structured unit block without any
independent overlapping elements,

(2) a hierarchical topology tree model is introduced, as well as a roof connection graph
and its decomposed subgraphs, to simplify the complexity of the building reconstruction.

The remainder of this paper is organized as follows. An overview of the related unsu-
pervised and supervised approaches for building reconstruction is introduced in Section 2.
The detailed reconstruction steps are described in the next Section 3. Experimental results
and discussions are presented in Sections 4 and 5, respectively. Conclusions including
future work are summarized in Section 6.

2. State-of-the-Art Methods

Over the past few decades, the issue of 3D building reconstruction has received consid-
erable attention probably due to the advancement of photogrammetry and active sensors,
producing a wealth of research work on this broad topic. Among these huge varieties of
reconstruction methods, we can distinguish two categories for building modeling, unsu-
pervised and supervised methods, which is the first time for such a summary as we know.
In this section, the most related literature on 3D building reconstruction using ALS point
clouds is discussed.

2.1. Unsupervised Methods

Unsupervised building reconstruction has been studied extensively in the fields of city
planning, geomatics, architectonics, computer vision, photogrammetry, and remote sensing.
These 3D building modeling approaches can be divided into data-driven and model-driven
methods. A comparison on the data-driven and model-driven approaches can be found in
Haala and Kada [18]. Interested readers are referred to some review literature [17,19]. Due
to insufficient input data and complex building types, 3D building reconstruction remains
an open problem even if only simple flat roof surfaces are considered [5]. Thus, hybrid-
driven methods are gradually being concerned, which integrate additional information
from both data- and model-driven methods.

For data-driven approaches, also called non-parametric or bottom-up approaches,
it assumes that a building is a polyhedral model, which can be directly modeled by
geometric information such as the intersection and regularization. It usually starts with
the extraction of roof planar patches by region growing [20,21], feature clustering [22,23],
model fitting [24,25], and global energy optimization [26–29], and then assembling these
extracted roof planes to form a polygon building model. To improve the shape of the
reconstructed 3D models, some regularization rules, such as parallel and perpendicular are
often applied, resulting in a compact 3D building polygonal model with roof ridges and
boundaries. These data-driven methods [13,30–32] have succeeded in the reconstruction of
simple Manhattan-like objects but are unstable in the presence of noisy or incomplete point
clouds. In order to sufficiently utilize the prior knowledge for building reconstruction,
Zhou and Neumann [32] improved the quality of roof models by discovering the global
regularities of the similarities between roof planar patches and roof boundaries, which
can significantly reduce the complexity of 3D reconstructions. Poullis [33] developed a
complete framework to automatically reconstruct urban building models from point clouds
by combining a hierarchical statistical analysis of the data geometric properties and a fast
energy minimization process for the boundary extraction and refinement. To generate
more detailed roof models, Dehbi et al. [34] propose a novel method for roof reconstruction
using active sampling, and it is limited to only dormer types. The main advantage is that it
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can reconstruct a polyhedral building with complex shapes, while the main drawback is
the sensitivity to the incompleteness of the point cloud caused by occlusions, shadows, etc.
Besides, the generated models from line segments and planar patches are usually purely
geometric models, and the semantics of the roof structures are always missed.

The model-driven methods [35–39], known as top-down or parametric methods, start
from predefined parametric 3D roof structures and then fit a building model that is best-
fitted the input point cloud, resulting in some simple roof blocks in the early stage. Kada
and McKinley [40] decomposed the LiDAR point cloud data into multiple objects and then
combined them into a whole model. It performs well for automatic reconstruction on a
large scale. In addition, 3D building roof structures can be fitted and recognized from
the Reversible Jump Markov Chain Monte Carlo algorithm [41] and EM-based Gaussian
mixture technique [42]. Moreover, constructive solid geometry (CSG) [43–46] primitives
are always introduced in the process of model-driven building reconstruction, which can
produce complete 3D building models through Boolean operators (union, intersection,
and subtraction). The predefined CSG components organized by semantic information
and shape parameters are suitable for 3D roof reconstruction for buildings with fixed
styles. However, it is difficult for us to automatically decompose a complex building
into predefined CSG primitives, thus, a semi-automatic process is usually adopted using
the external ground plans or building footprints [44,46,47]. To deal with more complex
buildings, Wang [46] proposed a novel method to reconstruct a compound building with
semantic structures using roof local symmetries. The model-driven approaches can robustly
reconstruct building models with simple roof styles by utilizing prior knowledge like
parallel and symmetry, generating watertight building models. However, roof primitives
or structures in the true world reveal a huge diversity, thus, it will fail when a searched
roof cannot be described by any of the predefined primitive [34,48,49].

The hybrid-driven 3D reconstruction approaches [10,34,48,50], combining the con-
ventional data- and model-driven strategies, aim to recognize building roof structures or
search the best-fitted roof primitives from a predefined roof library. These hybrid-based
algorithms can benefit from the roof topology graphs (RTG), which is a graph reflect-
ing neighboring relations between extracted roof planes. Once the RTG is obtained, the
searching and fitting process is performed in the topological space. The first RTG-based
reconstruction can be found in Verma et al. [51], where the normal vector is added as an
attribute of RTG. However, the scope of its application has been significantly reduced
because the predefined roof primitive types are simple and fixed. Oude Elberink and Vos-
selman [52] expanded the parametric roof primitives’ library and added more connected
attributes such as convexity and concavity for building reconstruction. Similar works by
Perera and Maas [50] and Xiong et al. [53] were proposed to distinguish the roof elements
and interpret building structures by the improvements in reliability and availability of
RTG. The circle graph analysis [5] by minimal-close circles and outer-most circles are more
adaptive than previous modeling methods. This sub-graph matched approach is easily
prone to errors if mismatches of a sub-graph. In order to avoid multiple searching and
matching of the same roof element, Rychard and Borkowski [10] propose a novel building
reconstruction method to generate interpretable roof semantic blocks using a new roof
structure library. Instead of using the roof topology graph, Xu et al. [54] developed a
hierarchical topology tree (HRTT) model expressed by roof planar topological connections
on plane–plane, plane–model, and model–model to reconstruct 3D building models. It
can produce more accurate building models and can obviously improve the topological
quality. However, an inherent problem of hybrid reconstruction is that it can be easily
suffered error-prone in itself (e.g., incomplete roof planes extraction) or mismatches of roof
sub-graphs. It is difficult to describe various building styles in the human world using
limited roof primitives from a predefined RTG library. Moreover, they cannot interpret the
semantic structures and maintain a valid topology of the building.
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2.2. Supervised Methods

Supervised 3D building reconstruction approaches have gradually attracted widespread
attention, especially the emergence of convolutional neural networks (CNN). Similar to
the two-dimensional image semantic labeling methods, it assigns the most probable label
to each 3D element (e.g., point, planes, roof subparts) using a labeling model learned
from a huge number of training data. These labeled semantic features can be classified
by a machine learning-based method [55,56]. The random forest [13] and support vector
machines [55] are often used to identify the main building components, such as floors,
ceilings, and roofs, which can be further assembled into a semantically enriched 3D model.
However, the inputs for these methods are the encoded training features derived from local
(e.g., surface area, orientation) and contextual (e.g., coplanarity, parallelism) information,
which needs to be designed by hand. Recently, the emerging deep learning techniques
have reached human-level performance in the domain of computer vision and natural
language processing and have gradually been introduced to building reconstruction. Wich-
mann et al. [57] developed and released an available training dataset named RoofN3D,
which can be used to train CNN for different 3D building reconstruction tasks. Axels-
son et al. [58] have presented a deep convolutional neural network to automatically classify
roof types into ridges and flat roofs, which can further support the generation of a na-
tionwide 3D landscape model. It cannot interpret large buildings with small meaningful
subparts automatically. Zhang and Zhang [59] introduced a deep-learning-based approach
to successfully reconstruct urban building mesh models at level of detail 2 (LOD2) ac-
cording to the CityGML specification but cannot interpret the building structures and
roof topology. In addition, Yu et al. [60] developed a new fully automatic 3D building
reconstruction approach that can generate the LOD1 building models in a large area but
cannot generate complicated building structures. Although various supervised solutions
have been proposed in recent years to reconstruct buildings with simple roof types, they
are still hindered by the lack of public training data, especially the semantic subparts of
complex buildings.

3. Methodology

The framework of the proposed complex building reconstruction approach from 3D
point clouds, as shown in Figure 1, encompasses four key components, data preprocessing
(Section 3.1), roof plane extraction and semantic labeling (Section 3.2), building semantic
decomposition (Section 3.3), and generation of building models (Section 3.4).

3.1. Data Preprocessing

During data preprocessing, regions of building blocks are first detected from 3D point
clouds. Taking the original point cloud as input, terrain points are firstly separated from
non-terrain points using filter approaches like the adaptive TIN [61], cloth simulation filter
(CSF) [62], and two-step adaptive extraction [63]. To obtain building and vegetation point
clouds, a height threshold (1.5 m–2.5 m) processing was used to identify the high-rise
points from the non-terrain points, then the obtained high-rise points can be further used
to extract building point cloud using a top-down extraction approach [64]. Moreover,
the extraction of building point cloud will benefit from the corresponding image data,
as points can be projected back on imagery and cleaned using the normalized difference
vegetation index (NDVI) threshold (0.1–0.15). With the extracted building point cloud,
a Euclidean clustering method is applied to group the into individual clusters, and the
clusters with small area (3–5 m2) are removed as tree clusters. The threshold of a small
area is determined by the point density and the minimum number of points per cluster;
e.g., if the point density of the point cloud is 4 points/m2, and a cluster with 12 points
indicate an area of approximate 3 m2. After the aforementioned process, these segmented
individual buildings can be subsequently reconstructed. It should be emphasized that
these parameters (height, NDVI, area threshold) are selected empirically, and the details
for these operations and parameters are beyond the scope of this paper.
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3.2. Roof Plane Extraction and Semantic Labeling

This is a preliminary step for building reconstruction; we first segment the roof point
clouds into individual planes by minimizing a global energy function, and then tag its
semantics as roof or attachment (e.g., dormer, gable, hipper, chimney). Roof plane segmen-
tation from point clouds is crucial to 3D building reconstruction and is still challenging
due to noisy, incomplete, and outlier-ridden data. To achieve accurate and reliable roof
planes, a multi-label optimization model [65] was applied, as presented in Equation (1).

E(L) =

data cos t︷ ︸︸ ︷
∑
p

D
(

p, Lp
)
+

smooth cos t︷ ︸︸ ︷
∑

(p,q)∈TinEdge
wpq · δ(p, q) +

label cos t︷ ︸︸ ︷
∑

Li∈L
|ξL| (1)

The introduced model can transform the plane extraction problem into the best match-
ing issue by balancing different energy costs on geometric data errors (data cos t), spatial
smooth coherence (smooth cos t), and the number of planes (label cos t). The objective of
this optimization framework is to assign every point (Data) to the most suitable plane
(Label). To get the initial candidate labels for the energy model, the input point cloud
will be firstly over-segmented into a set of patches by the Voxel Cloud Connectivity Seg-
mentation (VCCS) algorithm [66] or our previous work [27], where each patch represents
a local surface with centroid c, curvature f, and normal vector n. The initial candidate
labels can be generated using centroids and normal vectors of surface patches, which are
selected from all segmented patches or some patches with small curvature f. In addition,
an operation by randomly sampling a subset of patches centroids c is done to enrich the
potential candidate labels.

The first data cost term in Equation (1), a geometric error measurement is calculated
as the quadratic perpendicular distance between a point to a potential label Lp. The second
term in (1) is the smoothness between the neighbored point pairs, and the neighborhood
can be achieved from triangulated irregular networks (TIN) or k-nearest neighbors (KNN).
The indicator function δ(·) for the adjacent points is selected as Potts model [67], and is set
to 1 if a pair of points (p, q) belong to the same label, otherwise, it is 0. Intuitively, a pair of
points that are closer together are more likely to be on the same plane, thereby the weight
function ωpq can be set as an inverse function of the distance between adjacent points (p, q)
located on a TIN edge.

ωpq = exp(−‖p− q‖) (2)
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The label cost item is a penalty for the number of input potential labels. In order to
compactly represent the input scene, it is encouraged to use fewer labels. The proposed
label model can be written by

|ζL| = exp(−|Li|) (3)

where |Li| is the numbers of inlier points on the plane with index i. The proposed
global energy optimization is an iterative process along with the framework of Propose
Expand and Re-estimate Labels (“PEaRL”) [68] and terminates only if the energy is no
more decreased, resulting in a set of labels for the input point cloud. The final planes can
be achieved by fitting the points with the same label index.

Similar to the work of Pu and Vosselman [69], the plane semantic features can be fur-
ther inferred from the knowledge rules (Area, Orientation, Position) into roof or attachment
(e.g., dormer, gable, hipper, chimney). It should be mentioned that the plane semantics are
optional for the next decomposition process, and the semantics of roof planes can be also
classified by the supervised method [70].

3.3. Semantic Decomposition of Compound Building

The semantic decomposition is to generate building subparts using a progressive
decomposition and grouping algorithm. For each complex building, a roof connection
graph is firstly constructed using the extracted planar primitives, and then a decomposing
and grouping operation on the roof connection graph will be performed to generate sub-
graphs, which are potential roof semantic structures (e.g., dormer, gable, hipper, chimney).

3.3.1. Hierarchy Tree Representation of Complex Buildings

A general assumption of the proposed modeling algorithm is that a compound build-
ing roof can be represented by various simple and meaningful subparts. Although the
styles of buildings are diverse, the basic units (subparts) are similar: a subpart (struc-
ture) is a visual-pleased box composed of two or more parametric plane primitives with
semantic features.

Building = ∪
i
Subparti

Subpart = ∪
j

{
Planej

}
Planej = {GeoData; Semantics}or{GeoData;∅}

It should be noted that the plane semantics can be allowed to be empty ∅. Moreover,
a general hierarchical-tree-based representation for a complex building was introduced,
shown in Figure 2.
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The root of the hierarchical tree, illustrated in Figure 2, is a 3D building model
organized by roof semantic subparts, and the planar primitives and roof subparts are
treated as leaf nodes and child nodes, respectively. For example, the roof attachment
named vertical chimney in the second row is two pairs of parallel planes, while a dormer
is a combination of two adjacent planes.

3.3.2. Construction of the Roof Connection Graph

To generate a reasonable decomposition and grouping for roof subparts extraction,
the roof connection graph C, a weighted undirected connected graph, is obtained by the
extracted roof planes in the Section 3.1. The vectices (V) in C are roof planar primitives,
and an edge E between the two vertices represents spatial connectivity. In addition, local
geometric convexity and consistency will be calculated for each edge.

The Euclidian distance FDist between adjacent planar primitives is firstly set as an
attribute of the edge E. The psychophysical studies [71–73] suggest that the transition
between convex and concave parts might be indicative of the separation between objects
and/or their parts. In other words, concave-convex features are the cues for the decompo-
sition objects into semantic subparts. Thus, edges in C are equipped with 3D concave or
convex attributes to ensure the reliability and efficiency of building roof decomposition,
and the local convexity Fcon for adjacent planes is calculated by:

Fcon =

True FConvex ⇒ θ1 < θ2 ⇔
→
n 1·
→
d >

→
n 2·
→
d

False FConcave ⇒ θ1 > θ2 ⇔
→
n 1·
→
d <

→
n 2·
→
d

(4)

where
→
n 1,
→
n 2 and

→
x 1,
→
x 2 are normals and centroids of adjacent planes, respectively. The

angle (θ) of the normals to the vector d =
→
x 1 −

→
x 2 joining the centroids can be calculated

using the dot product. For a convex connection, the angle θ1 is smaller than θ2, while for
concave, the opposite is true. The convexity/concavity are shown in Figure 3.
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The FDist and FCon can be directly marked as attributes for each edge E and stored in
roof connection graph C, that is C = {V, E}, E = [FDist, FCon]. Finally, the generated graph C
will be the foundation for the next progressive decomposition and grouping operation.

3.3.3. Progressive Decomposition for Subparts Extraction

The commonly used methods for roof subparts extraction are usually accomplished
by searching and matching the sub-graph element from a predefined library, and it is
usually hampered by some significant problems, such as the completeness of the library,
the ambiguous definition, and errored sub-graph recognition. When observing objects, we
will attempt to group similar elements, recognize patterns, and simplify complex images
as we look at objects. To achieve the sub-convex building subparts, visual perception
constraints (e.g., proximity, similarity, consistency) derived from the Gestalt Principles
are applied [71–73]. The predefined Euclidian distance FDist and local convexity FCon
are the proximity and similarity constraints, respectively. The proximity constraint is
straightforward, that is, the planes that are close to each other are more likely to be treated
as one group. While the local convexity represents adjacent primitives sharing visual
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features (such as shape, convexity, and concavity) can group into a perceptive group.
Therefore, the consistency constraint FCC (shown in Figure 4), preferences to establish a
sub-convex box, is introduced to represent continuous concavity/convexity during the
progressive decomposition processing.
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As presented in Figure 4, it indicated that adjacent plane A and B can be grouped only
if it satisfies: (1) the edge between plane A and B is labeled as convex, (2) the similarity FCon
between plane pairs (A-S, B-S) or (C-S, B-S) should be exactly the same, where S is a shared
plane and C is the neighbor of planes A and B that need to be grouped. The consistency
constraint criterion FCC is then defined as:

FCC =


true FCon−AS= FCon−BS (a)

true FCon−AB = convex&(FCon−CS= FCon−BS) (b)
false otherwise

(5)

To achieve the roof subparts, a progressive iterative decomposition of the roof connec-
tion graph is introduced, as illustrated in Algorithm 1.

Algorithm 1. Progressive Decomposition

Input: a roof connection graph G and roof planar primitives PS = [Lp]
Output: roof subparts [GSub] and an initial building hierarchical tree T

1: While PS 6= ∅ do
2: Find a planar primitive Lp0 with the largest area from PS
3: Create an empty roof plane set GSub and initial it with plane Lp0
4: Generate GSub by the iteratively decomposing G using (FDist, FCon, FCC)
5: Update the nodes of building hierarchical tree T from GSub
6: For Lpi ∈ GSub do
7: remove plane Lpi from PS
8: update the nodes and edges of G
9: End For
10: End While

The extraction of building subparts as well as the hierarchical tree is carried out in a
progressive manner, which aims to search and find the best set of roof planar primitives
that are potential to the same sub-convex box. The detailed iteration of the decomposition
and grouping to generate a building roof structure is elaborated in the following:
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(1) Start from a planar primitive Lp0, which has the largest geometric area, and initial
the current group GSub = [Lp0];

(2) Create a candidate plane set Gcandidate that all primitives are connected to the last
added element of GSub, which means that there exists an edge in G. If the candidate set
Gcandidate is empty or all candidate elements are grouped, the current grouping loop ends;

(3) Calculate the convexity FCon and consistency FCC for each element in Gcandidate, and
remove the ones that cannot meet these constraints;

(4) Sort the remaining candidate primitives in Gcandidate according to principles of the
closest connected distance FDist and the same semantics, and the candidate element with the
minimum FDist will be grouped into GSub. If the set Gcandidate is empty, the decomposition
will terminate;

(5) Go to step (2).
When a building roof subpart is grouped according to the aforementioned decomposi-

tion steps, the nodes of the building hierarchical tree will be generated, and the information
of the grouped primitives will be simultaneously updated from G. Moreover, this iterative
decomposition will be terminated when all input roof planes are grouped. Once the de-
composition from G is finished, sub-graphs of different building parts can be obtained, as
shown in Figure 5.
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3.4. Generation of 3D Building Models

Due to the limit of acquisition devices and scene occlusions, these subparts cannot be
correctly interpreted or identified as unambiguous building structures. Thus, a refinement
step will be introduced for each grouped subpart using the constraints of symmetry and
closure to produce a visually pleasing 3D model in the final. As each primitive connected
to its adjacent planes ought to be convex, thus, the closure is that the projected primitives
should be connected in sequence and made a closed loop. The local symmetry is used to
fulfill the missing or extend ghost primitive based on the architecture aesthetics. As shown
in Figure 6, it is performed on whether the normal vector projections of adjacent planes are
parallel to each other.
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For any pair of adjacent primitives in Figure 6, we firstly project its normal vectors
(
→
n 1,
→
n 2) onto the ground plane, and then an analysis is performed on whether the projected

normal vectors (
→
n p1,

→
n p2) are mutually parallel with respect to its intersection: if mutually

parallel the adjacent planes are symmetric. Moreover, the details of enhancing these
decomposed building subparts are elaborated as follows:

(1) For any extracted subpart, we firstly extract its corresponding sub-node and inlier
leaf nodes in Figure 5d.

(2) Calculate the local symmetry indicators of adjacent primitives and perform it.
(3) A closed hull loop detection, stitching together the projected primitives in sequence,

will be performed based on closure perception laws. Moreover, an add and union primitive
operation will be carried out.

Subpart labeled as the roof: Check the outer border ring of the primitives projected
to the ground plane, and if the loop is a concave hull, which means that there exists an
incomplete closed loop, a “extend ghost” primitive will be accomplished by searching a
connected plane from the roof connection graph or stitching the vertexes of the nearest
primitives along the loop. Especially, if the newly added “extend ghost” primitive is
parallel to its adjacent, a plane union operation will be performed.

Subpart labeled as dormer: We usually handle the missing vertical primitive along
with the boundary loop, where the projected plane is perpendicular to the normal vector.

Subpart labeled as chimney: There exist two types of chimney: column and cone.
The missed primitives will be fulfilled along the boundary, and the projection plane is the
ground plane. The difference between them is that the fixed source vertex is the same for a
cone part.

(4) A similar regularization process [74] is applied to the refined building subparts to
produce a 3D geometric vector boundary, and the changed information in the hierarchical
tree will be synchronously updated.

4. Experimental Results
4.1. Description of the Datasets

The proposed approach has been implemented with the computational geometry
algorithms library (CGAL) [75] and the point cloud library (PCL) [66], and mainly tested
on datasets with different point densities and urban characteristics. An overview of the
tested datasets is shown in Figure 7. The first dataset is the Guangdong data in China,
which has a high point density and buildings of various shapes and sizes, and the next one
is the NYU ALS dataset released by the center for urban science and progress of the New
York University [76]. The last widely adopted benchmark dataset, obtained from ISPRS
Test Project on Urban Classification and 3D Building Reconstruction [16], is located in the
city of Vaihingen, German.

The Guangdong dataset was obtained in 2016 using the Trimble Harrier 68i with an
average height of 800 m. It is located in a rural region covering an area of approximately
340 × 360 m2 and includes 83 buildings with 257 planes in various shapes and sizes.
The point density is approximately 13 points/m2, but has some missing areas as the
occlusion, which can easily be prone to failures using the current 3D reconstruction methods.
Moreover, the NYU dataset is a high-density ALS data for urban areas and contains a
complex set of roof types such as multi-layered and flat. The point density is approximately
123 points/m2, while the ISPRS benchmark datasets in Area 1–3 were obtained by a Leica
ALS50 system in 2008 with a point density of 4–7 points/m2. There are 37 historic buildings
with complex structures and irregular boundaries in Area 1, while Area 2 is characterized
by high-rise residential buildings. The roof boundaries are very complex, and the gaps
between adjacent roofs have large height differences. Area 3 is a purely residential area,
including 56 buildings with many small roof structures. Moreover, the modeling results
derived from the Vaihingen benchmark dataset can be evaluated by ISPRS and can be
compared with other methods using a unified standard [16]. As the assessment by ISPRS



Remote Sens. 2021, 13, 1946 11 of 25

have terminated, we will illustrate the evaluation on Area 1 and 3, and the other three
datasets will be assessed using the same geometric errors.
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4.2. Results of Model Reconstruction

In the aforementioned datasets, a series of representative buildings are selected to val-
idate the proposed approach. These compound buildings illustrated in Figure 8 are recon-
structed by a set of basic building subparts, which are a combination of planar primitives.

It can be seen from Figure 8 that the generated compound buildings in part (a) are
assembled by semantic building units in part (c), including hipped roof, dormer, etc.
In part (b), the 3D wireframe of each reconstructed building generated is a hierarchical
topology tree, which is organized by reconstructed building subparts in part (c). These
generated building subparts with an explicit topology can be further used to enrich the
building model library or construct public training data for supervised learning. The
proposed approach aims to correctly and automatically reconstruct building subparts, and
the additional semantics are to be inferred by the dominant semantics of the grouped
planes. It is beyond the scope of this paper to accurately interpret the semantics data for
various styles. In addition, the final 3D models are illustrated in Figure 9.
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Different from the ISPRS benchmark data (Area 1 and Area 3), the Guangdong data
is a private testing data and public NYU is a non-standard dataset, thus, the various
standard internal consistency metrics cannot be assessed by the ISPRS. In addition, the
assessment on ISPRS Area 2 is missed as the ISPRS evaluation is stopped. Therefore, the
evaluations of the three datasets are performed by a simple internal quality and a visual
judgment. Results of visual judgment are shown in Figure 9a–c, while the internal quality
are the reconstructed geometric reconstructed error and the rate of fully reconstructed
buildings. The geometric reconstructed errors, a distance from a point to a reconstructed
plane (average), are approximately 0.033 m (Guangdong), 0.021 m (NYU), and 0.2 m (ISPRS
Area 2). In addition, a total of 77 buildings (252 roof planes) were successfully reconstructed,
achieving a fully reconstructed 92.7% of the original 83 buildings for Guangdong data.
These buildings are fully reconstructed in the public NYU and ISPRS Area 2 datasets,
and the complex roof types in urban areas, like overhanging roof, multi-layer roofs, and
flat roofs, are successfully modelled. The overhanging roof is usually a single plane in
the constructed roof connection graph and can be easily grouped. While the complex
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multi-layer roofs can be reconstructed as a variety of different roof structures, and flat roofs
with different height are fully modelled as different parts in the testing Areas. The facades
in the NYU dataset are ignored in the current scheme.

Furthermore, for the ISPRS benchmark datasets of Vaihingen (Area 1 and 3), it allows
us to use external reference data and assess the result according to unified criteria against
other modeling methods [16]. The results are listed in Table 1.

Table 1. Quantitative assessment of plane extraction.

Items Area 1 Area 3

Reconstructed planes 202 133
True Positive (TP) 201 130
False Positive (FP) 1 3

False Negative (FN) 22 34

It can be seen from Table 1 that the proposed method for building roof reconstruction
has achieved 201 correctly reconstructed out of 202 in Area 1 (99.5% correctly reconstructed).
While for Area 3, the number of correctly reconstructed planes is 130, reaching 97.7%. The
most common reason for the false reconstructions (FP) is the lack of insufficient points.

5. Discussion
5.1. Visual Analysis of the Decomposition Results

In this section, the decomposed building subparts by the proposed approach, as shown
in Figure 10, are compared with the commonly used building reconstruction methods.
These different 3D models generated from the same compound building proves our novelty.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26 
 

 

tures, and flat roofs with different height are fully modelled as different parts in the 

testing Areas. The facades in the NYU dataset are ignored in the current scheme. 

Furthermore, for the ISPRS benchmark datasets of Vaihingen (Area 1 and 3), it al-

lows us to use external reference data and assess the result according to unified criteria 

against other modeling methods [16]. The results are listed in Table 1. 

Table 1. Quantitative assessment of plane extraction. 

Items Area 1 Area 3 

Reconstructed planes 202 133  

True Positive (TP) 201 130  

False Positive (FP) 1 3  

False Negative (FN) 22 34 

It can be seen from Table 1 that the proposed method for building roof reconstruc-

tion has achieved 201 correctly reconstructed out of 202 in Area 1 (99.5% correctly re-

constructed). While for Area 3, the number of correctly reconstructed planes is 130, 

reaching 97.7%. The most common reason for the false reconstructions (FP) is the lack of 

insufficient points. 

5. Discussion 

5.1. Visual Analysis of the Decomposition Results 

In this section, the decomposed building subparts by the proposed approach, as 

shown in Figure 10, are compared with the commonly used building reconstruction 

methods. These different 3D models generated from the same compound building 

proves our novelty. 

(a) Building point cloud

Colored plane

Grouped plane

Convex edge

Concave edge

Enriched plane

 

(b) The proposed modeling method  

Figure 10. Cont.



Remote Sens. 2021, 13, 1946 16 of 25
Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 26 
 

 

 (c) Model library matched method (Verma et al. 2006)
 

(d) Minimum cycles matching method (Xiong et at. 2014)
 

Figure 10. Decomposition results by different 3D building methods. (a) The original input point 

cloud and roof connection graph. (b) The results from the proposed approach. (c) A whole model 

by Verma et al. [51]. (d) Decomposition results by Xiong et al. [5]. The first to fourth columns of 

each row are grouped planes in the original roof connection graph, 3D wireframe, 3D model, and 

the final enriched subgraph of a grouped unit. 

It can be seen from part (b) of Figure 10 that the proposed approach can achieve 

more unambiguous and meaningful building subparts. Verma et al. [51] used an ex-

haustive search to fit the point clouds to the best matched predefined simple GU, GL, and 

GI models, as shown in part (c). The final matched model is limited to a simple polygon 

model and cannot be used flexibly because it requires a more complex building library to 

be defined in advance. Xiong et al. [5] defined an improved roof topology graph to re-

construct 3D building models and, achieved the inner and outer corners from the con-

current planes or boundary points, thereby forming a combined building model linked to 

all inner and outer corners, as shown in part (d). It turns out to be more adaptive than 

similar work [77]. However, it is difficult to obtain the topological relationship of different 

corners and connected lines. The generated geometric models by minimum cycle analysis 

need to be checked because a corner may not be expressed or matched by the predefined 

minimum cycles. In addition, the semantics of the matched roof components are always 

omitted. Differing from the aforementioned approaches, the proposed automatic 3D 

modeling approach can reconstruct building semantic subparts, which can be easily in-

terpreted as building structures. The decomposition results in Figure 10 (b) are different 

hipped roofs, which can be easily inferred by the human being. Each roof subpart is a 

combination of parametric planar primitives and can be further used to assemble a hier-

archy-tree of a building.  

Different from the previous approach [48], we have made improvements in the 

current status to generate structural building models with the introduced semantics. The 

plane semantics are added for the roof connection graph, semantic decomposition, and 

Figure 10. Decomposition results by different 3D building methods. (a) The original input point
cloud and roof connection graph. (b) The results from the proposed approach. (c) A whole model by
Verma et al. [51]. (d) Decomposition results by Xiong et al. [5]. The first to fourth columns of each
row are grouped planes in the original roof connection graph, 3D wireframe, 3D model, and the final
enriched subgraph of a grouped unit.

It can be seen from part (b) of Figure 10 that the proposed approach can achieve more
unambiguous and meaningful building subparts. Verma et al. [51] used an exhaustive
search to fit the point clouds to the best matched predefined simple GU, GL, and GI models,
as shown in part (c). The final matched model is limited to a simple polygon model and
cannot be used flexibly because it requires a more complex building library to be defined
in advance. Xiong et al. [5] defined an improved roof topology graph to reconstruct 3D
building models and, achieved the inner and outer corners from the concurrent planes
or boundary points, thereby forming a combined building model linked to all inner and
outer corners, as shown in part (d). It turns out to be more adaptive than similar work [77].
However, it is difficult to obtain the topological relationship of different corners and
connected lines. The generated geometric models by minimum cycle analysis need to be
checked because a corner may not be expressed or matched by the predefined minimum
cycles. In addition, the semantics of the matched roof components are always omitted.
Differing from the aforementioned approaches, the proposed automatic 3D modeling
approach can reconstruct building semantic subparts, which can be easily interpreted as
building structures. The decomposition results in Figure 10b are different hipped roofs,
which can be easily inferred by the human being. Each roof subpart is a combination
of parametric planar primitives and can be further used to assemble a hierarchy-tree of
a building.

Different from the previous approach [48], we have made improvements in the current
status to generate structural building models with the introduced semantics. The plane
semantics are added for the roof connection graph, semantic decomposition, and roof
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subparts refinement to generate 3D building models; it is more helpful to reconstruct struc-
tural building subparts. The decomposed results can be interpreted as different semantic
structures, where the semantics can be inferred from the largest number of semantic planes.
By introducing the semantics into the iterative decomposition and grouping algorithm, it
can be easily extended to house modeling from a multi-source point cloud, e.g., the ground-
based point cloud can provide more details of building façades, thus, we can reconstruct
more refined house models in LOD3, LOD4 by combining these different points cloud.
A visual comparison on the proposed and the previous approach is shown in Figure 11,
and the difference and improvement are that whether they can interpret the grouped roof
subparts as different semantic structures.
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Furthermore, the decomposed roof subparts we proposed are basic building units
without overlapping elements in the reconstruction process and can produce more unam-
biguous 3D models, as presented in Figure 12.
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decomposition (c) for the same building (a).

It can be seen from Figure 12b that the generated 3D building subparts by the pro-
posed approach can avoid multiple matching of the same building element. For these
standard matched methods [5,77], the roof topology graph defined by different forms is
searched from the predefined library and decomposed into elementary graphs. These
automatically recognized subgraphs enable us to assign semantics to all extracted building



Remote Sens. 2021, 13, 1946 18 of 25

planar primitives and assemble them into an appropriate 3D model. However, there will
inevitably be a problem, that is, the standard-matching reconstruction methods rebuild the
same roof elements repeatedly, resulting in overlapping roof primitives, as shown in the
mid of Figure 12c.

5.2. Performance Analysis of Multi-Label Energy Optimization

To further investigate the effects of the global energy-based optimization procedure,
we have calculated the iterations and runtimes, as shown in Table 2.

Table 2. Statistics of experiments on energy optimization.

Item Building Points Iterations Run Times (min)
from the Proposed

Run Times (min)
from the RANSAC

ISPRS Area 1 24,971 4 1.7 0.9
ISPRS Area 2 34,364 3 2.2 1.1
ISPRS Area 3 39,938 4 2.6 1.2
Guangdong 76,824 5 4.3 2.1

NYU 111,289 3 5.7 3.9

It can be found from Table 2 that the number of iterations is located in a lower range,
which means that the designed cost functions are stable and balanced. Along with the
iteration, the energy will be sharply dropped, leading to a quick convergence. Compared
with the RANSAC plane fitting, the running time is relatively long as the optimization is
performed on each point. One possible improvement is to change the assignment issue from
“point-to-plane” to “supervoxel-to-plane”. Moreover, the results of roof plane extraction in
Area 1 and Area 3 are compared to a traditional multi-model fitting method like RANSAC,
as shown in Figure 13.
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Figure 13. Results of roof plane extraction in comparison.

It can be seen from the Figure 13 that the global energy-optimized approach can be
effective to extract roof planes. Compared with a traditional multi-model fitting method
like RANSAC, the proposed approach can overcome inconsistencies such as noise and
missing data in plane transitions and is more beneficial to construct the adjacent relationship
between roof planes.

5.3. Accuracy Assessments on ISPRS Benchmark Dataset

The geometric accuracy of the reconstructed 3D models derived from the bench-
mark data of Vaihingen in Areas 1 and 3 are evaluated by ISPRS using the standardized
validation methods. The metrics of completeness, correctness, and quality, defined by
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Rutzinger et al. [78] are evaluated based on the mutual overlapping with reference data.
The quality results are shown in Figure 14.
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Figure 14. The quality metrics of the ISPRS benchmark dataset.

The quality of per-area level for Area 3 reaches 96.0%, while Area 1 large than 93.4%.
These high precision results can be benefited from the proposed global optimization, which
can preserve the correct segmentation at plane transition regions with sparse points. In
addition, the comparison of the reconstructed planes with the reference information is
illustrated in Figure 15, where the 3D information has been converted to a label image
by ISPRS.
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Figure 15. Evaluation results of the reconstructed roof plane. Blue: false-negative pixels (FN), yellow:
true-positive pixels (TP), red: false-positive pixels (FP).

The comparative verification (Figure 15) indicates that 3D building components are
successfully achieved during the reconstruction process. Buildings that are not correctly
reconstructed are one and three for Area 1 and 3, respectively. These failures, assessed as
False Positive (FP), are filled within the buildings that undetected in the preprocessing
process of point cloud classification, because houses are surrounded by trees, which makes
it difficult to extract building point cloud. Moreover, the geometrical accuracy of state-of-
the-art methods described on the ISPRS website is selected for comparison, as presented in
Figure 16.
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YOR [80], TUD2 [50], and HRTT [54] are shorts for participant.

The accuracy of the final generated models may be affected by a variety of factors,
such as building detection and segmentation, the strategy of reconstruction. Additionally,
an excellent reconstruction algorithm is to find a balance to generate building models.
From most of the evaluation methods presented in Figure 16, one of the two indicators
(RMS and RMSZ) exceeds the median value, while the other is obviously reduced. In
terms of quantitative results, none of the methods is significantly better than others. For
the proposed reconstructed approach, the average horizontal error is 0.8 m (Area 1) and
0.6 m (Area 3), while the vertical error is 0.3 m (Area 1) and 0.29 m (Area 3). Even though
the two metrics of the proposed method are not optimal, they are similar to the median
value, which means that we have achieved a balance between the reconstructed RMS and
RMSZ. The main reason for achieving the balance depends on the global optimization of
roof plane extraction, and more importantly, it is easy to obtain an unambiguous principal
direction of regularization from each decomposed building subpart.

6. Conclusions

In this paper, we present a novel method for complex building reconstruction from
3D point clouds using the local geometric constraints. The output of the reconstruction
is a combination of unambiguous unit blocks with no overlapping elements, which are
assembled in a hierarchical topology tree. By first constructing a roof connection graph
using the extracted roof planar primitives, we developed semantic-specific reconstruction
strategies with local geometric constraints to obtain visually attractive building models.
The key aim is to decompose a compound building model into semantic subparts with
fixed planar parameters and topological relationships, through a progressive hierarchical
grouping operation.

The performed reconstruction experiments indicate that the proposed approach can
simplify the reconstruction process and generate a combination of gabled or hipped roofs
with precisely reconstructed geometric features. Moreover, these generated building
subparts can be further used to enrich the building of a model library or construct public
training data for supervised reconstruction. However, the proposed modeling scheme for
building reconstruction has some limitations, leading to the failure of the generated 3D
models. These limitations include the lack of adjacent roof segments, sparse points for the
local symmetry processing, and the reconstruction of free-from objects. For future work,
there are some possible improvements. For example, higher density and quality points
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obtained from the ubiquitous digital cameras and active 3D sensing devices can be used to
avoid the former two issues, while new reconstruction strategies for free-from objects and
building structural elements identification need to be developed.

Author Contributions: Conceptualization, P.H. Methodology, P.H.; software, P.H. and Y.M.; formal
analysis, P.H.; writing—original draft preparation, P.H. and Y.M.; writing—review and editing, P.H.;
visualization, P.H., M.H., and Y.M.; project administration, P.H.; funding acquisition, P.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This work is jointly supported by the National Natural Science Foundation of China (No.
41901405), China Postdoctoral Science Foundation (No. 2020M680323), Beijing Advanced Innovation
Center for Future Urban Design, Beijing University of Civil Engineering and Architecture (No.
UDC2020020124), and The Fundamental Research Funds for Beijing University of Civil Engineering
and Architecture (No. X20045).

Acknowledgments: We would first like to thank the anonymous reviewers for their valuable feed-
back. The Vaihingen data set was provided by the German Society for Photogrammetry, Remote
Sensing, and Geoinformation (DGPF), and The NYU ALS point cloud is released by released by New
York University, the center for urban science and progress. The authors wish to thank Markus Gerke,
Uwe Breitkopf, and the ISPRS Commission III/4 for the evaluation of the results.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fuxun, L.; Bisheng, Y.; Ronggang, H.; Zhen, D.; Jianping, L. Facade Solar Potential Analysis Using Multisource Point Cloud. Acta

Geod. Cartogr. Sin. 2018, 47, 225–233. (In Chinese)
2. Döllner, J.; Baumann, K.; Buchholz, H. Virtual 3D City Models as Foundation of Complex Urban Information Spaces. In

Proceedings of the 11th International Conference on Urban Planning and Spatial Development in the Information Society, Vienna,
Austria, 13–16 February 2006.

3. Qing, Z.; Haowei, Z.; Yulin, D.; Xiao, X.; Fei, L.; Liguo, Z.; Haifeng, L.; Han, H.; Junxiao, Z.; Li, C.; et al. A review of major
potential landslide hazards analysis. Acta Geod. Cartogr. Sin. 2019, 48, 1551–1561. (In Chinese)

4. Nan, L.; Sharf, A.; Zhang, H.; Cohen-Or, D.; Chen, B. SmartBoxes for interactive urban reconstruction. ACM Trans. Graph. 2010,
29, 1–10. [CrossRef]

5. Xiong, B.; Oude Elberink, S.; Vosselman, G. A graph edit dictionary for correcting errors in roof topology graphs reconstructed
from point clouds. ISPRS J. Photogramm. Remote Sens. 2014, 93, 227–242. [CrossRef]

6. Lafarge, F.; Mallet, C. Building large urban environments from unstructured point data. In Proceedings of the 2011 International
Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1068–1075.

7. Bulatov, D.; Häufel, G.; Meidow, J.; Pohl, M.; Solbrig, P.; Wernerus, P. Context-based automatic reconstruction and texturing of 3D
urban terrain for quick-response tasks. ISPRS J. Photogramm. Remote Sens. 2014, 93, 157–170. [CrossRef]

8. Zhu, Z.; Stamatopoulos, C.; Fraser, C.S. Accurate and occlusion-robust multi-view stereo. ISPRS J. Photogramm. Remote Sens. 2015,
109, 47–61. [CrossRef]

9. Toschi, I.; Nocerino, E.; Remondino, F.; Revolti, A.; Soria, G.; Piffer, S. Geospatial Data Processing for 3d City Model Generation,
Management and Visualization. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-1/W1, 527–534. [CrossRef]

10. Rychard, M.; Borkowski, A. 3D building reconstruction from ALS data using unambiguous decomposition into elementary
structures. ISPRS J. Photogramm. Remote Sens. 2016, 118, 1–12. [CrossRef]

11. Aringer, K.; Roschlaub, R. Bavarian 3D Building Model and Update Concept Based on LiDAR, Image Matching and Cadastre
Information. In Innovations in 3D Geo-Information Sciences; Isikdag, U., Ed.; Springer International Publishing: Cham, Switzerland,
2014; pp. 143–157. [CrossRef]
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