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Abstract: This paper presents a correlation filter object tracker based on fast spatial-spectral features
(FSSF) to realize robust, real-time object tracking in hyperspectral surveillance video. Traditional ob-
ject tracking in surveillance video based only on appearance information often fails in the presence
of background clutter, low resolution, and appearance changes. Hyperspectral imaging uses unique
spectral properties as well as spatial information to improve tracking accuracy in such challenging
environments. However, the high-dimensionality of hyperspectral images causes high computational
costs and difficulties for discriminative feature extraction. In FSSF, the real-time spatial-spectral
convolution (RSSC) kernel is updated in real time in the Fourier transform domain without offline
training to quickly extract discriminative spatial-spectral features. The spatial-spectral features are
integrated into correlation filters to complete the hyperspectral tracking. To validate the proposed
scheme, we collected a hyperspectral surveillance video (HSSV) dataset consisting of 70 sequences in
25 bands. Extensive experiments confirm the advantages and the efficiency of the proposed FSSF
for object tracking in hyperspectral video tracking in challenging conditions of background clutter,
low resolution, and appearance changes.

Keywords: fast spatial-spectral feature; hyperspectral video tracking; on-line update; real-time
spatial-spectral convolution kernel; hyperspectral surveillance

1. Introduction

Visual surveillance [1–6] is one of the most important safety monitoring and manage-
ment methods widely used in various fields, such as traffic monitoring, aviation monitoring,
navigation safety, and port management. In video surveillance, tracking objects of interest
provides dynamic information of key objects for target monitoring and motion characteris-
tics analysis [7,8]. We consider the most general scenario of visual tracking, single object
tracking. The visual tracking task is to estimate the object state in video sequences given
an initial object region in the first frame. A surveillance video obtained in an urban setting
may contain highly cluttered background, making the appearance and shape of the target
objects indistinguishable. Surveillance video cameras, having a broad field of view, are be-
ing used to monitor wide areas such as seaports and airports, making the imaged object
appear tiny. Conventional video tracking methods relying on shape, appearance, and color
information of the object [9,10] can become unreliable and are subject to tracking drift in
challenging situations, including interference from similar objects, appearance changes
such as deformation and illumination variations.
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A hyperspectral image (HSI) [11,12] records spatial information and continuous spec-
tral information of an object in a scene simultaneously. This has been successfully em-
ployed in the field of remote sensing and computer vision, such as super-resolution [13,14],
face recognition [15,16] and object tracking [17,18]. The recently developed snapshot spec-
tral imaging sensor [19] makes it possible to collect hyperspectral sequences at a video
rate, which provides good application conditions for real-time tracking of surveillance
video targets. Hyperspectral refers to much higher number of bands (to the hundreds),
but the only available sensor equipment for videos with snapshot arrays at the moment
can only acquire a limited number of bands. Although the collected videos contain only
25 bands per frame, the methodology developed in this work is primarily motivated
for hyperspectral videos and the algorithm is highly adaptable to real-time processing
of hyperspectral videos in hundreds of spectral bands. Hereafter we will simplify the
discussion by calling the hyperspectral-oriented videos ‘hyperspectral videos’. Unlike tra-
ditional cameras capturing only wide-bandwidth color images, hyperspectral cameras
collect many narrow bandwidth spectral images [20]. The low spectral resolution of color
cameras limits their ability to classify or identify objects based on color appearance alone,
while hyperspectral cameras combine the benefits of video and hyperspectral data [21].
Spectral signatures in HSI provide details on the intrinsic constitution of the material
contents on the scene, which increases inter-object discrimination capability [22,23]. There-
fore, hyperspectral video is more robust for distinguishing materials than conventional
color video. Specifically, spectral reflectance is significantly distinguishable for objects of
similar appearance and remains unchanged when the object appearances change, which im-
proves discriminability of objects under challenging conditions, as in Figures 2 and 3 of
Section 2.1.1. We further analyze the separability of whole HSI compared with RGB, and the
results show that the separability of HSI is stronger than RGB images for different objects
and under some challenging situations, such as appearance change, background clutter
and illumination variation, as in Figures 4–7 of Section 2.1.2. Therefore, the spatial-spectral
information of HSI can increase inter-object separability and discriminability to handle the
tracking drift problems caused by the above challenges.

The high dimensions of HSIs are its advantage regarding discriminative ability,
whereas the high dimensions will bring difficulties and high computational costs for robust
feature extraction. Traditional feature extraction methods developed for RGB images may
not accurately describe HSI because they do not consider spectral information [24,25].
In addition, deep features (e.g. convolution neural network (CNN) features) [26] with
advanced performance in traditional tracking have high computational complexity (see
Figure 1 for illustration), and the computational cost becomes higher as the number of
bands increases. Existing hyperspectral tracking methods [27,28] have not fully explored
spatial-spectral information and the correlation of surveillance videos collected at long
distances. That is because those methods either only use spectral information or convert
HSI into pseudo-color images, or are developed for videos captured from close-range
scenes. They also have high computational costs, and may not be suitable for real-time
surveillance video, as per the SSHMG in Figure 1. Discrimination and computational
complexity of the extracted features have a great impact on tracking performance and
efficiency. An effective and robust method needs to be developed to explore both spectral
and spatial properties of images, which helps accurately analyze surveillance videos in
real time.

Convolution features have been successfully employed for tracking due to their highly
discriminative power in feature representations, such as deep convolution features [29].
However, the convolution kernels are generally obtained by offline iterative training of
a large dataset, which has a high computation cost. Recently, some researches proposed
using Fast Fourier Transforms (FFT) to reduce computational costs, which also requires
offline iterative training of a large dataset [30]. High dimensions of HSIs will further
increase the computational costs. Additionally, FFT-based convolution is generally more
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effective on larger kernels; however, the state-of-the-art deep convolution models use small
kernels [31].

Figure 1. Tracking speed-accuracy plot of the same correlation filter tracker based on different
features on a hyperspectral surveillance video (HSSV) dataset. The upper right corner indicates
the best performance in terms of both standard and robust accuracy. The proposed FSSF algorithm
achieves the best accuracy with faster speed.

To solve the above problems, this paper proposes a fast spatial-spectral convolution
feature (FSSF) extraction algorithm to realize object tracking in hyperspectral video with a
correlation filter, which extracts discriminative spatial-spectral features from hyperspectral
video in real time. The proposed FSSF develops a real-time spatial-spectral convolu-
tion (RSSC) kernel by obtaining a closed-form solution of the convolution kernel in the
Fourier domain through robust ridge regression, which solves the low efficiency of existing
convolution feature extraction algorithms and their requirement of large training sets.
RSSC kernels can be initialized directly in the first frame and then updated in subsequent
frames without offline iterative training of large dataset to extract discriminative spatial-
spectral features of a HSI in real-time. The redundancy of HSI is reduced by dividing it
into sub-HSIs using band correlation [32], and the weights of each sub-HSI to tracking
are expressed by relative entropy. Specifically, RSSC kernels are first initialized from a
set of sub-HSIs obtained from the initial frame. The initialized RSSC kernels calculate a
set of features by convolving with a set of sub-HSIs obtained from subsequent frames,
respectively. These features are combined to form an FSSF. Finally, the FSSF is fed to the
correlation filter tracker. Different weights of sub-HSI are assigned to the correlation re-
sponse maps obtained by the set of features to jointly estimate the object location and RSSC
kernels are update by using the estimated object location. To validate the proposed scheme,
we collected a hyperspectral surveillance video (HSSV) dataset with 70 sequences, in which
each frame contains 25 bands. Extensive experiments on HSSV dataset demonstrate the
advantages of hyperspectral video tracking, as well as the real-time and robustness of the
proposed FSSF compared with the state-of-the-art features. Comparisons to hyperspectral
trackers demonstrated the effectiveness of the FSSF-based tracker in terms of accuracy
and speed. The experiments of attribute evaluation show that our method can handle
typical interferences in surveillance scenes, such as low resolution, background clutter,
and appearance change.

The proposed work makes three contributions:

(1) Proposed an FSSF feature extraction algorithm to realize object tracking in hyperspec-
tral video with a correlation filter in real time.

(2) Developed RSSC kernels being updated in real time to encode the discriminative
spatial-spectral information of each sub-HSI.
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(3) Confirmed the advantage of hyperspectral video tracking and the high efficiency
and strong discriminative ability of FSSF on the collected HSSV dataset in challeng-
ing environments.

2. Related Work
2.1. Advantage Analysis of Hyperspectral Video Tracking
2.1.1. Spectral Properties of HSI

Hyperspectral imaging acquires spectral and spatial information of an object simul-
taneously. HSI is effective for material identification compared to visible imaging tech-
niques [33]. The spectral spectrum captured at a pixel forms a vector of intensity values
which are closely related to the material composition of objects. The objects with different
material properties show substantial changes in spectral reflectance. The differences in
spectral features enhance the discriminability of the target object from a cluttered back-
ground, and therefore improves tracking accuracy. Figure 2 shows the variability in
spectral properties for different objects. Significant differences of spectral characteristics
can be found.

Figure 2. Spectral signatures of various materials measured at a center pixel of each object. (a) Target objects and various
background materials. From left to right and top to bottom: box, camera, bottle, glass, car, electric car, airplane, boat,
building, tree, human, and road. (b) Reflectance of various targets over 680-960 nm in wavelength.

In low-resolution situations, more background information is present; it is difficult to
extract robust features from the target in an RGB image. However, the spectral features
can be used to create robust features, which help the object stand out from surrounding
environments, resulting in more accurate tracking under the small-object challenge. In the
videos with in-plane-rotation, out-of-plane rotation, and occlusion attributes, although the
visual quality of the target is degraded, which makes the spatial structure information
unreliable, it is possible to associate the same target in the frame sequence due to intrinsic
spectral properties, as shown in Figure 2.

Figure 3 shows spectral signatures of objects in challenging tracking conditions.
Some examples of challenging conditions are shown in Figure 3a. Figure 3b shows spectral
signatures of the same subject in two different states (normal and blurred/deformation,
or exposed and shadowed). In the videos with deformation and illumination variance,
there is significant variation in physical appearances of the same target in previous and
subsequent frames; in RGB images, the same target will be represented by different features
causing failure in tracking. However, due to the unique spectral characteristics of the target,
the same object in the previous and subsequent frames can still be related. The tracker can
accurately track objects with the challenge of appearance changes.

In the background clutter challenge, different objects may have similar appearance
and color features in RGB image, for example, two pedestrians in Figure 3a. However,
their spectral distributions are different. Figure 3c shows the face and hair reflectance
spectra of two pedestrians in the last image of Figure 3a. Hair and facial skin show distinct
hyperspectral profiles. Hence, the spectral responses perceived from the two objects
address the background clutter problem of tracking.
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Figure 3. Sample images and their spectral reflectance. (a) Images are taken in various conditions (normal, deformation,
object in shadow, object in light, and background clutter). (b) Spectral profiles of object in different states (normal,
deformation and object in shadow, object in light). (c) Spectral signatures of facial skin and hair of the different subjects in
the background clutter image of (a).

Detailed spectral properties can increase feature discrimination. The spatial features
are, naturally, additional useful information for hyperspectral video tracking. Consider-
ing the complementary advantages of spatial and spectral information, combining two
kinds of information can improve traditional surveillance video tracking performance.

2.1.2. Separability Visualization of HSI

This section analyzes the separability of HSI data to further show its advantages in
tracking. The dimensionality reduction can be used to visualize the multidimensional
data to interpret its separability. T-SNE is one of the commonly used insightful non-
linear dimensionality reduction methods for visual analysis of high-dimensional data [34].
The main idea of t-SNE is to represent multidimensional data into a low-dimensional space
that can easily be visualized in scatter plots. We use t-SNE to represent the distribution of
data in a two-dimensional space. Specifically, we construct four pairs of datasets as the
input of t-SNE to intuitively compare the separability of HSI and RGB for different targets
and under some challenging situations, such as appearance change, background clutter
and illumination variation. Each category object in each dataset contains 1000 samples.

Figure 4 shows the scatter-plot representation of visualization results of the HSI and
RGB datasets with multiple objects. Figure 4a is the sample images of objects in the dataset.
The horizontal coordinate and vertical coordinates represent two feature values of the two-
dimensional data obtained by t-SNE, respectively. Points with different colors represent the
object samples from different categories and points with the same color are from different
frames of the same object. The visualization results of HSIs in Figure 4b show that the
intra-class data are close to each other while interclass data are far apart from each other.
The different objects are well separated from each other. However, the visualization results
of RGB in Figure 4c are very chaotic, and different colors of sample points are mixed and
overlapped with each other.

Figure 5 shows the visualization results of a two-dimensional projection of HSI and
RGB datasets with deformation. Figure 5a is the sample images of the dataset with
deformation. The two colors in the figure represent the normal state and deformation state
of the same object, respectively. In Figure 5b, the sample points from different states are
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clustered in the HSI dataset; in Figure 5c, they are arranged into two categories in the RGB
dataset. These results indicate that HSI data can improve the similarity of the same target
in different states.

Figure 4. The scatter-plot visualization representations of different objects generated for the HSI and
RGB datasets using t-SNE. (a) Sample images of the dataset (airplane, bicycle, boat, and person).
(b) Visualization of the HSI dataset. (c) Visualization of the RGB dataset. The x axis and y axis
represent the two feature values of the data in two-dimensional space, respectively. There are four
kinds of objects, each of which is represented a particular color.

Figure 5. The scatter-plot visualization representations of the HSI and RGB datasets with the
challenge of deformation using t-SNE. (a) Sample images of the dataset with deformation (normal
and deformation). The target deforms as the face moves. (b) Visualization of the HSI dataset.
(c) Visualization of the RGB dataset. The x axis and y axis represent the two feature values of the
data in two-dimensional space, respectively. There are two states (normal and deformation) of the
same object in two datasets, each of which is represented a particular color.
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Figure 6 shows the visualization results of a two-dimensional projection of HSI and
RGB datasets in illumination variations. Same sample images of the dataset are shown
in Figure 6a. The two colors represent the light state and shadow state of the same object
sample, respectively. Figure 6b is the scatter-plot of the HSI dataset, and the sample points
from light and shadow states are close to each other. Figure 6c is the scatter-plot of RGB
dataset, and the sample points from the two illumination states are divided into two
categories. The results show that HSI data has a better ability to associate the same object
under different illumination states compared to RGB data.

Figure 6. The scatter-plot visualization representations of the HSI and RGB datasets with the
challenge of illumination variation using t-SNE. (a) Sample images of the dataset with illumination
variation (object in light and object in shadow). The electric car is subjected to light changes during
driving. (b) Visualization of the HSI dataset. (c) Visualization of the RGB dataset. The x axis and y
axis represent the two feature values of the data in two-dimensional space, respectively. There are
two states (light and shadow) of the same object in two datasets, each of which is represented by a
particular color.

Figure 7 shows the visualization results of the two-dimensional projection of the HSI
and RGB datasets with a background clutter challenge. Figure 7a is the sample images of the
dataset. The two colors represent two objects with similar appearances, respectively. For the
RGB dataset, many sample points from different categories are mixed and overlapped with
each other, as in Figure 7b. For the HSI dataset, most sample points of different objects
are mostly correctly arranged into two classes and the sample points of the same object
are clustered into one category. Figure 7c shows that the two objects have a clear cluster
structure. Namely, HSIs can separate different targets with similar appearances better than
RGB data. Compared with RGB data, the spatial-spectral information of HSI data can better
distinguish targets under various challenges, proving that the HSI is effective for tracking.
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Figure 7. The scatter-plot visualization representations of the HSI and RGB datasets with the
challenge of background clutter using t-SNE. (a) Sample images of the dataset with background
clutter (from left to right: object1 and object2). The two objects are similar in visual appearance.
(b) Visualization of the HSI dataset. (c) Visualization of the RGB dataset. The x axis and y axis
represent the two feature values of the data in two-dimensional space, respectively. There are two
kinds of objects in two data sets, each of which is represented by a particular color.

2.2. Hyperspectral Tracking Method

An early work of hyperspectral tracking [35] attempted to use spectral reflectance
to identify pedestrians but did not take the contribution of spatial information into con-
sideration. Uzkent et al. proposed a hyperspectral likelihood maps-aided (HLT) [36]
tracker and a deep kernelized correlation filter (DeepHKCF) tracker [27]. HLT fuses
likelihood maps from each band of HSI into one single, more distinctive representation.
DeepHKCF converts a HSI to a pseudo-color image to extract deep convolution features.
These two methods may lose valuable information and are computationally expensive.
Qian et al. [37] extracts features using the 3D patches selected from an object area in the
first frame, but the correlations among bands were neglected. Xiong et al. [28] proposed
a spectral-spatial histogram of multi-dimensional gradients and fractional abundances
of constituted material components as the object features for tracking. However, this
method was developed for videos shot at close distances, and may not be suitable for aerial
and marine surveillance videos collected at long distances, which would capture smaller
targets. In addition, this method also has high computational complexity (see Figure 1),
not suitable for real-time surveillance video tracking. Extraction of discriminative features
from hyperspectral video in real-time is crucial for the overall success of object tracker,
which can improve the accuracy and effectiveness of surveillance video analysis and make
timely decisions.

2.3. Correlation Filter Tracking

Correlation filters have been extensively used in diverse computer vision applications
such object alignment [38], recognition [39] and tracking [40]. In general, correlation filter
trackers learn a correlation filter online from regions of interest of an object to infer the loca-
tion of the object in consecutive frames. Correlation filters are popular due to high tracking
accuracy and high computational efficiency. The correlation filter by Bolme et al. [40] has
been extended to many variants such as kernel correlation filters [41,42], long-term mem-
ory [43–45], multi-dimensional features [46,47], part-based strategies [48–50], scale es-
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timation [51–53], context-aware filters [54–56], spatial-temporal regularization [57–59],
deep learning [60,61], and multi-feature fusion [62–64]. Existing correlation filter-based
trackers generally follow ridge regression models. That is, the optimal correlation filter is
taught by minimizing the mean squared error (MSE) between the predefined and actual
output in the spatial domain:

h = argmin ‖ y− h⊗ x ‖2
2 +λ ‖ h ‖2

2 (1)

where x denotes a feature of sample, y is the desired output, λ > 0 is the regularization
parameter, and ⊗ is the convolution operation. Equation (1) is convex with a unique global
minimum. Equating its gradient to zero, the ridge regression problem has a closed-form
solution with respect to the input matrix x:

H =
(
X ∗Y

)
/(X ∗ X + λ) (2)

where the uppercase variable denotes the Fourier transform of the corresponding lowercase
letter. X and Y are complex conjugates. ∗ denotes elementwise multiplication. Given a
new input frame, the response map is calculated using the learned H and the extracted
feature Z as follows:

y = F−1(H ∗ Z) (3)

where F−1 denotes the inverse Fourier transform. The object position is the location of
the maximum response value. This paper combines the proposed spatial-spectral feature
extraction method and correlation filter to realize hyperspectral video tracking.

3. Fast Spatial-Spectral Feature-Based Tracking

This section first describes the FSSF extraction model to extract spatial-spectral fea-
tures using RSSC kernels in the Fourier domain. In FSSF extraction model, we present the
problem formulation of feature extraction followed by detailed description of the initial-
ization and updating progress of the RSSC kernels in Figure 8. After feature extraction,
to jointly estimate the object location, each subset of the HSIs is assigned a weight according
to relative entropy.

Figure 8. The initialization (purple box) and updating (blue box) process of the proposed real-time spatial-spectral
convolution (RSSC) kernel. In the frame t − 1, RSSC kernels are initialized using the search region of interest centered at
position yt−1 and ground-truth bounding box of the object. For the new frame t, spatial-spectral features are extracted using
the initialized RSSC kernel to estimate the object position yt. Then, RSSC kernels are updated using the search region of
interest and bounding box centered at yt. For calculation convenience, here we update the numerator Ak

t and denominator
Bk

t of the RSSC kernel separately. F and F−1 denote the FFT and inverse FFT, respectively.
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3.1. Fast Spatial-Spectral Feature (FSSF) Extraction
3.1.1. Problem Formulation

As a common feature construction operator, a convolution kernel captures more de-
tails of spatial structures for object tracking. The features extracted from the HSI by a
convolution kernel can better handle challenges, such as background clutter and deforma-
tion [65]. To effectively incorporate the spectral information into the HSI, 3D convolutional
kernels are used to capture discriminative features. Formally, the feature map is given by:

z = x⊗ w (4)

where x ∈ X × Y × L is the input sample, which is the image patch centered around
the target. X × Y and L are the spatial resolution and the number of bands of the HSI,
respectively. w represents the 3D convolution kernel. z means the output variable in the
feature map.

The focus of feature extraction using convolution kernels is the determination of
weight coefficients. The goal of training is to find an optimal convolution kernel so that the
loss is close to a given threshold. The loss function is expressed as:

ε = ‖
L

∑
i=1

xi ⊗ wk
i − zk ‖ (5)

where wk
i are i-th dimension of k-th convolution kernel, k ∈ {1, . . . , K}. zk is the desired

convolution output.
The convolution kernels are generally trained in the spatial domain using offline itera-

tive methods. For large training datasets, the calculation cost is very high. An expedient
strategy to reduce convolution computational complexity is to use Fast Fourier Transforms
(FFT) [30]. In [66], filter kernel weights are converted to the frequency domain for high
compression. Dziedzic et al. [67] proposed to constrain the frequency spectra of CNN
kernels to reduce memory consumption. However, there are still the following problems
in training the convolution kernel in FFT. A large amount of data is needed to train the
convolution kernels. It is usually more efficient on a larger size of kernel for FFT-based con-
volution compared with a convolution operator in the spatial domain; however, the CNN
models generally use a small size of kernels [31]. High dimensionality of HSIs causes a high
computational cost. Therefore, the FFT-based convolution models need to be optimized for
robustness and computational efficiency [68].

3.1.2. Real-Time Spatial-Spectral Convolution (RSSC) Kernel

Visual tracking requires tracking subsequent frames based on the initial frame in-
formation. Therefore, the convolution kernel can be trained from the initial frame and
adapted as the appearance of the target object changes in subsequent frames. This not
only can reduce training data, but the constructed convolution kernel can also be adapted
to the tracking sequence, thereby making the extracted features more robust. Since ridge
regression admits a simple closed-form solution, it can achieve performance close to that
of more sophisticated methods. Inspired by this, we develop the RSSC kernels to extract
discriminative spatial-spectral features in real-time by obtaining a closed-form solution of
the convolution kernel directly in the initial frame through robust ridge regression.

We first convert the spatial domain convolution operation of feature extraction to a
Fourier domain product operation. X and W represent the Fourier transforms of x and
w respectively. ∗ denotes elementwise multiplication. The feature extraction problem

in (4) is expressed in the Fourier domain as z =
L
∑

i=1
Xi ∗Wi. The loss function in (5) is

reformulated in the Fourier domain:

ε =‖
L

∑
i=1

Xi ∗Wk
i − Zk ‖ (6)
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In Equation (6), the optimal convolution kernel can be obtained by minimizing the
error. Hence, in the Fourier domain, the iterative training problem of convolution kernels
can be converted as the least squares problem. We use the ridge regression method to
solve the closed-form solution of RSSC kernels. The optimal RSSC kernels are computed
by minimizing the squared error between the desired output and the convolution output.
Since the spatial connection of the image is local, in general, the size of the kernel is smaller
than the input sample. Therefore, they need zero padding before being converted to the
Fourier domain. The optimization problem takes the form:

ε = min ‖
L

∑
i=1

p̂(Xi) ∗ p̂
(

Wk
i

)
− Ẑk ‖2

2 +λ
L

∑
k=1
‖ p̂
(

Wk
i

)
‖2

2 (7)

where p̂(Xi) and p̂
(

Wk
i

)
are the Fourier forms of xi and wk

i after zero padding, respectively,

and Ẑk is the Fourier transformation form of zk. The desired convolution output zk only
includes object information. Non-zero and zero points of zk are located at the object area
and background area in input sample x. As shown in the “ground truth” image in Figure 8,
the area inside the red box is the object region, and the area outside the red box is the
background region. The non-zero value of zk is the intensity value of object area in the input
sample. Since different bands have different intensity values in the object area, there are
L desired convolution outputs corresponding to L bands. The size of z is the same as the
input sample. λ is the regularization term to prevent overfitting of the learned convolution
kernel. The objective function in (7) can be rewritten by stacking multi-dimensional input
samples with a new data matrix p̂(X).

ε = min ‖ p̂(X) ∗ p̂
(

Wk
)
− Ẑk ‖2

2 +λ ‖ p̂
(

Wk
)
‖2

2 (8)

ε can be minimized by setting the gradient to zero to the solution of the k-th convolu-
tion kernel, yielding:

p̂
(

Wk
)T

=
(

p̂(X)T p̂(X) + λI
)−1

p̂(X)T Ẑk (9)

where p̂(X)T is the complex conjugate of p̂(X).
To adapt to appearance changes caused by rotation, scale, pose and so on in the

tracking process, the RSSC kernels need to be updated online to obtain robust object
features in the following frames. Here the numerator At and denominator Bt of the
RSSC kernel p̂

(
Wk
)

are updated separately. For one RSSC kernel update, the formula is
expressed as follows.

p̂t−1

(
Wk
)
=

p̂(X)T ∗ Zk

p̂(X)T ∗ p̂(X) + λI
=

Ak
t−1

Bk
t−1

(10)

Ak
t = η p̂t(X)T ∗ Zk

t + (1− η)Ak
t−1 (11)

Bk
t = η p̂t(X)T ∗ P̂t(X) + (1− η)Bk

t−1 (12)

where η is the learning rate.
The RSSC kernels in the FSSF model need only to be initialized in the first frame and

updated in subsequent frames without offline training, which will reduce the computa-
tional complexity. The convolution feature can be extracted in real time. The spatial size of
the RSSC kernel trained in Fourier is determined by the input image size, and the perfor-
mance is not affected by the size of the convolution kernel in the spatial domain. Since the
RSSC kernels are taught using the hyperspectral video sequence directly, the feature maps
extracted by RSSC kernels provide efficient encoding of local spectral-spatial information
of the HSI.
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3.1.3. Computational Complexity Analysis

The computational time of the conventional iterative offline learning method mainly
depends on the number of convolution layers, size of kernels, and the dimensions of
images. Its computational complexity in the spatial domain stems from convolution
operators, and is estimated at O

(
∑C

c=1 L2McNck2
c

)
. The computational complexity in the

frequency domain stems from element-wise multiplication operations and FFT, and is
estimated at O

(
∑C

c=1 LMcNclogLMcNc

)
. Mc × Nc is the spatial dimensions of the c-layer

input image, kc is the size of the c-layer convolutional kernels, and L is the spectral
dimensions of the HSI. In the training process, the computational complexity of these
two methods increases to O

(
D ∑C

c=1 L2McNck2
c

)
and O

(
D ∑C

c=1 LMcNclogLMcNc

)
with

a potentially large D (iteration), respectively. Comparing the computational complexity
in the two domains, the computational efficiency is improved significantly only when
the size of convolution kernel is large enough. Hence, it is usually more efficient on a
larger size of kernel for FFT-based convolution compared with convolution operators in
the spatial domain.

Our proposed RSSC kernels can be obtained directly through regression without
offline iterative learning. The complexity calculation of our method is mainly composed of
element-wise multiplication and FFT. For a HSIs with size of M× N× L, since Equation (7)
is separable at each pixel location, we can solve M× N × s sub-problems, and each is a
system of linear equations with B variables. B is the number of sub-HSIs. s is the number
of bands in one sub-HSI, and L ≈ B× s. Each system is solved in O(MNs). Thus, the com-
plexity of solving B RSSC kernels wb(b = 1, . . . , B) is O(BMNS), namely O(LMN). Tak-
ing the FFT, the overall complexity of our proposed online learning is O(LMNlog(MNs)).
The number of convolutional layers is equal to 1. This indicates that our proposed method
reduces computation time by several orders of magnitude compared to iterative offline
learning, resulting in very fast optimization.

3.1.4. Feature Extraction

For a new frame t, we crop the region of interest from the previous frame as the input
sample and convert it to the Fourier domain, and then the learned RSSC kernel p̂

(
Wk
)

t−1
is convolved with the image patch p̂(X)t. The result is the target feature representation.
The feature extraction formula is given by:

Fk
t =

L

∑
i=1

p̂t(Xi) ∗ p̂t−1

(
Wk

i

)
(13)

where Fk
t is the k-th dimension feature of the t-th frame in the Fourier domain. As the feature

of the correlation filter tracker needs to be converted to the Fourier domain, the obtained
feature does not need to be transformed back into the spatial domain.

To reduce the redundancy of the HSI, we construct sub-HSIs as the input samples
by using correlation [32] between bands. Figure 9a is a visualization of the correlation
coefficient matrix. We cross-group the strong correlation band images into one group,
and each group forms a sub-HSI. Each sub-HSI is regressed to its desired output z to learn
the corresponding RSSC kernel.

For a given frame, the HSI is first divided into several sub-HSIs, and then the RSSC
kernels are convolved with the corresponding sub-HSIs to calculate spatial-spectral features.
Figure 10 visualizes the spatial-spectral feature maps of each sub-HSI in a car sequence.
It shows that the object appearance and background change in different frames (first column
from the left in Figure 10) of the same sequence. In this case, the spatial-spectral features
are still effective in discriminating the object. It should be noted that the spatial-spectral
features of various sub-HSIs are significantly different.
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Figure 9. (a) Visualization of correlation coefficient matrix, (b) Relative entropy of each band relative
to the first band.

Figure 10. Visualization of the spatial-spectral feature maps extracted from different sub-HSIs. Activations are shown for
two frames from the deformation challenging car sequences (left). The spatial-spectral features (right) are extracted on each
sub-HSI. Notice that although the appearance of object changes significantly, we can still extract discriminative features
even the background has changed dramatically.

3.2. FSSF-Based Object Tracking

Correlation filters are widely used in single object tracking due to their competitive
performance and computational efficiency. Here we employ correlation filter methods as
our trackers to realize hyperspectral video tracking. After the features are extracted by
the FSSF extraction model from all sub-HSIs, they are fed to the correlation filter tracker
to achieve object tracking. The correlation response map is obtained using Equation (3),
and the maximum response is the object position estimated for the current frame. The track-
ing process is described in Algorithm 1. The contribution of each sub-HSI is expressed
by relative entropy, which represents the difference in information. Figure 9b shows the
relative entropy between each band image and the first band image. The weight of each
sub-HSI can be represented by averaging the relative entropy of all band images in the
sub-HSI. Finally, the object location corresponds to the location of the maximum filter
response, formulated as:

y = maxF−1

(
K

∑
i=1

αk(hk ∗ fk)

)
(14)

where αk is the weight value of each sub-HSI, which is calculated by averaging the relative
entropy of all band images in k-th sub-HSI.
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Algorithm 1: FSSF-Based Hyperspectral Video Tracking Method

Input: t-th frame It, object position on (t − 1)-th frame Pt−1.
Output: target location on t frame Pt.
1: RSSC kernel initialization:
2: Crop an image patch xt−1 from It−1 at the location on (t − 1)-th frame Pt−1, initialize
convolution kernel by using (9).
3: Repeat
4: Location estimation
5: Crop an image patch xt from It centered at Pt−1.
6: Extract the spatial-spectral feature by using (13).
7: Compute correlation scores y using (14).
8: Set Pt to the target position that maximizes y.
9: RSSC kernel update:
10: Crop a new patch xt and label zt center at Pt.
11: Update RSSC kernel numerator At by using (11), update RSSC kernel denominator Bt by
using (12).
12: Until end of video sequences;

4. Experimental Results

We conducted extensive experiments on proposed dataset. All trackers were per-
formed in MATLAB on a server of Intel Core I7-7770 @3.60 GHz CPU with 16 GB RAM,
and a GPU with NVIDIA GeForce GTX 1080 Ti.

4.1. Experiment Setup
4.1.1. Dataset

With the limitation of hyperspectral sensors, it is difficult to real-time collect hyper-
spectral surveillance video with a wide field of view. Uzkent et al. [31] introduced a
synthetic aerial hyperspectral dataset (SAHD) generated by Digital Imaging and Remote
Sensing software with a low frame rate for tracking. However, this synthetic dataset is
too unrealistic to cover the surveillance video tracking challenges, such as small objects,
deformation, background clutter, etc. Recent advances on sensors enable collecting hyper-
spectral sequences at a video rate. To validate our approach, we collected a hyperspectral
surveillance video (HSSV) dataset with 70 annotated sequences for object tracking. All data
were captured with 25 spectral bands over visible and near infrared (680–960 nm) with
a bandwidth of 10 nm using a snapshot mosaic hyperspectral camera (CMV2K SSM5*5
VIS camera) from IMEC®. This camera is hand-held and it acquires video at up to 120
hyperspectral cubes per second, making it easy to capture dynamic scenes at a video
rate. Each frame of dataset is a 3D hyperspectral cube, including two-dimensional spatial
position information and one-dimensional spectral band information. The captured hyper-
spectral dataset requires spectral calibration to remove the influence of lighting condition.
We performed a white calibration to convert radiance to reflectance by normalizing the
image. The spatial resolution for each band is 409 × 216. The acquisition speed and
average video length of HSSV are 10 fps and 174 frames, respectively. The shortest video
contains 50 frames and the longest ones consist of 600 frames. The total duration of the
70 videos for this work is 20.1 mins with 12,069 frames. Figure 11 shows an example of a
HSI acquired by the hyperspectral camera. The HSSV dataset consists of three typical real-
world surveillance scenarios such as aviation, navigation and traffic, where tracking targets
include airplanes, ships, pedestrians, vehicles, bicycles, electric cars, and motorcycles.
Some example sequences with these tracking objects are shown in Figure 12. To compare
hyperspectral-based tracking and color-based tracking, we also prepared false-color videos
using the three spectral bands (747.12 nm, 808.64 nm, 870.95 nm) from the hyperspec-
tral video.
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Figure 11. Illustration of a set of 25 bands of HSI. The 25 bands are ordered in ascending from left to
right and top and bottom, and its center wavelengths are 682.27 nm, 696.83 nm, 721.13 nm, 735.04 nm,
747.12 nm, 760.76 nm, 772.28 nm, 784.81 nm, 796.46 nm, 808.64 nm, 827.73 nm, 839.48 nm, 849.40 nm,
860.49 nm, 870.95 nm, 881.21 nm, 889.97 nm, 898.79 nm, 913.30 nm, 921.13 nm, 929.13 nm, 936.64 nm,
944.55 nm, 950.50 nm, 957.04 nm, respectively.

Figure 12. Example sequences with different tracking objects of the HSSV dataset. From top to
bottom: airplane, boat, pedestrian, electric car, bicycle, car.

All images are annotated with high-precision bounding boxes, which are manually
annotated and checked. The dataset contains various tracking challenges in actual scenar-
ios. Each sequence is labeled with the 11 challenging attributes, including illumination
variation, scale variation, occlusion, deformation, motion blur, fast motion, in-plane rota-
tion, out-of-plane rotation, out-of-view, background clutter and low resolution. For each
attribute, we construct a corresponding subset for evaluation. Each sequence usually is
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contained with multiple attributes. In order to reflect the advantages of hyperspectral
video, some attributes occur more frequently, such as illumination variation, deformation,
background clutter, low resolution, and occlusion. In summary, our collected dataset
is diverse and challenging, which has the ability to comprehensively evaluate tracking
methods. The full HSSV dataset will be publicly accessible.

4.1.2. Evaluation Metrics

For comparison, we assess the performance of the tracker quantitatively according
to two measurements: precision rate and success rate [9]. The precision rate denotes
the percentage of frames where the center location error between the predicted and ac-
tual position is less than the given threshold. The center location error is defined as

CLE =
√
(x1− x2)2 + (y1− y2)2 where (x1, y1) and (x2, y2) denote the central location of

the predicted bounding box and the corresponding ground truth bounding box, respec-
tively. A frame is termed as a success frame if CLE < ξ. ξ is the given threshold, here its
value is an integer from 0 to 50 pixels. The precision rate can be defined as PR(ξ) = NCLE<ξ

NTotal
where NCLE<ξ is the number of frames and CLE is smaller than ξ, and NTotal is the total
number of image frames. The success rate is measured by the percentage of frames where
the intersection over union of the predicted output and ground truth bounding box exceeds
a given threshold. An intersection over union is defined as IOU =

Bt∩Bg
Bt∪Bg

, where ∩ and
∩ are the intersection and union of two regions, and Bt, Bg denotes the area of ground
truth and predicted bounding box, respectively. A frame is termed as a success frame if
IOU > η. η denotes the given threshold, with a value from 0 to 1. Therefore, the success

rate can be defined as SR(η) =
NIOU>η

NTotal
where NIOU>ξ is the number of frames where the

IOU is larger than η, and NTotal is the total number of image frames. According to different
initialization strategies, we use temporal robustness evaluation (TRE), spatial robustness
evaluation (SRE), and one-pass evaluation (OPE) criteria to show the precision and success
rates of all the trackers. Additionally, three numerical values are further used to evaluate
the performance, including distance precision (DP), overlap precision (OP) and area under
curve (AUC). The fps that each tracker is able to process is discussed.

4.1.3. Comparison Scenarios

We conducted three experiments to evaluate the proposed method. First, to evaluate
the advantage of hyperspectral video tracking compared to RGB tracking, we conducted
the experiment using the same trackers on different inputs: spatial-spectral feature from hy-
perspectral video data and appearance feature from RGB data. We selected four correlation
filter trackers with different feature in RGB tracking as the baseline trackers, including CN
(color feature) [47], fDSST (histogram of gradients (HOG) feature) [51], ECO (HOG fea-
ture) [29], DeepECO (CNN feature) [29], STRCF (HOG feature) [57] and DeepSTRCF
(CNN feature) [57]. The proposed FSSF was integrated with the selected four diverse
baseline trackers, named SSCF (SS_CN, SS_fDSST, SS_ECO, and SS_STRCF). The SSCF
was performed in the HSSV database, whereas the baseline trackers are performed in RGB
dataset, using three bands of HSI in the HSSV dataset. The second experiment was to
evaluate the effectiveness of FSSF by comparing the different feature extractors (spectral,
HOG [51], CNN feature (DeepFeature) [29], SSHMG [28], and our FSSF) in the hyperspec-
tral video. The raw spectral response was employed as a spectrum feature. The HOG
feature and DeepFeature were respectively constructed by concatenating the HOG feature
and DeepFeature across all the bands of a HSI. The SSHMG feature was extracted directly
from the HSI. Tracking was performed based on the original ECO. The third experiment
was a comparison with three hyperspectral trackers to further verify the effectiveness of
proposed method.



Remote Sens. 2021, 13, 1922 17 of 28

4.2. Advantage Evaluation of Hyperspectral Video tracking
4.2.1. Quantitative Evaluation

Figure 13 illustrates the precision plot and success plot of three initialization strategies
for all SSCF trackers and their baseline trackers. It clearly illustrates that all SSCF trackers
perform favorably against their corresponding baselines in all three metrics, since the SSCF
takes the advantages of the spatial-spectral information from HSI. It is consistent with
our above expectations. Specifically, compared with DeepECO using the CNN features,
SS_ECO brings an absolute improvement of 1.3% and 6.2% in the OPE metric, and 9.5%
and 10.7% in TRE metric. In the SRE metric, their precision rate is equal and the success
rate of SS_ECO is higher than DeepECO. Additionally, SS_STRCF performs better than
DeepSTRCF by 4.0%, 1.2% and 2.6% in precision rate, and 5.1%, 5.0% and 6.9% in success
rate, in three metrics respectively. Compared with fDSST and CN with hand-crafted
features, spatial-spectral information of HSIs increases the tracking performance by 13.9%
and 4.0% in precision rate respectively, and 13.7% and 5.7% in success rate respectively,
in the TRE metric.

Figure 13. Comparison results for all SSCF trackers and their baseline trackers using three initialization strategies: one-pass
evaluation (OPE), temporal robustness evaluation (TRE) and spatial robustness evaluation (SRE). (a) Precision plot and the
success plot on OPE. (b) Precision plot and the success plot on SRE. (c) Precision plot and the success plot on TRE. The legend
of precision plots and success plots report the precision scores at a threshold of 20 pixels and area-under-the-curve (AUC)
scores, respectively.



Remote Sens. 2021, 13, 1922 18 of 28

Table 1 shows the results of OP with a threshold of 0.5, and their tracking speed. SSCF
trackers perform well compared to their corresponding baseline trackers. The best tracker,
SS_ECO, surpasses its corresponding baseline tracker DeepECO by 8.1 %. These results
indicate that hyperspectral information is beneficial to increase feature representation
ability compared to RGB images. Our SSCF can extract discriminative spatial-spectral
features, resulting in a robust tracker. Thus, our method achieves better performance than
other baseline trackers, which use RGB datasets from HSSV datasets.

Table 1. Mean overlap precision (OP) metric (in %) and fps of our SSCF and their corresponding baseline trackers.

SS_STRCF DeepSTRCF STRCF SS_ECO DeepECO ECO SS_fDSST fDSST SS_CN CN

Mean OP 0.775 0.719 0.680 0.829 0.748 0.592 0.704 0.453 0.463 0.395

4.2.2. Attribute-Based Evaluation

This section analyzes the tracking performance under different attributes to better
highlight the advantages of hyperspectral video in tracking. Figure 14 shows the success
rate plots for eight attributes. We can observe that SSCF trackers perform better under
the challenges of background clutter, deformation, illumination variation, low resolution,
occlusion, out-of-plane rotation, out-of-view, and scale variation. Specifically, SSCF im-
proves significantly for videos with low resolution. The main reason is that the object
is too small and contains less appearance or color information, hence, it is difficult to
extract discriminative features from a RGB image. In contrast, FSSF can represent internal
attribute information, which can increase the feature discrimination of small targets. On the
out-of-plane rotation, deformation and out-of-view subsets, the spatial structure feature is
unreliable. Therefore, baseline trackers that only use appearance information have poor
performance. Benefiting from spectral information, SSCF tracker is robust to such kinds of
variations. On the background clutter subset, our method provides much better results.
This is mainly due to the fact that spectral information can distinguish the target from a
background that has a similar color and appearance. As for occlusion, out-of-view and
scale variation attributes, SSCF also performs better, which suggests that spatial-spectral
representation is more effective in dealing with scale variation and occlusion compared to
RGB representation.

Figure 14. Cont.
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Figure 14. Success plots over eight tracking attributes, including (a) background clutter (24), (b) deformation (18), (c) illumi-
nation variation (20), (d) low resolution (27), (e) occlusion (36), (f) out-of-plane rotation (7), (g) out of view (4), (h) scale
variation (37). The values in parentheses indicate the number of sequences associated with each attribute. The legend
reports the area-under-the-curve score.

4.2.3. Qualitative Evaluation

To visualize the advantage of hyperspectral video tracking, Figure 15 shows a qualita-
tive evaluation of SSCF trackers compared to their baseline trackers (from top to bottom,
CN, fDSST, DeepECO, DeepSTRCF) under the challenges of deformation, low resolution, in-
plane rotation, illumination variation, background clutter and occlusion. Detailed analysis
is as follows.
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Figure 15. Qualitative results of our hyperspectral video compared to traditional video on some
challenging sequences (electriccar, double5, airplane9, human4). The results of SSCF tracker and the
baseline tracker are represented by green and red boxes, respectively.

In Figure 15, for the electriccar sequence involving illumination variation, SS_CN per-
forms better than CN in terms of locating the target. This is because the object color or
appearance will change in the illumination variation case while the spectral information
from a HSI does not. In the double5 sequence, involving background clutter, deforma-
tion and in-plane rotation, the tracking results of fDSST will drift to the similar object
because the HOG features of the similar target are similar, as shown in frames #46 and #65.
However, since spectral information of hyperspectral video can handle the deformation
challenge, SS_fDSST still tracks the object accurately. In the airplane9 sequence, Deep-
ECO loses the target at the final stage (e.g. #187). Nevertheless, SS_ECO still performs well
because hyperspectral video provides additional spectral information for small objects.
In the human4 sequence, the person undergoes occlusion by a tree. The DeepSTRCF tracker
cannot capture the target through the entire sequence. The features extracted from HSI
still have high discrimination power under occlusion situations, so SS_STRCF locates the
target successfully.

4.2.4. Running Time Evaluation

Tracking speed is an important factor of real-time tracking. Table 2 shows the FPS
comparison of our SSCF and their corresponding baseline trackers. In Table 2, the two SSCF
trackers with the best performance, SS_ECO and SS_STRCF, have greatly improved tracking
speed compared to their corresponding baseline trackers. Specifically, SS_ECO runs at
around 46.68 fps on CPU, which is nearly 4 times faster than its corresponding tracker
DeepECO with deep features that runs with a GPU. SS_STRCF runs at around 23.64 fps on
CPU, which is more than 4 times faster than its corresponding baseline tracker DeepSTRCF
(deep feature) which runs at 5.73 fps (gpu). We also compare the computation time between
our spatial-spectral feature FSSF and RGB feature (deep feature, hog feature and color
feature) in Table 3. For fair comparison, all the features are integrated into the same tracker,
STRCF. In Table 3, our FSSF feature is slightly slower than HOG, close to color feature,
and far greater than deep feature in terms of computation time of tracking. In summary,
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performance gain and tracking efficiency of the spatial-spectral feature are both achieved
compared to the spatial feature from an RGB image.

Table 2. FPS of our SSCF and their corresponding baseline trackers.

SS_STRCF DeepSTRCF STRCF SS_ECO DeepECO ECO SS_fDSST fDSST SS_CN CN

FPS 23.64(cpu) 5.73(gpu) 32.11 46.68(cpu) 11.87(gpu) 67.58 45.8985 220.30 126.17 981.94

Table 3. FPS comparison between spatial feature and spatial-spectral feature with same tracker.

Spatial-Sepctral Feature Spatial Feature

FSSF DeepFeature HOG Color

FPS 23.64 5.73(gpu) 32.11 24.0113

4.3. Effectiveness Evaluation of Proposed FSSF
4.3.1. Quantitative Evaluation

Figure 16 shows the comparison results in three indexes. The spectral feature provide
the worst accuracy among all the compared methods, as the raw spectrum is sensitive to
illumination changes. However, it has the fastest tracking speed among all the compared
features. The HOG feature considers the local spatial structure information which is crucial
for object tracking, and therefore produces more favorable results. However, the complete
spectral-spatial structural information in an HSI is not fully explored. Compared to
the HOG-based tracker, FSSF achieves a gain of 5.7%, 4.7% and 3.1% in precision rate,
and 9.5%, 6.9% and 7.2% in the success rate, in three indexes respectively. Compared to
DeepFeature, FSSF performs better in the success rate of all three indexes. For precision rate,
FSSF has better precision in all three indexes when the location error threshold is less than
10 pixels. This is due to the fact that the DeepFeature is constructed by concatenating the
DeepFeature across all the bands of an HSI, without considering the spectral correlation of
bands. The strong correlation between the spectral bands makes the extracted DeepFeature
redundant, resulting an inaccurate bounding box of the target. We also report the mean DP
(MDP) and mean OP (MOP) at various thresholds where the overlap threshold is greater
than 0.5 and distance threshold is less than 20 in Table 4. The MDP and MOP of our
method are higher than the DeepFeaure in all setting thresholds, which suggests that our
FSSF predicts a more accurate bounding box than DeepFeature. Compared with SSHMG,
the precision rate and success rate of FSSF are both higher and obtain the gain of 3.4%,
2.2% and 3.5% in the precision rate, and 4.4%, 2.4% and 4.8% in the success rate, in three
indexes respectively. The main reason for this result is that SSHMG describes the local
spectral spatial structure information of the target, which is not available for the small
objects existed in the surveillance video. For tracking speed, our FSSF runs at around
48.08 fps on the CPU, which is nearly 34 times faster than DeepFeature running on the
GPU and 33 times faster than SSHMG. Our method brings a significant improvement
in computational efficiency when compared to DeepFeature and advanced HSI feature.
In summary, our proposed FSSF extraction model can quickly extract more discriminative
spatial-spectral features from HSI at a low computational cost.
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Figure 16. Precision and success plot of different features on a HSSV dataset using three initialization strategies: one-pass
evaluation (OPE), temporal robustness evaluation (TRE) and spatial robustness evaluation (SRE). (a) Precision plot and the
success plot on OPE. (b) Precision plot and the success plot on SRE. (c) Precision plot and the success plot on TRE. The
legend of precision plots and success plots report the precision scores at a threshold of 20 pixels and area-under-the-curve
scores, respectively. The fps of trackers in three initialization strategies is also shown in legend.

Table 4. Mean DP (MDP) and mean OP (MOP) in different threshold and fps of FSSF versus DeepFeature. MDP (20) denotes
the mean DP (% at pixel distance <20). MOP (0.5) denotes the mean OP (% at IOU > 0.5).

Attribute MDP(20) MDP(15) MDP(10) MDP(5) MOP(0.5) MOP(0.6) MOP(0.7) MOP(0.8) fps

FSSF 0.620 0.558 0.457 0.265 0.471 0.395 0.298 0.178 46.68
DeepFeature 0.594 0.510 0.378 0.178 0.385 0.303 0.214 0.116 1.23

4.3.2. Attribute-Based Evaluation

The effectiveness of the proposed FSSF is further verified by analyzing the tracking
performance under different challenges. Figure 17 shows the tracking results in success
plot of six attributes. FSSF shows significant superior performance than the spectral fea-
ture and HOG feature in all six attributes due to spectral feature only consider spectral
information and HOG feature describes spatial structure information only at each band.
Additionally, FSSF performs better than SSHMG in all six challenges, especially low resolu-
tion, occlusion and fast motion, which achieved improvements of 5.7%, 5.3% and 10.6%
respectively. The hand-craft feature SSHMG describes the local spatial-spectral texture
structure, which is unreliable due to less target information and rapid appearance changes
under these challenges. However, our FSSF will update in real time according to the
change of the target. Compared to DeepFeature, FSSF provides a gain of 8.7% and 2.7%
in mean success rate in low resolution and occlusion, respectively. As for the challenges
of scale variation, fast motion, the success rate of FSSF is slightly higher success rate than
the DeepFeature. In the background clutter and deformation attributes, FSSF exhibits
much better performance than DeepFeature when the threshold of the evaluation indicator
is high.
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Figure 17. Success plots over six tracking attributes, including (a) low resolution (27), (b) occlusion (36), (c) scale variation
(37), (d) fast motion (9), (e) background clutter (24), (f) deformation (18). The values in parentheses indicate the number of
sequences associated with each attribute. The legend reports the area-under-the-curve score.

We also report the comparison results in Mean OP score at the IOU>0.5 in Table 5.
The results show that FSSF ranks the first on 8 out of 11 attributes: low resolution, back-
ground clutter, occlusion, scale variation, deformation, in-plane rotation, out-of-plane rota-
tion, and fast motion. In the low resolution and background clutter situations, the object has
less appearance information or there is similar interference, the CNN model trained by RGB
dataset cannot fully extract the spectral features of an object. The proposed FSSF makes
full use of hyperspectral information, which is beneficial for correlating the same object in
the sequence. On the videos with occlusion, scale variation, deformation, in-plane rotation,
out-of-plane rotation, and fast motion attributes, the results demonstrate that FSSF still
can provide discriminative features, suppressing the influence of object changes during
tracking. In summary, the proposed FSSF is capable of accurately tracking objects in the
challenges of low resolution, occlusion, scale variation, background clutter, deformation,
and fast motion.

Table 5. Attribute-based comparison with DeepFeature in terms of mean OP (% at IOU>0.5). The best results are shown
in bold, our FSSF ranks the first on 8 of 11 attributes: low resolution, background clutter, occlusion, out-of-plane rotation,
in-plane rotation, fast motion, scale variation, and deformation.

Attribute FSSF DeepFeature

Illumination variation 0.520 0.530
Scale variation 0.419 0.388

Occlusion 0.442 0.373
Deformation 0.506 0.468
Motion blur 0.444 0.473
Fast motion 0.349 0.315

In-plane rotation 0.392 0.317
Out-of-plane rotation 0.378 0.369

Out-of-view 0.357 0.372
Background clutter 0.439 0.409

Low resolution 0.450 0.287
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4.4. Comparison With Hyperspectral Trackers
4.4.1. Quantitative Evaluation

This section compares the proposed method to the recent hyperspectral trackers
HLT [36], DeepHKCF [27], MHT [28]. Figure 18 shows the comparison results. We can
observe that our SSCF tracker is among the top performers in terms of both precision and
success rate. HLT tracker is the lowest in terms of both precision and success rates due
to the fact that it uses hand-craft feature and SVM classifier. The DeepHKCF provides
a gain of 24.6% in precision rate and 24.2% in success rate compared to HLT since it
learns discriminative CNN features by using the VGGNet and tracks objects utilizing
the KCF-based tracker, which are both more robust than hand-craft features and SVM
for tracking. However, DeepHKCF uses false color images obtained by HSIs to extract
the CNN features, which cannot fully explore the spatial-spectral structural information.
In contrast, our SS-ECO and MHT methods obtain better performance than DeepHKCF
since they extract the spatial-spectral features from the HSI. The proposed method shows
higher performance than MHT. The average precision rate and success rate are higher by
an average of 3.4% and 4.4%, respectively. The main reason is that MHT uses the local
spatial-spectral structure features, which are not unreliable for small objects and targets
with rapid appearance changes in surveillance videos. In contrast, our method can update
the feature extractor in real-time to adapt to the various changes of objects in tracking.

Figure 18. Comparison results with hyperspectral trackers. (a) Precision plot. (b) Success plot.
The legend of the precision plot and success plot report the precision scores at a threshold of 20 pixels
and area-under-the-curve (AUC) scores, respectively.

Table 6 shows the comparison of DP and OP using the threshold of 20 pixels and 0.5,
respectively. We can observe that the performance of SS_ECO is more than 2 times and
5 times better than the DeepHKCF and HLT. SS_ECO achieves OP and DP of 83.2% and
82.9%, which provides a gain of 2.6% and 4.1% compared with MHT. This is consistent with
the results of Figure 18. For the tracking speed, the fps of our method is nearly 35 times
higher than the second ranked tracker MHT.

Table 6. Mean OP, DP metric (in %) and fps of SSCF and hyperspectral trackers.

SS_ECO MHT DeepHKCF HLT

Mean OP 0.520 0.506 0.444 0.349
Mean DP 0.829 0.788 0.375 0.110

FPS 46.68 1.34 49.87 1.58

4.4.2. Attribute-Based Evaluation

We further analyze some common challenging factors in tracking. Table 7 lists AUC
metrics for three trackers in all challenges. We can observe that SS_ECO performs well
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in all scenarios. HLT has the worst tracking performance on all attributes since it only
uses spectral information as features. SS_ECO has a margin of 11.7–36.9% in success
rate (11.7% in in-plane rotation, 36.9% in illumination variation) over DeepHKCF on
all attributes. The main reason for this result is that the pseudo-color videos lose the
beneficial spectral information for tracking. Additionally, SS_ECO outperforms MHT in
all challenges, especially under the challenges of low resolution, illumination variation,
occlusion, motion blur, fast motion, and out-of-view; the gains of SS_ECO are all more
than 5% compared with the second-best tracker, MHT. Table 7 demonstrates that the
proposed method can extract discriminative spatial-spectral features to handle various
challenges effectively.

Table 7. Attribute-based comparison with hyperspectral trackers in the term of AUC. The best results
are shown in bold.

Attribute SS_ECO MHT DeepHKCF HLT

Illumination variation 0.658 0.578 0.289 0.147
Scale variation 0.618 0.607 0.387 0.146

Occlusion 0.630 0.577 0.391 0.152
Deformation 0.704 0.676 0.395 0.129
Motion blur 0.641 0.555 0.434 0.087
Fast motion 0.580 0.474 0.389 0.126

In-plane rotation 0.596 0.591 0.479 0.178
Out-of-plane rotation 0.623 0.586 0.437 0.076

Out-of-view 0.574 0.407 0.419 0.158
Background clutter 0.607 0.568 0.362 0.151

Low resolution 0.680 0.623 0.388 0.105

5. Conclusions

This paper presents object tracking in hyperspectral video using a fast spatial-spectral
feature (FSSF)-based tracking method. The FSSF-based tracker extracts discriminative
spatial-spectral features in real time with real-time spatial-spectral convolution (RSSC) ker-
nels in the Fourier transform domain to overcome the challenges of traditional surveillance
video tracking for real-time and accurate hyperspectral video tracking. To evaluate the
proposed method, we collected a HSSV tracking dataset. Extensive experiments on the
collect HSSV dataset demonstrate the advantage of hyperspectral video tracking in several
challenging conditions and the high efficiency and strong robustness of the proposed
FSSF-extraction model.

Due to the robustness and real-time performance of the proposed method, hyper-
spectral surveillance can improve the accuracy of surveillance video analysis and the
proposed tracker can be successfully used in various surveillance applications. In fur-
ther work, we will further develop more robust hyperspectral features by exploring the
spatial-temporal context information, feature attention mechanisms and high-level se-
mantic information. On the other hand, the improvement of tracking methods also will
significantly increase the accuracy and real-time of surveillance video analysis.

Author Contributions: Conceptualization, L.C. and Y.Z.; Investigation, L.C., J.Y. and J.C.; Methodol-
ogy, L.C. and Y.Z.; Writing—original draft, L.C.; Writing—review & editing, Y.Z., N.L., J.C.-W.C. and
S.G.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC)
(No. 61771391), the Key R & D plan of Shaanxi Province (No. 2020ZDLGY07-11), the Science,
Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20170815162956949,
CYJ20180306171146740), the Natural Science basic Research Plan in Shaanxi Province of China (No.
2018JM6056), the faculty research fund of Sejong University in 2021 (No. Sejong-2021).

Acknowledgments: The authors are grateful to the Editor for time and effort in administering the
review of this manuscript. We also thank the reviewers and Academic Editor for their constructive



Remote Sens. 2021, 13, 1922 26 of 28

comments to improve the manuscript, which have been very helpful for us to improve the manuscript.
Appreciation to the authors of the compared methods for providing the source codes.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shao, Z.; Wang, L.; Wang, Z.; Du, W.; Wu, W. Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance

Video. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 781–794. [CrossRef]
2. Zhou, J.T.; Du, J.; Zhu, H.; Peng, X.; Liu, Y.; Goh, R.S.M. AnomalyNet: An anomaly detection network for video surveillance.

IEEE Trans. Inf. Forensics Sec. 2019, 14, 2537–2550. [CrossRef]
3. Hu, L.; Ni, Q. IoT-driven automated object detection algorithm for urban surveillance systems in smart cities. IEEE Internet

Things J. 2018, 5, 747–754. [CrossRef]
4. Li, A.; Miao, Z.; Cen, Y.; Zhang, X.-P.; Zhang, L.; Chen, S. Abnormal event detection in surveillance videos based on low-rank and

compact coefficient dictionary learning. Pattern Recognit. 2020, 108, 107355. [CrossRef]
5. Ye, L.; Liu, T.; Han, T.; Ferdinando, H.; Seppänen, T.; Alasaarela, E. Campus Violence Detection Based on Artificial Intelligent

Interpretation of Surveillance Video Sequences. Remote Sens. 2021, 13, 628. [CrossRef]
6. Li, M.; Cao, X.; Zhao, Q.; Zhang., L.; Meng., D. Online Rain/Snow Removal from Surveillance Videos. IEEE Trans. Image Process.

2021, 30, 2029–2044. [CrossRef] [PubMed]
7. Zhang, P.; Zhuo, T.; Xie, L.; Zhang, Y. Deformable object tracking with spatiotemporal segmentation in big vision surveillance.

Neurocomputing 2016, 204, 87–96. [CrossRef]
8. Zou, Q.; Ling, H.; Pang, Y.; Huang, Y.; Tian, M. Joint Headlight Pairing and Vehicle Tracking by Weighted Set Packing in Nighttime

Traffic Videos. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1950–1961. [CrossRef]
9. Müller, M.; Bibi, A.; Giancola, S.; Alsubaihi, S.; Ghanem, B. TrackingNet: A large-scale dataset and benchmark for object tracking

in the wild. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, 18–22 June 2018.
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