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Abstract: Data about storm impacts are essential for the disaster risk reduction process, but unlike
data about storm characteristics, they are not routinely collected. In this paper, we demonstrate the
high potential of convolutional neural networks to automatically constitute storm impact database
using timestacks images provided by coastal video monitoring stations. Several convolutional neural
network architectures and methods to deal with class imbalance were tested on two sites (Biarritz
and Zarautz) to find the best practices for this classification task. This study shows that convolutional
neural networks are well adapted for the classification of timestacks images into storm impact
regimes. Overall, the most complex and deepest architectures yield better results. Indeed, the best
performances are obtained with the VGG16 architecture for both sites with F-scores of 0.866 for
Biarritz and 0.858 for Zarautz. For the class imbalance problem, the method of oversampling shows
best classification accuracy with F-scores on average 30% higher than the ones obtained with cost
sensitive learning. The transferability of the learning method between sites is also investigated and
shows conclusive results. This study highlights the high potential of convolutional neural networks
to enhance the value of coastal video monitoring data that are routinely recorded on many coastal
sites. Furthermore, it shows that this type of deep neural network can significantly contribute to
the setting up of risk databases necessary for the determination of storm risk indicators and, more
broadly, for the optimization of risk-mitigation measures.

Keywords: convolutional neural networks; storm impact database; transfer learning; video
monitoring

1. Introduction

Databases containing information on past storm characteristics and their impacts on
the coast are essential for the disaster-risk-reduction process. They enable scientists and
coastal stakeholders to better understand the storm hazard in a specific area, to identify
potential trends, and most importantly to assess coastal risks (present or future) through
their use in the development and validation of early warning systems [1,2].

In these databases, storm impact is mostly represented as a qualitative variable with
different categories. The different categories of storm impact are called “regimes” and are
defined according to the Sallenger’s scale [3]. This scale was originally derived to classify
storm impact intensity based on the relation between wave-induced maximum water level
and topographic elevations of the different sections of a natural beach. Recently, this
approach has been extended to the estimation of storm impact intensity at an engineered
beach backed by a seawall [4].

Due to the extreme and episodic nature of storms, databases covering a long period
of time are necessary. Observed data about storm characteristics such as tide, wave, and
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wind are abundant and have been collected routinely for decades. In addition, numerous
reanalyses and hindcasts are available for these variables. On the contrary, data on storm
impacts are more sparse and mostly come from archives [5-7] or insurance data [8,9]. A
few examples of storm impact databases are: the RISC-KIT database, which contains storm
impact information for nine study sites in Europe [10]; the SurgeWatch database [5] for the
UK; and a database for the Basque coast [7]. Even though archives and insurance provide
information, there are some limitations including the heterogeneity, the incompleteness of
the data sources, and the consequent amount of work needed [7]. A solution to routinely
create a storm impact database could be to use images provided by coastal monitoring
stations that are now widely used worldwide to survey and study coastal processes.

In recent decades, video monitoring systems have proven to be valuable assets in the
study of the coastal zone due to their cost-efficiency and their ability to a provide continuous
stream of data including intense storm conditions. Video monitoring systems are generally
composed of one or several cameras operated by a monitoring software such as Argus [11],
HORUS, Kosta (www.kostasystem.com, accessed on 1 May 2021) or Sirena [12]. The reader
is referred to the work of Nieto et al. [12] for a comparison of the cited monitoring systems.
These systems generate different types of images that can be applied to study coastal
processes such as beach morphology changes, wave runup, and coastal currents [13,14].
Among the different types of imagse generated by the video monitoring system, timestacks
images represent the time-varying pixel intensities along a particular cross-shore transect in
the camera’s field of view. They are used to perform wave runup parametrization [15-17],
wave breaking detection [18], or intertidal topography [19] and also to estimate wave
characteristics [20,21], sea level [22], and bathymetry [23,24]. Timestacks images have also
been employed in the study of storm impact. In the work of Thuan et al. [25], they quantify
the impact of two typhoons on the longshore-averaged shoreline changes based on the
analysis of a series of timestacks images. To our knowledge, timestacks have not been
used to directly measure storm impact regimes as defined previously. Image processing
techniques are usually employed to transform the information contained in the images into
quantitative measurements (runup elevation, wave height, shoreline). In this article, we
propose extracting storm impact regimes (qualitative data) directly from the timestacks.

The storm impact regimes can be extracted from timestacks using two methodologies.
The first methodology can be qualified as deterministic; it relies on image processing
techniques and consists of two steps. First, the water line position is found by segmenting
the image. The storm impact regime is then deduced by comparing the position of the
waterline with the position of the defense infrastructure in the timestack. Different methods
can be used to extract the waterline from timestacks images [26,27]. For example, Otsu’s
method [26] divides the pixels into two groups depending on their intensity values. It
is not always robust and depends on the quality and lighting of the images. Most of
the time, it requires rigorous and tedious human verification and correction [16]. The
second methodology, presented in this article, relies on deep learning with convolutional
neural networks (CNNs). CNNs are a class of deep neural networks, specializing in
imagery analysis, that perform well on specific problems such as image classification and
segmentation. First, timestack images are classified into storm impact regimes by human
operators. Then, the CNN is trained to classify timestacks into storm impact regimes using
the annotated dataset. During the training process, the CNN learns to simultaneously
classify the images and which features to detect in order to achieve the best classification
accuracy. Once the neural network has learned on the training dataset, it can be used to
routinely analyze the timestacks produced by the video monitoring system and therefore
create incrementally a qualitative storm impact database. This second methodology, based
on a self-learning algorithm (CNN), allows for more automation compared to the first
methodology because it does not require site-specific calibration [17].

Another advantage of CNNSs is their transfer learning potential. Transfer learning
consists in using knowledge gained on a first task, which usually involves a large number
of data, and applies it to a different task [28] with smaller number of data. This technique
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has already been employed in coastal engineering domain [14,29] and usually results in
faster training and better accuracy. In the case of storm impact recognition, where images
of extreme storm impact regimes are rare by nature, this method can significantly improve
the performances of CNNs. Moreover, it is reasonable to think that knowledge acquired
at one site can be used to improve the performances on another site. This could be a
non-negligible asset for the application of the method to a new site.

This paper aims to demonstrate the high potential of CNN methods to constitute a
storm impact database using timestacks images provided by coastal video monitoring
stations. Different methods are tested using images collected at two study sites. The best
practice and the transferability of knowledge gained at one site to another are studied. In
the following sections, the study sites and the video dataset are first described. The main
features of the CNN implementation procedure are then shown in Section 3. Results and
transferability of the CNN between the study sites are presented in Section 4 and discussed
in Section 5. The main results are finally presented in the conclusion, Section 6.

2. Study Sites and Data

In this study, the storm impact intensity is classified into three storm impact regimes
(Figure 1) derived from the Sallenger’s scale [3]. The following three categories have been
adapted for the timestack images:

*  Swash regime: all the waves in the timestack are confined to the beach;

e  Collision regime: at least one wave in the timestack collides with the bottom of the
seawall ;

*  Overwash regime: at least one wave in the timestack completely overtops the seawall.
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Figure 1. The three categories of storm impact regimes estimates from timestack images. y-axis represents

the time in seconds, x-axis represent the pixel index (cropped images), and red lines represent the sea
wall bottom and top positions. (a) Swash regime. (b) Collision regime. (c) Overwash regime.

The CNNs were trained on timestacks images collected by video monitoring stations
operating on two sites along the basque coast (Figure 2), namely the Grande Plage of
Biarritz (GPB), and the Zarautz beach (ZB). The use of two sets of data acquired from
sites with different geological and morphological characteristics and distinct responses to
oceanic forcing makes it possible to assess objectively the ability of CNN to detect storm
impact regimes.
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Figure 2. Map showing the locations of the two study sites.

2.1. Grande Plage de Biarritz
2.1.1. Site Characteristics

The Grande Plage of Biarritz (GPB) is an urban embayed beach that is 1.2 km long,
located on the southern Aquitanian coast of France (Figure 2). It has a high socio-economic
importance for the city of Biarritz due to its tourist appeal, its historical heritage, and
its location near the city center. In terms of characteristics, the GPB is an intermediate-
reflective beach with typically a steep foreshore slope of 8-9% and a gentle nearshore
slope of 2-3% [30]. It is a mesotidal beach with 4.5 m spring tidal range around a mean
water level of 2.64 m. This narrow beach is backed by a seawall with an alongshore
elevation varying between 7 and 8 m. This seawall serves as defense infrastructure for back
beach buildings.

The beach is predominantly exposed to waves coming from the WNW direction. The
offshore wave climate is moderately to highly energetic. The annual average significant
wave height and peak period are, respectively, Hs = 1.5 m and T}, = 10 s [30]. In this region,
an event is qualified as a storm event when H; and T), are, respectively, greater than 3.5 m
and 13.8 s. Such events correspond to 7.24% of the offshore wave climate [31] and are
responsible for several overwash events each year.

This site has been equipped with a coastal video monitoring station since 2017. The
station includes 4 cameras with different lenses to ensure the coverage of the entire beach
with a sufficient spatial resolution. The cameras are operated by the open source software
SIRENA [12]. For this site, one transect is monitored by the camera pointing to the beach
and seawall location (transect Stack-Id01 in Figure 3). The timestack images correspond
to pixel intensities recorded along this transect over 14 min with a sampling frequency of
1Hz. Among the 70,000 images of this database, only 8172 images were kept to be part
of the ground truth dataset. Indeed, the timestacks generated in summer months were
excluded as the human activities negatively affect the quality of the images. The images
where the tide level was below 2.8 m were excluded as they corresponded to timestacks
images without visible swash.

2.1.2. Timestack Image Preprocessing

The ground truth dataset was built by labeling the 8172 images. There are two methods
to annotate the images: by hand or in a semi-automatic way. The annotation by hand is
the most straightforward but also the most time-consuming method. The semi-automatic
method consists of two steps. First, the position of the waterline is extracted automatically
by segmenting the image using Otsu’s thresholding method [16]. Then, the storm impact
regime is identified by comparing the position of the waterline with the one of the defense
infrastructure. This method is faster than the annotation by hand; however, it still requires
an operator because it is not always robust and highly depends on the lightning conditions
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of the image. To employ this method, the position of the defense infrastructure in the image
must be known. This is the case for the Grande Plage de Biarritz; therefore, semi-automatic
annotation was performed.

After verification and correction by an operator, the result of the annotation was
7907/211/54 (Swash/Collision/Overwash). The classes are highly imbalanced, and this
could have some effect on the classification accuracy of the CNN. Methods to deal with
this problem are presented below. Before the training process, the images were resized to
fit to the input dimensions of the CNNs tested in this study (224 x 224).

‘;‘,

Grande Plage de Biarritz -

" Video station 4 e v é ¥

b

308
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Figure 3. (a) Satellite view of the site of Biarritz from Google Earth with red lines representing the transects on the site.

(b) Transect on the Grande Plage de Biarritz.

2.2. Zarautz
2.2.1. Site Characteristics

The beach of Zarautz is an embayed beach of 2.3 km long located on the Basque coast
(northern Spain) in the SE Bay of Biscay, approximately 70 km southwest of GPB. The
beach, facing north (345 degrees), can be divided into two parts (Figure 4): 30% of the beach
in the eastern part presents a large and well-preserved dune system, with a maximum
height of approximately 10 m above the minimum astronomic tide. The remaining 70% is
an engineered urban beach, backed by a concrete seawall and the village of Zarautz.

In terms of characteristics, the beach of Zarautz is an intermediate-dissipative [32]
and mesotidal beach with a 4 m spring tidal range. It is composed of fine-medium sand
with a mean slope of around 2%. The annual average significant wave height and peak
period are, respectively, 1 m and 9 s. Like the GPB, the beach of Zarautz is also exposed
to highly energetic waves and storms coming from the WNW and NW directions. The
seawall backing 70% of the beach has an along-shore elevation varying between 6.5 m
in the western part and 8 m in the center of the beach. This seawall serves as a defense
infrastructure for the buildings near the beach, and overtopping events are common at
high tide during winter storms.

A video monitoring station, like the one used on the GPB site was installed in 2010.
The station has 4 cameras of 1.4 Megapixels. Two of the cameras are equipped with
12 mm lens and have a panoramic view, and another 2 equipped with 25 mm lens cover
with more resolution the mean high and low tide coastline positions. For the Zarautz
dataset, 4 transects are monitored by the camera covering the supra-tidal beach with
higher resolution (Figure 4). The transects are perpendicular to the seawall and are named
corresponding to the elevation of the seawall in the point of intersection (i.e., transect 65
corresponds to the part of the seawall with 6.5 m elevation).
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(b)

Figure 4. (a) Satellite view of the site of Zarautz from Google Earth, with the red point representing the location of the video

monitoring station. (b) Positions of the transects on the site of Zarautz.

2.2.2. Timestacks Images Preprocessing

Images from the site of Zarautz were annotated by hand. This method of annotation
was preferred over semi-automatic annotation because: (i) the position of the seawall
varied between timestack images, making the semi-automatic method more laborious, and
(ii) the presence of strong winds and gust negatively impacted the quality of certain images,
making the semi automatic method less robust. A simple web application was developed
to facilitate the annotation for the operator and is accessible in a public GitHub repository
(link in Data Availability Statement section). After classification by hand, the result of
the annotation was 19,596/2776/162 (Swash/Collision/Overwash). Like the images of
Biarritz, images of Zarautz present class imbalance, and they were resized to fit to the input
dimensions of the CNNs before the training.

3. Convolutional Neural Networks
3.1. General Concept

CNN:s are a type of neural networks widely used to perform tasks related to imagery
analysis such as image segmentation, classification, or object detection. For classification
problems, a CNN takes as input images with three channels (RGB), from which they output
probabilities of belonging to specified categories, in our case storm impact regimes. Like a
classical neural network, a CNN is a stacking of neurons that are organized in different
layers. The structure of a CNN can be divided into two parts. The first part contains mostly
convolutional and pooling layers and aims to learn specific features that help to classify
the images correctly. The second part contains fully connected layers and the output layer.
It uses the specific features extracted in the first part to output probabilities of belonging to
specified categories.

In the feature extraction part, the convolutional layers detect features inside an image.
They convolve their input with one or more filters, which results in one or more feature
maps (one for each filter). The feature maps represent the activation of a specific filter at
every spatial position of the input image. During the learning process, the network will
learn filters that activate when they see specific visual features that help to correctly classify
the training images. Usually, convolutional layers are stacked inside a CNN. The early
layers detect simple features such as edges, whereas the deeper layers can detect more
complex features.

Pooling layers are commonly found between convolutional layers. These layers also
rely on convolutional operations and aim to reduce the dimensionality of the feature maps
in order to increase the learning speed of the network and to control the overfitting of the
CNN. If a CNN is overfitted, it would indicate that the network has learned exactly the
characteristics of the training images and cannot generalize to new data. By stacking several
convolutional and pooling layers inside a CNN, the complexity of the extracted information
increases as we go deeper in the network with more feature maps with smaller dimensions.
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The output of these specific layers serves as input to the second part of the network,
which aims to classify the image into the correct category. In the classification part, neurons
are organized in layers and are connected to the previous layers through weights (hence
the name fully connected layers). To prevent overfitting, drop-out regularization can
be applied on these layers. This method randomly ignores neurons during the training
process, making the network learn more sparse and robust representation of the data.
Finally, the output layer estimates the probabilities of belonging to the specified categories
for the input image with a “softmax” activation function.

The CNNSs are trained with backpropagation in the same manner as classical neural
networks: the weights in the convolutional and fully connected layers are updated itera-
tively to minimize the errors between the prediction of the network and the ground truth.
The ground truth dataset for such a network is made by annotating images. Details on the
annotation of the timestacks can be found in the “Study Sites” section. Only the general
ideas about CNN have been presented above; for a detailed description on CNN and their
training, the reader is referred to the work of Bengio et al. [33].

There are many CNN architectures, each with different complexity and characteristics.
In order to keep the computation time reasonable, it was decided to limit the comparison
of performances between four architectures of increasing depth and complexity:

e A custom architecture inspired by the work of LeCun et al. [34] adapted for bigger
images. The architecture is presented in the appendix (Table AT).

e AlexNet [35], which won the ImageNet challenge in 2012. Its architecture contains
more convolutional layers and dense layers (Table A2). The number of filters is also
larger than that of the custom architecture.

e VGGI16 [36], which is a very deep CNN that uses 13 convolutional layers and three
dense layers (Table A3).

*  Inception v3, an improved version of the GoogleNet from Szegedy et al. [37] which
won the ILSVRC in 2014. It relies on inception modules, which perform convolutions
with filters of multiple size and concatenate their results (Table A4). In addition, the
convolution operation with filters of large size inside an inception module are made
by using 1 x n filters to reduce computational cost. This results in deeper networks
with significantly fewer parameters to learn.

3.2. Training the CNN
3.2.1. Data Processing

The datasets of both sites were divided into training, validation and testing sets
containing, respectively, 65%, 15%, and 20% of the data (common proportions in the
literature). Stratified random sampling was used to ensure that each part contains the same
class proportions. The training set is used to fit the CNN. The validation set is used to
stop the training for the CNN (early stopping). At last, the test part is used to evaluate the
performance of the neural network on unseen data (not used in the training step).

During the training, each training image is seen multiple times by the CNN. This can
be a problem as the network can learn exactly the characteristics of the training images
and might not generalize to new data. To avoid this problem, called overfitting, data
augmentation is employed during the training of the CNN. This method consists in making
small changes to images in the training set before feeding them to the CNN. By generating
modified images, this method artificially increases the number of images in the minority
classes and makes the models more robust to overfitting.

The following changes were made:

e  Random vertical flip: new timestack with inverted time;
¢ Random shift in the RGB image color to decrease the dependence on lighting conditions;
*  Normalization of pixel values to 0-1 for faster training
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3.2.2. Class Imbalance Problem

The datasets from both sites suffer from the class imbalance problem. Indeed, the
distributions of storm impact regimes are highly imbalanced. For the Biarritz site, 96.8% of
the images display swash regimes, 2.6% collision regimes, and 1% of overwash regimes.
For Zarautz, 87% of the images are swash regimes, 12% collision regimes, and 1% overwash
regimes. This class imbalance problem was expected as we are studying rare events.

It has been proven that class imbalance can negatively affect the performances of
machine learning models in classification tasks [38]. Methods to deal with this problem
are well known [38—40] and can be divided into two categories: data-level methods and
classifier-level methods.

The data-level methods aim to modify the class distribution in order to reduce the
imbalance ratio between classes. The most popular methods in this category are oversam-
pling and undersampling. Oversampling consists in replicating random samples from
minority classes until the imbalance problem is removed. In contrast, undersampling
consists in removing random samples from the majority class until the balance between
classes is reached.

The classifier-level methods aim to modify the training or the output of the machine
learning algorithm. They include cost-sensitive learning, which is a method that gives more
weights during learning to examples belonging to minority classes, and the thresholding
method, which adjusts the output probabilities by taking into account the prior class
probabilities [39].

3.2.3. Transfer Learning

For complex and deep CNN, it is common to use transfer learning to speed up the
learning process and to improve performances. Transfer learning methods consist in using
knowledge gained on a specific task to solve a different task. There are different methods
of transfer learning for CNN; for an exhaustive listing, readers are referred to the work of
Pan and Yang [28]. The method used in this article is “pre-training”. It consists of using
the weights of a CNN trained on a first task as initialization weights for a second CNN
that will perform on a second task. The efficiency of pre-training was tested by using the
pre-trained weights of VGG16 and Inceptionv3 on the ImageNet dataset, which is one of
the largest labeled image dataset [41]. Then, transfer learning was performed between sites
to see if the knowledge gained on one site is beneficial for the learning on the second site.

3.2.4. Application to the Datasets

The workflow for this study is presented in Figure 5. For each site, the four CNNs with
different architectures were fitted without and with the two methods related to the class
imbalance problem: oversampling and cost-sensitive learning (class weights). Transfer
learning was used on the more complex architectures (VGG16, Inceptionv3) and only for
the best performing method to cope with class imbalance. Data augmentation was used
during the training of all the CNNss.

The networks were trained on a laptop equipped with a GPU (Quadro RTX 4000)
using Keras (tensorflow GPU 1.12.0/Keras 2.3.1/Python 3.6.1), an open-source python
library designed for building and training neural networks. The scripts used in this article
are available on a public GitHub repository (link in Data Availability Statement section).
The optimizer used is Mini-Batch gradient descent algorithm with batch size of 32 and a
learning rate of 0.001 that decays by a factor of 2 every 10 epochs. The training is stopped at
100 epochs or earlier when the value of the validation loss does not decrease over 10 epochs

(early stopping).
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Figure 5. Workflow for this study. Items inside the boxes that are highlighted in red represent the
choices tested in this study, whereas the items in black are the methods applied in every cases.

3.3. CNN Accuracy Assessment

To compare the performance of the different networks, the F;-score is computed with
the following formula:
Precision x Recall

~ Precision + Recall

where .
. True positives
Precision = — -
True positives + False positives
and T "
rue positives
Recall = 4

True positives + False negatives

The precision, recall, and Fj-score are computed for each storm impact regime and are
averaged in order to have one global metric for each CNN. The F;-score varies between 0
and 1, with 1 representing the best value. Unlike the global accuracy (number of correct
predictions divided by the total number of predictions), the F; metric is not biased when
data present a class imbalance.

4. Results

The results are organized into four subsections. Firstly, the performances of the
different combinations of CNN architectures, methods to cope with class imbalance, and
transfer learning are compared. Secondly, the prediction errors of the best CNN for each
site are investigated. Thirdly, we present results related to transferability between sites.
Finally, a sensitivity analysis is presented for the site of Zarautz.

4.1. CNN Performances
4.1.1. Architectures

Table 1 regroups the training time, number of epochs, and also the performance
metrics (accuracy, recall, Fi-score) for different CNN architectures, methods to cope with
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class imbalance, and with or without pre-training with ImageNet dataset for both sites. For
both sites and for every methods used to cope with class imbalance (or not), CNNs with
deeper and more complex architectures yielded better results (higher values of precision,
recall, and Fj-score). Indeed, these kind of architectures tend to learn more complex features
that lead to better performance in harder tasks. The downside of these networks is the
training time, which is significantly higher than simpler and shallower models.

Table 1. CNN performances for both sites. Best models are in bold font.

(a) Biarritz

CNN T;r;feu(lzlﬁ ) Epochs ;EF;,I:)lCehp(esl)' Precision Recall  F-Score
Baseline

Custom CNN 16.1 100 9.7 /0333 0.328
AlexNet 17.2 100 10.3 /0333 0.328
VGG16 81.4 89 54.9 / 0.481 0.476
Inception v3 40.0 69 34.8 0721  0.714 0.713

Class weights
Custom CNN 4.6 28 9.9 /  0.603 0.474
AlexNet 3.8 21 10.9 0.568  0.777 0.609
VGGl16 43.4 46 56.6 0.574  0.832 0.645
Inception v3 23.2 39 35.8 0.563  0.798 0.631

Oversampling
Custom CNN 10.6 26 24.6 0.642  0.880 0.718
AlexNet 11.8 27 26.1 0716  0.885 0.777
VGG16 69.6 28 149.1 0.783  0.851 0.813
VGG16 Transfer 49.9 20 149.6 0.869 0.865 0.866
Inception v3 59.6 38 94.1 0.679  0.767 0.717
Inception v3 Transfer 34.5 21 98.6 0.777  0.786 0.780

(b) Zarautz
CNN T;r;felr(lrl;gn ) Epochs ;Efll;:cehp(esr) Precision Recall F-Score
Baseline

Custom CNN 22.5 49 27.5 /  0.637 0.616
AlexNet 24.0 48 30.0 /  0.628 0.616
VGGl16 202.1 72 168.4 /  0.635 0.617
Inception v3 108.7 64 101.9 /  0.630 0.614

Class weights
Custom CNN 11.6 26 26.7 0.666  0.846 0.720
AlexNet 22.7 45 30.3 0.671  0.817 0.716
VGG16 81.9 30 163.7 0.680  0.844 0.732
Inception v3 89.3 53 101.1 0.654  0.838 0.710

Oversampling
Custom CNN 38.7 36 64.5 0.769  0.804 0.783
AlexNet 22.6 19 713 0.756  0.797 0.775
VGG16 146.6 22 399.8 0.775  0.812 0.792
VGG16 Transfer 86.5 13 399.1 0.897  0.834 0.858
Inception v3 97.7 24 244.2 0.777  0.801 0.784
Inception v3 Transfer 65.3 16 245.0 0.869  0.835 0.849

4.1.2. Class Imbalance

Without coping with class imbalance problem, CNNs tend to predict all the images
as the majority class, resulting in poor classification results. Between the two methods
tested, oversampling seems to perform better, with F;-scores on average 30% better than
the ones obtained with cost-sensitive learning (class weights). The superior performance
of oversampling method on this dataset might be due to the fact that the CNNs see more
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images during training in the oversampling method than in the cost sensitive learning
method, resulting in better classification accuracy.

4.1.3. Pre-Training

Finally, models using pre-trained weights (transfer learning) train faster (fewer epochs)
and yield better classification results than models trained from scratch. Indeed, the
F1-scores obtained with the pre-trained models are, respectively, 6 to 8% higher for the
VGG16 and Inceptionv3 models. Even though the images from the ImageNet dataset have
different characteristics than the timestack images that are being classified, the pre-trained
weights might contain knowledge about general features that are helpful to better classify
the timestacks.

4.1.4. Best Models

For GPB, the best model is the pre-trained VGG16 with an Fl-score of 0.866. The pre-
trained Inception model trains faster but shows a lower F1-score (0.780). For the Zarautz
site, the best model is also the pre-trained VGG16 with an F1-score of 0.858, but this time
the performance of the pre-trained Inception v3 model was very close with an Fl-score
of 0.849.

4.2. Investigating the Errors

The confusion matrices on the test sets are presented in Table 2. In general, the
minority classes tended to have higher error rate. This is expected as minority classes
contain fewer examples than majority classes.

Table 2. Confusion matrices obtained by the best models for both sites.

(a) Biarritz (best model: OV VGG16 Transfer)

Predicted
Swash Collision Overwash
Swash 1576 7 0
Observed Collision 4 34 2
Overwash 1 2 9
(b) Zarautz (best model: OV VGG16 Transfer)
Predicted
Swash Collision Overwash
Swash 4265 40 0
Observed Collision 13 617 8
Overwash 0 25 30

The prediction errors made by the CNN were manually inspected to gain an under-
standing of common error types. Prediction errors made on the GPB test set are presented
in Figure 6 and in the appendix (Table A5). Among the 16 errors made on the test set,
five errors came from human misclassification, five errors may have been caused by the
presence of specific features such as vertical lines usually associated with collision regimes,
two errors were made on images that were displayed in between category of storm impact
regimes. The remaining errors correspond to images that were hard to classify, where light-
ing and meteorological conditions were poor. The misclassification errors were corrected
for the test and validation sets, and the best network was trained once again, resulting in
slightly lower results but this time without human misclassification error (Table 3).



Remote Sens. 2021, 13, 1933

12 of 20

= - |
=—r .
— |
- |

=

Overwash 99% (Collision)

Table 3. Classification results after correcting the misclassification in the test and validation sets.

CNN Time (min) Epochs Time per Epoch (s) Precision Recall F1 Score
Biarritz
Best model before corr. 499 20 149.6 0.869 0.865 0.866
Best model after corr. 60 24 150 0.895 0.833 0.860
Zarautz
Best model before corr. 86.5 13 399.1 0.897 0.834 0.858
Best model after corr. 88.5 13 408.5 0.917 0.859 0.883
==
‘___ T
i—;::_:;-:—_‘ !
j 5 Collision 50% {Swash) & o
c;\"’ & c;\"’
j Collision 100% (Swash)
ollision wash) ‘.}‘b‘$ \\bﬁ (.\,b*\
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Figure 6. Prediction errors on the test set of Biarritz by the best CNN. The storm impact regime predicted is written under
each timestack, and the ground truth is written in parentheses. The probabilities of belonging predicted by the CNN are
represented on the right side of each timestack (red = prediction made by CNN, blue = ground truth). The red line in the
timestack represents the position of the seawall.

The errors made on the Zarautz dataset were also analyzed (Table A6). A large number
of errors were made on images that were in between the categories of storm impact regimes:
either the images displayed a swash regime, which was very close to the collision regime,
or the images displayed a regime impact, with one small overtopping of the wall. Some
misclassification errors were made. The rest of the errors may have come from lighting
conditions (large horizontal band, lighter in the images). The misclassification errors were
corrected for the test and validation, and the best network was trained once again, resulting
in a slightly better result for this site (Table 3).
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4.3. Transferability between Sites

The interest in transfer learning for CNN training has been highlighted in Section 4.1.3.
The models using pre-trained weights from ImageNet trained faster (fewer epochs) and
yielded better classification results. In this section, we investigate if the knowledge acquired
on one site (CNN weights) could be transferred to another site with pre-training. Pre-
training is the most common way to transfer knowledge between tasks. It consists in using
the weights of a neural network trained on one site as initialization weights for the training
on the second site. The weights of the best CNN for each site are used for the pre-training
of a CNN on the other site. The performances of these CNN are presented in Table 4.

Table 4. Performances of CNN learning from scratch, pre-trained with ImageNet, or pre-trained with
the other site for Biarritz and Zarautz. “OV” stands for oversampling.

. . Time per -
CNN Time (min) Epochs Epoch (s) Precision Recall F;-Score
Biarritz
VGG16 (OV) 69.6 28 149.1 0783 0851 0813
VGG16 (OV) Pretraining with 49.9 20 149.6 0869 0865  0.866
ImageNet
VGGI6 (OV) Pretraining with 47 19 1484 0826 0832 0823
Zarautz data
Zarautz
VGG16 (OV) 81.9 30 163.7 0680 0844 0732
VGGI6 (OV) Pretraining with 86.5 13 399.1 0897 0834 0858
ImageNet
VGG16 (OV) Pretraining with 9 14 3942 0909 0867  0.885

Biarritz data

The weights of the best model on Zarautz data (VGG16 transfer) were used as initial-
ization weights for the training on Biarritz data. This resulted in classification results better
than the learning from scratch with a higher precision and F;-score (Table 4). However,
the values of precision, recall, and Fj-score obtained with pre-training on Zarautz data
remained slightly lower than the ones obtained with pre-training on ImageNet data.

Pre-training method was also applied on Zarautz data, where the weights of the best
model on the Biarritz site were used as initialization weights. The classification results were
better than learning from scratch and learning with pre-trained weights from ImageNet
with higher F;-score (Table 4).

4.4. Sensitivity Analysis

A sensitivity analysis was performed on the dataset of Zarautz to highlight the effect
of the size of the training images dataset on the classification accuracy. The dataset of
Zarautz was divided into three smaller datasets. Each of these datasets was divided into
the training/validation/test sets with the proportions described in Section 3.2.1. Finally, a
CNN model was trained on each smaller datasets (VGG16 with transfer learning ImageNet
and oversampling).

The averaged Fl-metric for these three models was 0.805. This value is slightly lower
than the one obtained with the full dataset, which is 0.858 (Table 1). These results confirm
what was already known in the literature: CNN performances tend to increase with the
training set size [42].

5. Discussion

Even though we showed the strong potential of CNN to automatically generate storm
impact regime database, the proposed methodology can be improved in several ways.
More attention could be paid to the choice of CNN architectures and hyperparameters.
Other CNN architectures need to be tested, especially recent architectures such as ResNet,
MobileNet, or Xception. They could perform better than the architectures presented in
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this work. For instance, the ResNet architecture contains skip connections between layers,
which allows the training of much deeper and performant networks. Hyperparameters
are parameters whose values are specified by the user before the training process begins;
they affect the structure of a CNN and how well it trains. They have a non negligible
impact on the final results. Several optimization algorithms such as Bayesian optimization
could be employed to select the optimal hyperparameters [43], which has not been done in
this study.

In addition to hyperparameter tuning, other methods of data augmentation could be
used to improve the performances of the CNN. The analysis of prediction errors can help
in the choice of other data augmentation methods. In our case, many errors were related to
lighting conditions; it would be wise to test various data augmentation methods affecting
the lighting or brightness of the images. This could make the CNN more robust to lighting
conditions and therefore improve its performances.

It is worth noting that the performances of a CNN model implemented at a given site
are expected to increase with time as more timestacks are collected by the video monitoring
system. With more training images, the minority classes will contain more images, and this
will lead to less classification errors for these classes. Moreover, if enough timestacks are
collected, intermediate storm impact regime classes could be created. These classes could
reduce the errors on the images displaying impact regimes not corresponding to the three
regimes presented in this work.

One very interesting feature of CNNs models is their transferability. We showed that
using the knowledge acquired from another site can lead to improved classification results
when using pre-training (especially for Zarautz site). The weights of the best CNNs for
both sites are available in a GitHub repository (link in Data Availability Statement section)
and could be used as initialization weights for a CNN applied to a new site. The only
requirement is to annotate timestacks from the new site, which will serve as training data.

Despite the promising performance, this methodology has some limitations, mainly
related to the image annotation, an obligatory step for CNN training. The first limitation of
this method is the lack of knowledge about its sensitivity. We showed for the site of Zarautz
that CNNs yield lower performances when trained on a smaller training set. However, we
do not know the minimum number of timestacks to annotate for a new site in order to have
satisfactory accuracy. A sensitivity analysis should be performed to find this minimum
threshold and to make some recommendations on the use of this method in the case of new
sites with a small number of timestacks.

The second limitation of this method is the annotation process itself, which is tedious
and time-consuming. An alternative solution could be to use the domain-adaptation
approach presented in the work of Ganin and Lempitsky [44]. They propose a specific
CNN architecture that can be trained simultaneously on a large number of labeled data
from a source domain (one site) and unlabeled data from a target domain (new site). At
the end of the training, the CNN is able to classify correctly images from both sites even
though only images from one site have been labeled.

Finally, the performances of the proposed method must be compared objectively
with human-level performance and other methodologies. Assessing the human-level
performance on this task is essential and would give precious insights into how to improve
further the CNN performances [45]. For example, a CNN performance lower than the
human-level performance could indicate the presence of a bias, which can be avoided
by using deeper models or by training more slowly and for longer. It would be of great
interest to compare this methodology based on CNNs with methodologies based only on
traditional imagery analysis. As stated in the introduction, a possible methodology could be
to first extract the waterline position using Otsu’s segmentation [16,26] or using the radon
transform [27] and then compare its position with the position of defense infrastructure
to define the storm impact. Another methodology could be based on the analysis of pixel
intensity such as the works of Simarro et al. [46] and Andriolo et al. [47]. The methodologies
based on simple image processing algorithms could have some advantages over CNNs.
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Indeed, they would not require the building and training of a CNN structure, which is
time-consuming, and the whole decisional process is known to be contrary to CNN, which
can be considered as a “black box”. However, these methodologies would need to be
adapted for each site by indicating the position of the defense infrastructure, which is not
needed with CNN. In addition, the simple image processing algorithms could be more
affected by the erratic brightness of the timestacks than CNNs, which are trained with data
augmentation.

This work is a first step in the analysis of storm impact with video monitoring. Numer-
ous extensions can be envisaged, particularly on the type of information extracted and the
type of image analyzed. Indeed, the CNN could be used to count the number of collision or
overwash events in one timestack. This technique could be also extended to analyze other
types of images produced by video monitoring systems such as oblique and/or rectified
images. Finally, it can be employed to analyze images from already existing cameras
such as surfcam [48,49]. This could constitute a low-cost monitoring method with a large
spatial coverage for the qualitative study of storm impact. Many questions arose with this
work, especially about the minimum number of images to annotate to have satisfactory
accuracy or the lack of comparison with the current method or human level performance.
More questions will arise during the operational implementation and use of the CNNs
concerning the verification of predictions, the prediction error handling, or how often we
need to re-train the neural networks with the newly classified images.

6. Conclusions

In this paper, we presented an innovative methodology based on convolutional neural
networks and coastal imagery that could be used to collect storm impact data routinely. We
described the methodologies associated with CNNs, including the annotation of the dataset,
the training of the networks, or transfer learning. We also introduced the problem of class
imbalance, which is due to the extreme nature of the storm impact regimes, and we pro-
posed and compared different solutions such as oversampling or cost-sensitive learning.

The proposed methodology was tested on two sites: Biarritz and Zarautz. We showed
that convolutional neural networks are well adapted for the classification of timestacks
into storm impact regimes. Overall, we found that more complex and deeper architectures
yielded better results. Best performances were achieved with the VGG16 architecture for
both sites with F-scores of 0.866 for the site of Biarritz and 0.858 for the site Zarautz. For the
class imbalance problem, the method of oversampling showed better classification accuracy
than the cost-sensitive learning method, with F-scores on average 30% higher. Finally, we
showed that the method can be easily applied to a new site with optimal efficiency using
transfer learning. Indeed, training a CNN using pre-trained weights (ImageNet or weights
of another site) resulted in better accuracy than training a CNN from scratch (F-scores on
average 6 to 8% higher).

With convolutional neural networks, we can take full advantage of the large number
of data produced by video monitoring systems. We showed that they are able to transform
images into usable qualitative data about storm impact. Even if the data are not continuous
(only day time and winter months), this method could be, without a doubt, a real asset in
the future for coastal researchers and stakeholders by routinely collecting storm impact
data, which are rare at present. These data are essential in the disaster risk reduction
chain, and they have many uses. They can serve as validation data for impact models
or early warning systems based on numerical modeling. They can also be used to train
early warning system based on Bayesian networks [50,51]. Finally, statistical analysis
can be performed to find relationships between observed storm impact regimes and local
conditions such as wave characteristics, tide, or meteorological conditions.
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The following abbreviations are used in this manuscript:

CNN Convolutional neural networks
GBP  Grande Plage of Biarritz

Appendix A. CNN Architectures
Appendix A.1. Custom CNN

Table A1l. Architecture of the “custom” CNN.

Layer (Type) Output Shape Param
Block1 Conv (Conv2D) (None, 111, 111, 32) 896
Block1 Pool (MaxPooling2D) (None, 55, 55, 32) 0
Block2 Conv2d (Conv2D) (None, 53, 53, 64) 18,496
Block2 Pool (MaxPooling2D) (None, 26, 26, 64) 0
Block3 Conv2d (Conv2D) (None, 24, 24, 128) 73,856
Block4 Pool (MaxPooling2D) (None, 12, 12, 128) 0
Block5 Conv2d (Conv2D) (None, 10, 10, 256) 295,168
Block5 Pool (MaxPooling2D) (None, 5, 5, 256) 0
Flatten (Flatten) (None, 6400) 0
Densel (Dense) (None, 512) 3,277,312
Dropoutl (Dropout) (None, 512) 0
Dense2 (Dense) (None, 256) 131,328
Dropout2 (Dropout) (None, 256) 0
Dense3 (Dense) (None, 128) 32,896
Dropout3 (Dropout) (None, 128) 0
Output (Dense) (None, 3) 387

. Total params: 3,830,339
e  Trainable params: 3,830,339
*  Non-trainable params: 0


https://github.com/AurelienCallens/CNN_Timestacks
https://github.com/AurelienCallens/Shiny_Classifier

Remote Sens. 2021, 13, 1933 17 of 20
Appendix A.2. AlexNet
Table A2. Architecture of the AlexNet.
Layer (Type) Output Shape Param
Block1 Conv (Conv2D) (None, 54, 54, 96) 34,944
Block1 Pool (MaxPooling?2D) (None, 27, 27, 96) 0
Block2 Conv (Conv2D) (None, 17, 17, 256) 2,973,952
Block2 Pool (MaxPooling2D) (None, 8, 8, 256) 0
Block3 Conv (Conv2D) (None, 6, 6, 384) 885,120
Block3 Conv (Conv2D) (None, 4, 4, 384) 1,327,488
Block4 Conv (Conv2D) (None, 2, 2, 256) 884,992
Block4 Pool (MaxPooling2D) (None, 1, 1, 256) 0
Flatten (Flatten) (None, 256) 0
Densel (Dense) (None, 4096) 1,052,672
Dropoutl (Dropout) (None, 4096) 0
Dense2 (Dense) (None, 4096) 16,781,312
Dropout2 (Dropout) (None, 4096) 0
Output (Dense) (None, 3) 12,291
e  Total params: 23,952,771
U Trainable params: 23,952,771
¢  Non-trainable params: 0
Appendix A.3. VGG16
Table A3. Architecture of the CNN used based on VGG16.
Layer (Type) Output Shape Param
Input (Input Layer) (None, 224,224, 3) 0
Block1 Conv1 (Conv2D) (None, 224, 224, 64) 1792
Block1 Conv2 (Conv2D) (None, 224, 224, 64) 36,928
Block1 Pool (MaxPooling2D) (None, 112, 112, 64) 0
Block2 conv1 (Conv2D) (None, 112,112, 128) 73,856
Block2 Conv2 (Conv2D) (None, 112, 112, 128) 147,584
Block2 Pool (MaxPooling2D) (None, 56, 56, 128) 0
Block3 Conv1 (Conv2D) (None, 56, 56, 256) 295,168
Block3 Conv2 (Conv2D) (None, 56, 56, 256) 590,080
Block3 Conv3 (Conv2D) (None, 56, 56, 256) 590,080
Block3 Pool (MaxPooling2D) (None, 28, 28, 256) 0
Block4 Conv1 (Conv2D) (None, 28, 28, 512) 1,180,160
Block4 Conv2 (Conv2D) (None, 28, 28, 512) 2,359,808
Block4 Conv3 (Conv2D) (None, 28, 28, 512) 2,359,808
Block4 Pool (MaxPooling2D) (None, 14, 14, 512) 0
Block5 Conv1 (Conv2D) (None, 14, 14, 512) 2,359,808
Block5 Conv2 (Conv2D) (None, 14, 14, 512) 2,359,808
Block5 Conv3 (Conv2D) (None, 14, 14, 512) 2,359,808
Block5 Pool (MaxPooling2D) (None, 7, 7, 512) 0
Flatten (Flatten) (None, 2048) 0
Densel (Dense) (None, 512) 262,656
Dropoutl (Dropout) (None, 512) 0
Output (Dense) (None, 3) 1539
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e  Total params: 14,978,883
. Trainable params: 14,978,883
¢  Non-trainable params: 0

Appendix A.4. Inception v3

Table A4. Architecture of the CNN used based on Inception v3.

Layer (Type) Output Shape Param
Inceptionv3 (Model) (None, 2048) 21,802,784
Flatten (Flatten) (None, 2048) 0

Densel (Dense) (None, 512) 1,049,088
Dropoutl (Dropout) (None, 512) 0

Output (Dense) (None, 3) 1539

The inception model was imported with Keras with the following function:
keras.applications.InceptionV3().

The architecture is not displayed due to readability; the reader is referred to the
original work of Szegedy et al. [37] for more details.

U Total params: 22,853,411
. Trainable params: 22,818,979
*  Non-trainable params: 34,432

Appendix B. Investigating the Errors

Table A5. Errors explanation for Biarritz data. “Misclass.” stands for misclassification during
annotation, “Splash” corresponds to an intermediate storm regime between impact and overwash,
“Vertical” corresponds to the presences of vertical features of runup.

Test
Splash Lighting = Misclass. Hard to classify ~ Vertical
2 1 5 3 5
Validation
Splash Misclass.  Sand bags?  Splash Hard to classify =~ Vertical

1 2 1 2 2 4

Table A6. Errors explanation for Zarautz data. “Misclass.” stands for misclassification during
annotation, “Splash” corresponds to an intermediate storm regime between impact and overwash,
“Vertical” corresponds to the presences of vertical features of runup. Finally, “SI” corresponds to an
intermediate storm regime between swash and impact that was very close to the sea wall but did

not impact.

Test

Hard to classify ~ Lighting ~ Misclass.  SI SI + Light  Splash Vertical
10 30 7 22 2 14 1

Validation

Hard to classify =~ Lighting ~ Misclass.  SI SI+ Light  Sandbag?  Splash
5 27 3 26 2 4 4
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