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Abstract: This paper presents a new group target tracking method based on the standard multi-sensor
multi-target multi-Bernoulli (MS-MeMBer) filter. In the prediction step, the group structure is used
to constrain the movement of the constituent members within the respective groups. Specifically, the
group of members is considered as an undirected random graph. Combined with the virtual leader-
follower model, the motion equation of the members within groups is formulated. In the update step,
the partitioning problem of multiple sensors is transformed into a multi-dimensional assignment
(MDA) problem. Compared with the original two-step greedy partitioning mechanism, the MDA
algorithm achieves better measurement partitions in group target tracking scenarios. To evaluate the
performance of the proposed method, a simulation scenario including group splitting and merging
is established. Results show that, compared with the standard MS-MeMBer filter, our method can
effectively estimate the cardinality of members and groups at the cost of increasing computational
load. The filtering accuracy of the proposed method outperforms that of the MS-MeMBer filter.

Keywords: group target tracking; MDA; MS-MeMBer filter; undirected random graph; virtual
leader-follower model

1. Introduction

Group targets [1] can be considered as the formation of cooperative members whose
locations obey special structures, such as unmanned aerial vehicle (UAV) formations,
vehicle convoys, and flocks of birds, which are densely distributed and maintain certain
patterns of movement. For tracking such targets, if a standard point target tracking method
e.g., [2] was adopted, performance degradation would occur. On the one hand, the high
density of measurement may lead to complex computations by standard tracking methods.
On the other hand, the interaction between the members within the group is ignored,
which is not conducive for improving the tracking accuracy and stability. In general, there
are mainly two methods for tracking group targets: The “holistic” tracking method based
on the group shape and centroid [3–6], and the “internal” tracking method based on group
structures [7–9].

It is difficult to establish a stable trajectory for densely clustered targets with poor
measurement resolution and severe echo crossing. A “holistic” tracking strategy [3] has
been proposed to handle such targets, which focuses on the group shape and centroid state
instead of focusing on targets within the group. Similar to the extended target tracking
method [10–14], this strategy models the group shape, such as the elliptical model [15], the
random hypersurface model (RHM) [16], and the star-convex model [17].

Tracking members within the group is of great significance in certain cases. For in-
stance, by estimating the members’ states, one can distinguish friendly objects from enemies
or predict the intention of the groups. In a high-resolution sensor system, the measurements
of different members within the group are located in different resolution units and maintain
a special distribution structure. Modelling the group structure is the basis for tracking
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internal members. By combining the group structure with the member’s state, the integrity
and stability of target tracking can be improved. Several models of group structures have
been proposed and widely used, such as the virtual leader-follower model [7], the Markov
random field (MRF) model [8], and the evolving network model [9].

The filter based on random finite set (RFS) [18] avoids the complicated data association
process and introduces a complete theoretical framework for target tracking. In the single-
sensor field, the probability hypothesis density (PHD) [19], multi-target multi-Bernoulli
(MeMBer) [20], generalized labelled multi-Bernoulli (GLMB) filters [21], and their vari-
ants [22–24] for group target tracking have been proposed. Moreover, the multi-sensor
PHD (MS-PHD) [25], multi-sensor MeMBer (MS-MeMBer) [26], and multi-sensor GLMB
(MS-GLMB) filters [27] have shown promising performance in handling multi-sensor mea-
surements. Besides, several particle filters [28–30] have been proposed to improve the
accuracy of the target state estimation. However, very few “internal” tracking methods
have been considered in the literature for multi-sensor RFS filtering.

The MS-MeMBer filter inherits the advantages of the multi-Bernoulli filters with
straightforward particle implementations and state estimation [20]. Although it cannot
obtain target trajectories, it has a lower computational cost than that of the labelled ver-
sions [27]. Inspired by the idea of [23], we propose a group target tracking method using
the virtual leader–follower model and the MS-MeMBer filter. Specifically, in the predic-
tion step of the MS-MeMBer filter, we consider the group of individuals as an undirected
random graph. Furthermore, the motion equation of targets within groups is introduced,
combined with the virtual leader–follower model. Then, in the update step, the partition
of multi-sensor measurements is transformed into a multi-dimensional assignment (MDA)
problem. Using the MDA algorithm proposed in [31], better measurement partitions can
be achieved in conditions for tracking targets within groups.

The rest of this paper is organized as follows. Section 2 briefly reviews the RFS and the
original MS-MeMBer filter. Section 3 describes the group target tracking method proposed
in this paper. Simulation results are given in Section 4. Finally, discussions are given in
Section 5.

2. Background
2.1. The Random Finite Set

In the random finite set (RFS), the number of elements is random and finite, and the
elements themselves are random and unordered. Thus, in the multi-target tracking field,
the multi-target state and the measurements of targets can be intuitively represented by
the RFS. Some examples of RFSs with special distributions are given next.

A Bernoulli RFS X̂(i) has a probability 1− r(i) of being empty, and a probability r(i)

of being a singleton X̂(i) = {x} whose element is distributed with a function p(i)(x). The
probability density of a Bernoulli RFS is given by

π(X̂(i)) =

{
1− r(i), X̂(i) = ∅
r(i) · p(i)(x), X̂(i) = {x}

, (1)

which can be simplified to π = (r(i), p(i)(x)).
A Multi-Bernoulli RFS X is a union of a fixed number of independent Bernoulli RFSs,

i.e., X =
M
∪

i=1
X̂(i). M is the number of Bernoulli RFSs in X, and the probability density of a

multi-Bernoulli RFS is given by

π({x1, . . . , xn}) =
M

∏
j=1

(1− r(j)) ∑
1≤i1 6=···6=in≤M

n

∏
j=1

r(ij)p(ij)(xj)

1− r(ij)
, (2)

which can be further simplified to π = {(r(i), p(i)(x))}M
i=1.
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2.2. The MS-MeMBer Filter

In the established MS-MeMBer filter [26], the multi-target state at time k− 1 is mod-
elled as a multi-Bernoulli RFS Xk−1|k−1 and characterized by a posterior density πk−1|k−1.
The target is observed by S sensors, which generate independent measurements. The
MS-MeMBer filter aims to estimate the density πk|k of the RFS Xk|k given the set of all the
measurements up to time k. The measurement partition is finished in the update step.
Therefore, the multi-target state can be obtained in a Bayesian recursion [32] via prediction
and update:

· · · → πk−1|k−1
prediction→ πk|k−1

update→ πk|k → · · ·

We summarize each step in the following sections.

2.2.1. The Prediction Step

Consider a multi-Bernoulli RFS Xk−1|k−1 composed of Mk−1|k−1 independent Bernoulli
RFSs. The density of Xk−1|k−1 is

πk−1|k−1 = {(r(i)k−1|k−1, p(i)k−1|k−1(x))}
Mk−1|k−1

i=1
, (3)

where each (r(i)k−1|k−1, p(i)k−1|k−1(x)) represents the independent Bernoulli density with prob-

ability r(i)k−1|k−1 and distribution function p(i)k−1|k−1(x). Intuitively, r(i)k−1|k−1 indicates how

likely the i-th Bernoulli RFS in Xk−1|k−1 is generated by a true target and p(i)k−1|k−1(x)
describes the estimated current state x of the target [33]. Therefore, we can obtain the
multi-target state estimation by calculating the corresponding multi-Bernoulli density.

Given the birth multi-Bernoulli RFS with density πB,k = {(r(i)B,k, p(i)B,k(x))}
MB,k

i=1
, the

predicted density πk|k−1 is also a multi-Bernoulli with

πk|k−1 = {(r(i)s,k−1|k−1, p(i)s,k−1|k−1(x))}
Mk−1|k−1

i=1
∪ {(r(i)B,k, p(i)B,k(x))}

MB,k

i=1
, (4)

where MB,k is the number of birth Bernoulli RFSs.
Additionally, the survival Bernoulli density follows

r(i)s,k|k−1 = r(i)k−1|k−1

〈
p(i)k−1|k−1, ρsv

〉
, (5)

p(i)s,k|k−1(x) =

〈
fk|k−1(x|·), ρsv p(i)k−1|k−1

〉
〈

p(i)k−1|k−1, ρsv

〉 , (6)

where ρsv(x) represents the probability that a target with state x can survive to the next
moment and 〈 f1(x), f2(x)〉 =

∫
f1(x) · f2(x)dx is the inner product function. fk|k−1(x

∣∣∣ξ) is
the state transfer function at time k, given previous state ξ.

2.2.2. Multi-Sensor Measurement Partition

In the update step of the MS-MeMBer filter, multi-sensor measurement partitions need
to be produced. Measurement partition aims to divide the multi-sensor measurement set
into target-originated subsets, which can be employed to associate the predicted Bernoulli
RFSs.

Given a multi-sensor measurement set Z1:S,k = {Z1,k, . . . , ZS,k}, each Zj,k(1 ≤ j ≤ S)
contains all measurements from sensor j at time k. For a number of Mk|k−1 predicted

Bernoulli RFSs, we define a partition of set Z1:S,k as P = {W(P,0)
1:S , W(P,1)

1:S , . . . , W
(P,Mk|k−1)

1:S },
where

Mk|k−1
∪

i=0
W(P,i)

1:S = Z1:S,k, (7)
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W(P,i)
1:S = {W(P,i)

1 , . . . , W(P,i)
S }, ∀0 ≤ i ≤ Mk|k−1, (8)

W(P,i)
1:S ∩W(P,l)

1:S = ∅, ∀0 ≤ i 6= l ≤ Mk|k−1, (9)

In partition P, each W(P,i)
1:S (i > 0) denotes the measurement set of target i generated

by all S sensors and W(P,0)
1:S is the clutter measurement set. Each W(P,i)

j (1 ≤ j ≤ S, i > 0)

in (8) contains the measurement of target i generated by sensor j. W(P,0)
j (1 ≤ j ≤ S) is the

collection of all clutter measurements on sensor j.
P is defined as the collection of all possible measurement partitions P. Finally, we

define the mapping function T
W(P,i)

1:S
= {(j, l)

∣∣∣∣zl
j ∈W(P,i)

1:S } , where j is the sensor number

and zl
j is the l-th measurement in set Zj,k.

It is difficult to obtain the exact implementation of the MS-MeMBer filter because of
the complexity of obtaining all the measurement partitions. Partitions with low scores
can be ignored because they have little effect on the update step. For this, a two-step
greedy partitioning mechanism is proposed in [25], which can obtain several high-scoring
measurement partitions.

In the two-step greedy partitioning mechanism, the global problem to obtain P is
decomposed into independent sub-problems. We consider a measurement partitioning
process with four sensors and three predicted Bernoulli components. First, local optimal
solutions are achieved for each Bernoulli component, as shown in Figure 1. z0

j indicates that
there is no measurement of sensor j associated with the Bernoulli component. Second, local
optimal solutions of each Bernoulli component are combined to obtain several high-scoring
partitions, as seen in Figure 2. The empty set ∅ means that all the measurements of S
sensors are not associated with the Bernoulli component.
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Figure 1. Illustration of the first step. Given a Bernoulli RFS of target i, we can generate the corre-
sponding set iW (P , )

1:4  according to the sensor order, where the measurements in the same column 
are generated from the same sensor. The solid line represents the current best combination, and 
the dotted line represents other better alternatives. 

Figure 1. Illustration of the first step. Given a Bernoulli RFS of target i, we can generate the

corresponding set W(P,i)
1:4 according to the sensor order, where the measurements in the same column

are generated from the same sensor. The solid line represents the current best combination, and the
dotted line represents other better alternatives.
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∅

SW (P,1)
1:

SW (P,1)
1:

SW (P,1)
1:

SW (P ,2)
1:

SW (P ,2)
1:

SW (P ,2)
1:

SW (P,3)
1:

SW (P,3)
1:

SW (P,3)
1:

P

∅ ∅

Figure 2. Illustration of the second step. Partitions are formed by sequentially processing the set

W(P,i)
1:4 . In the i-th column, differently colored W(P,i)

1:4 represent different results from the first step of
the two-step greedy partitioning mechanism.

2.2.3. The Update Step

Given the predicted multi-target density with

πk|k−1 = {(r(i)k|k−1, p(i)k|k−1(x))}
Mk|k−1

i=1
, (10)

and the updated multi-target density πk|k can be approximately expressed as

πk|k = ∪
P∈P

Mk|k−1
∪

i=1
{(r(P,i)

k|k , p(P,i)
k|k (x))}, (11)

where Mk|k−1 = Mk−1|k−1 + MB,k. For a given partition P in set P , we can get the updated

Bernoulli density (r(P,i)
k|k , p(P,i)

k|k (x)) with

r(P,i)
k|k =

αP
r(i)k|k−1

〈
p(i)k|k−1,γ

〉
1−r(i)k|k−1+r(i)k|k−1

〈
p(i)k|k−1,γ

〉 , W(P,i)
1:S = ∅

αP, W(P,i)
1:S 6= ∅

, (12)

p(P,i)
k|k (x) =


p(i)k|k−1(x)γ(x)〈

p(i)k|k−1,γ
〉 , W(P,i)

1:S = ∅

p(i)k|k−1(x) f (W(P,i)
1:S

∣∣∣x)∫
p(i)k|k−1(x) f (W(P,i)

1:S

∣∣∣x)dx
, W(P,i)

1:S 6= ∅
. (13)

As can be seen from (12) and (13), each updated Bernoulli component (r(P,i)
k|k , p(P,i)

k|k (x))

is obtained only by the corresponding set W(P,i)
1:S . γ(x) = ∏S

j=1 (1− pj,D(x)) is the probabil-
ity that a target is detected by no sensor. pj,D(x) is the target detection probability of sensor

j. f (W(P,i)
1:S

∣∣∣x) is the single-target multi-sensor likelihood function under clutter conditions,
and follows

f (W(P,i)
1:S |x) = ∏

(j,l)∈T
W(P,i)

1:S

pj,D(x)gj(zl
j

∣∣∣x)
cj(zl

j)
· ∏
(j,∗)/∈T

W(P,i)
1:S

(1− pj,D(x)). (14)

gj(·
∣∣x) and cj(·) are the measurement likelihood and the clutter density of sensor j, respec-

tively.
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The coefficient αP is given by

αP =

KP ∏
Mk|k−1
i=1 ϕi

W(P,i)
1:S

{1}

∑
M∈P

KM ∏
Mk|k−1
i=1 ϕi

W(M,i)
1:S

{1}
, (15)

where

ϕi
W(P,i)

1:S
[u] =

1− r(i)k|k−1 + r(i)k|k−1

〈
p(i)k|k−1, uγ

〉
, W(P,i)

1:S = ∅

r(i)k|k−1

∫
u(x)p(i)k|k−1(x) f (W(P,i)

1:S

∣∣∣x)dx, W(P,i)
1:S 6= ∅

. (16)

In (15), ϕi
W(P,i)

1:S

{1} represents the value of function ϕi
W(P,i)

1:S

[u] evaluated at u = 1. Intu-

itively, ϕi
W(P,i)

1:S

{1} scores the association of the measurement set W(P,i)
1:S with the i-th Bernoulli

component (r(i)k|k−1, p(i)k|k−1(x)), while KP∏
Mk|k−1
i=1 ϕi

W(P,i)
1:S

{1} represents a score of the partition

P. αP represents the weight of P in collection P , which can be calculated by dividing the

score of P by the sum of all the partitioning scores in P . KP = ∏S
j=1 Cj

(|W(P,0)
j |)

(0) denotes

the constraint of the clutter set, where
∣∣∣W(P,0)

j

∣∣∣ is the cardinality of set W(P,0)
j , and Cj

(n)(·)
is the n-th derivative of the clutter probability generating function.

3. The Group Target Tracking

Based on the MS-MeMBer filter, a new group target tracking method is proposed.
First, the filter parameters and the group structure are initialized according to the initial
state of members. Then, in the prediction step, the movement of the members within a
group is constrained by the group structure. Furthermore, in the update step, the partition
of multi-sensor measurements is transformed into a multi-dimensional assignment (MDA)
problem. Compared with the original two-step greedy partitioning mechanism [26], the
MDA algorithm [31] can obtain better measurement partitions in group target tracking
scenarios. Finally, the group structure is estimated through the current state of internal
members and is fed back to the prediction step at the next moment. Also, the current state
of members and groups is output. The flowchart of the proposed method is shown in
Figure 3.
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3.1. Graphical Representation of the Group

Graph theory [22] provides a convenient tool for describing groups, in which the
relations between members are reflected by the edges between the related graph vertices.
In this section, we consider the group of members as an undirected graph.

Given an undirected graph, gm = (V, E) of group m at time k− 1. V = (v1, . . . , vn)
is the vertex set composed of n individuals within group m, and each vertex vi contains
the state and covariance of target i. For two different vertices vi and vj, if the Mahalanobis
distance dij is less than the threshold Tη , it is determined that there is an edge connection
between them. In other words, targets i and j are in the same group. E is the collection of
all edges between vertices in V. Γg(i) = {j

∣∣j 6= i; vi, vj ∈ V} is a mapping function that
points to other members in the same group with target i. G = (g1, . . . , gm) represents a set
of undirected graphs for each group. Figure 4 is a graphical representation of group targets,
which shows seven moving targets belonging to two groups.
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Figure 4. Graphical representation of groups. Seven moving targets belong to two groups. The
arrow shows the direction of movement of the group. Note that there is no edge between v6 and v7.
However, they are in the same group because of the common connection with v5.

3.2. The System Model of Group Movement

The virtual leader–follower model [7] assumes that the state of any member is the
translational offset of the group centroid. Consider a group with ng members at time
k − 1. We represent the member state as x = [px, py, vx, vy]T . px and py are the target
positions. vx and vy represent the target velocities along respective axes. According to the
leader–follower model, the motion equation of the i-th member is given by

xi,k = I4xi,k−1 + Bk−1
1

ng

ng

∑
j=1

xj,k−1 + qi,k−1

= Fk−1xi,k−1 + Bk−1ui,k−1 + qi,k−1

, (17)

where
ui,k−1 = ∑

j∈Γg(i)
xj,k−1, (18)

Fk−1 =

[
I2 C
02 I2

]
, Bk−1 =

[
02 C
02 02

]
, C =

[ ∆t
ng

0

0 ∆t
ng

]
. (19)

Id and 0d are the unit matrix and zero matrix of size d, respectively. The process noise
qi,k−1 is considered as the zero-mean white Gaussian noise with variance Qk−1. We can
see from (17) that the movement of the members is not only related to its own state at the
previous moment, but also restricted by other members in the same group. If Γg(i) is an
empty set, then (17) can be simplified to the standard motion equation [2].

The observation equation of group members is given by

zi,k = Hkxi,k + ri,k, (20)
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where zi,k is the observation of xi,k, and ri,k is the measurement noise, which is usually
assumed to be the zero-mean white Gaussian noise with variance Rk. Hk is the observation
matrix at time k.

3.3. Multi-Sensor Measurement Partition and MDA

In the two-step greedy partitioning algorithm, each Bernoulli RFS (target) is assumed
to be independent. Then, the target measurement set W(P,i)

1:S (i > 0) of each Bernoulli

RFS can be obtained separately. Also, the clutter measurement set W(P,0)
1:S is assumed

to be independent of the target. Therefore, measurement partitions can be formed by
combining each independent measurement set. As a divide-and-conquer strategy, this
algorithm breaks the partitioning problem up into several independent sub-problems,
which improves the efficiency of measurement partition. However, due to the dense
distribution of individuals within groups, the association between measurements and
targets is more complex. As can be seen from Figure 5, the measurement of a member
would fall within the correlation threshold of other members in the same group. In this
case, it is hard to maintain independence between the sub-problems in the two-step greedy
partitioning mechanism. If the divide-and-conquer strategy is still adopted in group target
tracking scenarios, the quality of the measurement partitions would deteriorate.
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Figure 5. Examples of associations between targets and measurements for (a) standard point target
tracking case and (b) group target tracking case. The square represents the target, distinguished
by different colors. Measurements include clutter (black hexagrams) and target measurements
(hexagrams in other colors). The ellipse is the correlation threshold. Note that a target is only
associated with measurements fall within its threshold.

In this section, by eliminating the constraint of the clutter measurement set, the multi-
sensor measurement partition can be interpreted as a multi-dimensional allocation problem,
which can be solved by the MDA algorithm [27]. Compared with the two-step greedy
partitioning mechanism, the MDA algorithm is implemented from the whole perspective,
which improves the quality of multi-sensor measurement partitions. The derivation detail
is given as follows.

From [25], the n-th derivative of function Cj(x) obeys

Cj
(n)(x) = λj

neλj(x−1), (21)

where λj is the clutter intensity of sensor j.
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Then the coefficient αP in (15) can be written as

αP =

KP

∏S
j=1 Cj

(|Zj,k |)(0)
·∏

Mk|k−1
i=1 ϕi

W(P,i)
1:S

{1}

∑
M∈P

 KM

∏S
j=1 Cj

(|Zj,k |)(0)
∏

Mk|k−1
i=1 ϕi

W(M,i)
1:S

{1}
)

=

1

∏S
j=1 λj

|Zj,k\W
(P,0)
j |

·∏
Mk|k−1
i=1

(
ϕi

W(P,i)
1:S

{1}
)

∑
M∈P

 1

∏S
j=1 λj

|Zj,k\W
(M,0)
j |

·∏
Mk|k−1
i=1 ϕi

W(M,i)
1:S

{1}
)

=

∏
Mk|k−1
i=1

ϕi

W(P,i)
1:S

{1}· 1

∏S
j=1 λj

|W(P,i)
j |



∑
M∈P

∏
Mk|k−1
i=1

ϕi

W(M,i)
1:S

{1}· 1

∏S
j=1 λj

|W(M,i)
j |



=
∏

Mk|k−1
i=1 ϕ̃i

W(P,i)
1:S

{1}

∑
M∈P

∏
Mk|k−1
i=1 ϕ̃i

W(M,i)
1:S

{1}
,

(22)

where

ϕ̃i
W(P,i)

1:S
{1} =

1− r(i)k|k−1 + r(i)k|k−1

〈
p(i)k|k−1, γ

〉
, W(P,i)

1:S = ∅

r(i)k|k−1

∫
p(i)k|k−1(x) f̃ (W(P,i)

1:S

∣∣∣x)dx , W(P,i)
1:S 6= ∅

, (23)

f̃ (W(P,i)
1:S |x) = ∏

(j,l)∈T
W(P,i)

1:S

pj,D(x)gj(zl
j

∣∣∣x)
λjcj(zl

j)
· ∏
(j,∗)/∈T

W(P,i)
1:S

(1− pj,D(x)). (24)

We employ ϕ̃i
W(P,i)

1:S

{1} as a ratio of the likelihood that W(P,i)
1:S is generated by target i to

the likelihood that W(P,i)
1:S is the clutter set. As can be seen from (22), the constraint of the

clutter set KP is eliminated. Therefore, we can obtain the partition P by associating Mk|k−1
Bernoulli RFSs with the measurements of S sensors.

In order to get the best association between multi-sensor measurements and Bernoulli
components, the maximum score of P is required:

max
(W(P,1)

1:S ,...,W
(P,Mk|k−1)

1:S )

Mk|k−1

∏
i=1

ϕ̃i
W(P,i)

1:S
{1}. (25)

The maximization problem shown in (25) is equivalent to the negative logarithmic
minimization problem:

J = min
(W(P,1)

1:S ,...,W
(P,Mk|k−1)

1:S )

Mk|k−1

∑
i=1
− ln(ϕ̃i

W(P,i)
1:S

{1})

= min
µj1 ···jSi

Mk|k−1

∑
i=1

|Z1,k |
∑

j1=0
· · ·
|ZS,k |

∑
jS=0

cj1···jSiµj1···jSi

(26)

where

µj1···jSi =

{
1, W(P,i)

1:S ⊂ Z1:S,k

0, W(P,i)
1:S Z1:S,k

, (27)
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cj1···jSi =

− ln
(

1− r(i)k|k−1 + r(i)k|k−1

〈
p(i)k|k−1, γ

〉)
, W(P,i)

1:S = ∅

− ln
(

r(i)k|k−1

)
− ln

(∫
p(i)k|k−1(x) f̃ (W(P,i)

1:S

∣∣∣x)dx
)

, W(P,i)
1:S 6= ∅

. (28)

In (27), the decision variable µj1···jSi = 1 denotes that the measurement set W(P,i)
1:S =

{zj1
1 , . . . , zjS

S } is associated with the i-th Bernoulli RFS. The number of predicted Bernoulli

RFSs is given by Mk|k−1 and the number of measurements from sensor j at time k is
∣∣∣Zj,k

∣∣∣.
The constraint condition can be expressed as

Mk|k−1

∑
i=1

|Z2,k |
∑

j2=0
· · ·
|ZS,k |

∑
jS=0

µj1···jSi = 1, j1 = 1, . . . ,
∣∣Z1,k

∣∣
Mk|k−1

∑
i=1

|Z1,k |
∑

j1=0

|Z3,k |
∑

j3=0
· · ·
|ZS,k |

∑
jS=0

µj1···jSi = 1, j2 = 1, . . . ,
∣∣Z2,k

∣∣
...
Mk|k−1

∑
i=1

|Z1,k |
∑

j1=0
· · ·
|ZS−1,k |

∑
jS−1=0

µj1···jSi = 1, jS = 1, . . . ,
∣∣ZS,k

∣∣
|Z1,k |
∑

j1=0
. . .
|ZS,k |

∑
jS=0

µj1···jSi = 1, i = 1, . . . , Mk|k−1

, (29)

which guarantees that two different Bernoulli RFSs cannot share the same real measure-
ment, and that a Bernoulli RFS can be associated with an empty set ∅.

The minimization problem shown in (26) can be solved by the MDA algorithm [27].
Also, multiple high-scoring partitions are needed in the update step. Therefore, a list can
be created that ranks feasible solutions in the order of cost factors.

3.4. Gaussian Mixture Implementation

It is very intractable to calculate multiple integrals in the prediction step and update
step of the MS-MeMBer filter. Therefore, a Gaussian mixture (GM) implementation is
adopted, in which the distribution function of each Bernoulli component is assumed to
follow a GM form.

3.4.1. Prediction Step

Assume that at time k− 1, the distribution function of each Bernoulli component has
the following GM form:

p(i)k−1|k−1(x) =
J(i)k−1|k−1

∑
n=1

w(i)
n,k−1|k−1N (x; m(i)

n,k−1|k−1, P(i)
n,k−1|k−1), (30)

where N (x; m(i)
n,k−1|k−1, P(i)

n,k−1|k−1) is a Gaussian function with mean m(i)
n,k−1|k−1 and vari-

ance P(i)
n,k−1|k−1. J(i)k−1|k−1 is the number of the Gaussian components. w(i)

n,k−1|k−1 is the
weight of the corresponding component.

Using (17), the transfer function fk|k−1(xi,k

∣∣∣xi,k−1) follows

fk|k−1(xi,k

∣∣∣xi,k−1) = N (xi,k; Fk−1xi,k−1 + Bk−1ui,k−1, Qk−1). (31)
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Define the target survival probability as ρsv(x) = ρsv, and the distribution function

of newborn targets as a GM form with p(i)B,k(x) =
J(i)B,k

∑
n=1

w(i)
B,n,kN (x; m(i)

B,n,k, P(i)
B,n,k).Then the

distribution function of each survival Bernoulli component also has a GM form:

p(i)s,k|k−1(x) =
J(i)k−1|k−1

∑
n=1

w(i)
n,k−1|k−1N (x; m(i)

n,k|k−1, P(i)
n,k|k−1), (32)

where
m(i)

n,k|k−1 = Fk−1m(i)
n,k−1|k−1 + Bk−1ui,k−1, (33)

P(i)
n,k|k−1 = Fk−1P(i)

n,k−1|k−1Fk−1
T + Qk−1. (34)

Furthermore, the probability r(i)s,k|k−1 of each survival Bernoulli follows

r(i)s,k|k−1 = r(i)k−1|k−1ρsv. (35)

3.4.2. Update Step

Assume that the distribution of each predicted Bernoulli component has the following
GM form:

p(i)k|k−1(x) =
J(i)k|k−1

∑
n=1

w(i)
n,k|k−1N (x; m(i)

n,k|k−1, P(i)
n,k|k−1). (36)

Given the measurement likelihood function of each sensor gj(·
∣∣x) = N (·; Hkx, Rk) ,

and the detection probability of each sensor pj,D(x) = pj,D, the distribution function of
each updated Bernoulli component also has a GM form:

p(P,i)
k|k (x) =

J(i)k|k−1

∑
n=1

w(P,i)
n,k|kN (x; m(P,i)

n,k|k, P(P,i)
n,k|k), (37)

where

w(P,i)
n,k|k =



w(i)
n,k|k−1

J(i)k|k−1
∑

m=1
w(i)

m,k|k−1

, W(P,i)
1:S = ∅

w(i)
n,k|k−1 ∏

(j,l)∈T
W(P,i)

1:S

pj,Dqz(zl
j)

λjcj(z
l
j)
· ∏
(j,∗)/∈T

W(P,i)
1:S

(1−pj,D)

J(i)k|k−1
∑

m=1

w(i)
n,k|k−1 ∏

(j,l)∈T
W(P,i)

1:S

pj,Dqz(zl
j)

λjcj(z
l
j)
· ∏
(j,∗)/∈T

W(P,i)
1:S

(1−pj,D)


, W(P,i)

1:S 6= ∅

, (38)

qz(zl
j) = N (zl

j; m(i)
n,k|k−1, Rk + HkP(i)

n,k|k−1Hk
T), (39)

and

N (x; m(P,i)
n,k|k, P(P,i)

n,k|k) ∝


N (x; m(i)

n,k|k−1, P(i)
n,k|k−1), W(P,i)

1:S = ∅

N (x; m(i)
n,k|k−1, P(i)

n,k|k−1) · ∏
(j,l)∈T

W(P,i)
1:S

gj(zl
j

∣∣∣x) , W(P,i)
1:S 6= ∅ , (40)
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The updated probability r(P,i)
k|k satisfies

r(P,i)
k|k =


αP

r(i)k|k−1

J(i)k|k−1
∑

n=1
∏S

j=1 (1−pj,D)w(i)
n,k|k−1

1−r(i)k|k−1+r(i)k|k−1

J(i)k|k−1
∑

n=1
∏S

j=1 (1−pj,D)w(i)
n,k|k−1

, W(P,i)
1:S = ∅

αP, W(P,i)
1:S 6= ∅

, (41)

3.5. The State Extraction and Group Structure Estimation

The state extraction [25] is adopted to calculate the movement of all the targets, where
the mean value is obtained from the densities of the updated Bernoulli RFSs with the
exiting probabilities exceeding a given threshold. Consider the multi-target movement
{(xi,k, Σi,k)}n

i=1 at time k, where xi,k and Σi,k are the kinematic state and covariance matrix
of member i, respectively.

Suppose that at time k, the adjacency matrix is given by

Dk =


0 ηk(1, 2) · · · ηk(1, n)

ηk(2, 1) 0 · · · ηk(2, n)
...

...
. . .

...
ηk(n, 1) ηk(n, 2) · · · 0

, (42)

where

ηk(i, j) =
{

1, dij < Tη , i 6= j
0, others

, (43)

dij =
√
(xi,k − xj,k)(Σi,k + Σj,k)

−1(xi,k − xj,k)
T . (44)

The structure and number of groups can be obtained by the adjacency matrix [23]. If
the Mahalanobis distance between two targets is less than the threshold Tη , the two targets
can be determined to be in the same group, and the corresponding value in the adjacency
matrix is equal to one. For instance, the adjacency matrix of group 1 in Figure 4 can be
denoted by

D =


0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

. (45)

Furthermore, the estimated group structure can be fed to the next step to update the
state of members within the group.

4. Simulation Results

In this section, a two-dimensional area with size [−1500 m, 1500 m] × [0 m, 3000 m]
is considered. Suppose that group targets that involve three subgroups moving in x-y
plane. To verify the capability of the proposed method for tracking standard point targets,
a single target in consistent velocity (CV) style is also considered. As shown in Figure 6, 11
moving targets are simulated. Among them, target 1 moves independently; target 2, target
3, and target 4 constitute group 1; target 5, target 6, target 7, and target 8 constitute group
2. Besides, target 5 separates from group 2 at about 65 s; target 9 and target 10 constitute
group 3, and target 11 merges with this group at about 40 s. The kinematic parameters of
targets are shown in Table 1.
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Table 1. The true movement of targets.

Target Number Initial State Survival Time

1 [0 m, 500 m, 10 m/s, 6 m/s] (1 s–100 s)
2 [−1000 m, 300 m, 0 m/s, 10 m/s] (1 s–100 s)
3 [−1040 m, 300 m, 0 m/s, 10 m/s] (1 s–100 s)
4 [−1020 m, 340 m, 0 m/s, 10 m/s] (1 s–100 s)
5 [−170 m, 2060 m, −10 m/s, 0 m/s] (1 s–80 s)
6 [−200 m, 2000 m, −10 m/s, 0 m/s] (1 s–80 s)
7 [−170 m, 2020 m, −10 m/s, 0 m/s] (1 s–80 s)
8 [−170 m, 1080 m, −10 m/s, 0 m/s] (1 s–80 s)
9 [300 m, 2000 m, 10 m/s, 0 m/s] (21 s–100 s)
10 [330 m, 1070 m, 10 m/s, 0 m/s] (21 s–100 s)
11 [300 m, 1740 m, 10 m/s, 10 m/s] (21 s–100 s)

The duration time is 100 s, and the sampling period ∆t = 1s. There are three sensors
in the observation area. Figure 7 shows the measurements collected from sensor 1. The
detection probability of each sensor is pj,D = 0.85, and the clutter intensity is λj = 100. The
birth model is set according to the initial state of the targets. The target survival probability
is set as ρsv = 0.99. The process noise covariance matrix Qk, and the observation noise
covariance matrix Rk are respectively:

Qk =

[
∆t3

3 I2
∆t2

2 I2
∆t2

2 I2 ∆tI2

]
σv

2, Rk =

[
σε

2 0
0 σε

2

]
. (46)

where σv = 3 m/s and σε = 6 m.
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Figure 7. The measurements of sensor 1. The black dot represents the target measurement, and the
gray dot represents the clutter.

In the simulation, the number of the Bernoulli components is not more than Mmax = 100,
the number of the Gaussian components per target is not more than Jmax = 100. The pruning
threshold is set as Tmax = 10−3. There are at most four measurement partitioning hypotheses
in the set P , and the number of the measurement subsets in each hypothesis P is up to
Wmax = 4. In addition, the Mahalanobis distance threshold is Tη = 15. The simulation is
performed using algorithms implemented in MATLAB on computers with one Intel Core
i7-6700 CPU and 16 GB RAM. The average result is obtained through 50 Monte Carlo runs.
The filtering performance is measured by the optimal sub-pattern assignment (OSPA) dis-
tance [34]. The OSPA distance accounts for both errors in estimation of target states and errors
in estimation of target cardinality, where we set order p = 1 and the penalty factor c = 100.

As can be seen from Figure 8, in the group target tracking scenario, the OPSA error of
the MS-MeMBer filter with group structure estimation is significantly smaller than that of
the original MS-MeMBer filter. This means that the filtering accuracy is improved by using
the group structure. In addition, compared with the above two methods, the proposed
method with both the MDA algorithm and group structure estimation has the optimal
filtering performance. Note that there is a peak of the OSPA error at about 80 s. This is
because the filters mentioned above react slower to the death of the members.
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Figure 10 shows the estimated group cardinality of the proposed method. It can be seen 
that the proposed method obtains smaller standard deviations of the estimated group car-
dinality. We can conclude that compared with the MS-MeMBer filter, which only contains 
the group structure estimation, the proposed method with both group structure estimation 
and MDA algorithm obtains better estimation of the group cardinality. 

Figure 8. The OSPA distance error for the original MS-MeMBer filter, the MS-MeMBer filter with
group structure estimation, and the proposed method with S = 3 sensors each having pj,D = 0.85.

Figure 9 shows the members’ cardinality estimation of the above methods. The black
line is the true cardinality of the members, the red dot is the estimated cardinality at the
corresponding time, and the blue line represents the standard deviation of the estimated
cardinality. We can see that for group target tracking, a cardinality estimation bias occurs
in the original MS-MeMBer filter, which can be eliminated by using the group structure.
Moreover, the standard deviation of cardinality estimation is further reduced by the MDA
algorithm.
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with group structure estimation, and (c) original MS-MeMBer filter.

Figure 10 shows the estimated group cardinality of the proposed method. It can
be seen that the proposed method obtains smaller standard deviations of the estimated
group cardinality. We can conclude that compared with the MS-MeMBer filter, which only
contains the group structure estimation, the proposed method with both group structure
estimation and MDA algorithm obtains better estimation of the group cardinality.
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Table 2 shows the average running time of the MS-MeMBer filter and the proposed
method in scenarios with different number of sensors. The number of the sensors is varied
in the range {3, 4, 5}. By comparison, they have similar time consumptions when the
number of the sensors is small. However, the computational complexity of the MDA
algorithm increases exponentially with the increasing number of the sensors, leading to a
significant increase in the time consumption of the proposed method.

Table 2. Average running time.

The Total Number of
Sensors

Running Time of the
Proposed Method

Running Time of the
MS-MeMBer Filter

3 4.55 s 5.84 s
4 9.36 s 6.41 s
5 27.08 s 7.78 s

The time-averaged OSPA errors (via 50 MC runs) of the above methods in scenarios
with different sensor numbers are displayed in Figure 11. It can be seen that as the
number of the sensors increases, the time-average OSPA error of the two methods without
MDA algorithm increases. The reason is that as S increases, the association between the
measurements and Bernoulli components is more complicated because of the densely
clustered members within the group. On the contrary, as the number of the sensors
increases, the proposed method combined with the MDA algorithm and group structure
estimation together can obtain better filtering results.
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Figure 11. Box plot of time-average OSPA distance errors with different sensor numbers (50 MC runs).

Figure 12 shows the performance of the original MS-MeMBer filter, the MS-MeMBer
filter with group structure estimation, and the proposed method under different clutter
intensities. The clutter intensity is varied in the range {10, 100, 200}. It can be concluded
that the performance of the first two methods decreases significantly with the increase of
clutter intensity. However, by using the MDA algorithm, the proposed method can still
obtain better filtering results in clutter-intensive scenes.
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5. Discussion

In this paper, we proposed a group target tracking method based on the MS-MeMBer
filter. We used the group structure to constrain the movement of members within the
group. We also improved the multi-sensor measurement partition through the MDA
algorithm. Finally, we established a simulation scenario with splitting and merging of
groups. Simulation results showed that compared with the original MS-MeMBer filter, the
proposed method has achieved better robustness and accuracy in group target tracking
scenarios, at the cost of an acceptable increasing computational load.

However, the MS-MeMBer filter is not strictly a tracker, because it can only get the
target state, not the target trajectory. To obtain multi-target trajectories, the filter based on
the labeled RFS or additional track maintenance operation can be considered. Furthermore,
the proposed method ignores the dynamic evolution of the group structure. Future work
will explore the multi-sensor multi-target filter, which can accommodate the evolution of
group structures and can estimate target trajectories.
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