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Abstract: Land use and cover changes (LUCC) in permafrost regions have significant consequences
on ecology, engineered systems, and the environment. Obtaining more details about LUCC is
crucial for sustainable development, land conservation, and environment management. The Hola
Basin (957 km2) in the northernmost part of Northeast China, a boreal forest landscape underlain
by discontinuous, sporadic, and isolated permafrost, was selected for the case study. The LUCC
was analyzed using the Landsat archive of satellite images from 1973 to 2019. A thematic change
detection analysis was performed by combining the object-based image analysis (OBIA) and the
Support Vector Machine (SVM) algorithm. Four types of LUCC (forest, grass, water, and anthropic)
were extracted with an overall accuracy of 80% for 1973 and >90% for 1986, 2000, and 2019. Forest, the
dominant class (750 km2 in 1973), declined by 88 km2 (11.8%) from 1973 to 1986 but had a recovery
of 78 km2 (12.5%) from 2000 to 2019. Grass, the second-largest class (187 km2 in 1973), increased
by 86 km2 (46.5%) between 1973 and 1986 and decreased by 90 km2 (40%) between 2000 and 2019.
The anthropic class continuously increased from 10 km2 (1973) to 37 km2 (2019). Major features in
LUCC are attributed to rapid population growth, resource exploitation, agriculture intensification,
economic development, and frequent forest fires. Under a pronounced climate warming, these drivers
have been accelerating the degradation of permafrost, subsequently triggering natural hazards and
deteriorating the ecological environment. This study represents a benchmark for sustainable LUCC
management in the Hola Basin, Northeast China.

Keywords: land use and cover changes (LUCC); object-based image analysis (OBIA); Support Vector
Machine (SVM); permafrost; Northeast China

1. Introduction

Under a warming climate, northern ecosystems are experiencing continuous and
severe land use and cover changes (LUCC), affecting the environment, biodiversity, food
security, and human health [1]. Population growth, over-exploitation of natural resources,
climate change, agricultural intensification, accelerating urbanization, and industrialization
processes have all greatly contributed to the rapid LUCC [2,3]. Moreover, it is projected
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that about 64% of the developing world and 86% of the developed world will be urbanized
by 2050 [4]. Forest fires, wind, droughts, and pest outbreaks also significantly contribute
to LUCC. It is recognized that the cropland expansion in China facilitated the increasing
pest outbreaks. Zhao et al. [5] showed that the area of cereal aphid outbreak in wheat
increased by 51% from 1951 to 2010. Forest fires are expected to further increase in the
boreal forest while their dynamics are a key issue for fire management and forest ecological
environment protection [6]. From 2000 to 2014, 53.1% of the total forest fires in China
occurred in Northeast China [7]. Furthermore, forest fires are transforming the boreal
forest from carbon sinks to sources [8]. Therefore, it deems necessary and urgent to better
understand the rapid LUCC at all spatiotemporal scales associated with human-induced
activities and the responses of vegetation to climate warming.

Remote sensing (RS) has been widely recognized as a powerful and effective tool
in detecting the spatiotemporal dynamics of LUCC in less time, at a lower cost, and
with better accuracy and coverage [4,9–11]. Studies on LUCC detection are becoming
priority tasks with the availability of multiple sensors operating at various imaging scales,
resolutions, and scopes. Landsat series of satellites provide the longest and continuous
record of Earth observations (since 1972) prevailing in monitoring the anthropogenic
activities and regional vegetation dynamics [1,12–14]. Various techniques for detecting
LUCC have been developed, such as image differencing and rationing, regression analysis,
vegetation index differencing, change vector analysis, principal component analysis, and
tasseled cap transformation [15]. The simplest change index for vegetation assessment is
considered the original surface reflectance of satellite bands. For example, the Landsat red
and short-wave infrared (SWIR) bands have been proven more adequate in distinguishing
forest disturbances than the other Landsat bands [16]. The tasseled cap transformation
indices are also extensively used because they can simplify the six Landsat optical bands
into three orthogonal indices: brightness, greenness, and wetness [17]. However, the
object-based image analysis (OBIA) and machine-learning algorithms have started to
gain their advantages over the pixel-based approaches in land cover mapping for change
detection analysis [15,18–20]. Besides the spectral information, the OBIA also takes into
account the spatial heterogeneity of pixels grouped into clusters to form objects. The
Support Vector Machine (SVM) is among the most accurate and widely used machine-
learning algorithms for land cover classification [21–23]. The SVM is adequate for high-
dimensional datasets, avoids model over-fitting, considers auto-correlation between similar
inputs, and permits a probabilistic interpretation of the outputs by a continuous decision
function [24]. In addition, the SVM generally needs only small training data sets and
handles multidimensional data sets, thus making it appealing for RS classification tasks [25].

China experienced accelerated urbanization from 17.9% in 1978 to 40.5% in 2003 at
a rate twice as rapid as the contemporary global average [3]. Moreover, the permafrost
extent in Northeast China ranks the second largest in China [26], only after the Qinghai-
Tibet Plateau (QTP). Due to its ecosystem-protection nature and marginal location at the
southeastern edge of discontinuous permafrost zones in the Eastern Asia continent, the
Xing’an permafrost in Northeast China is more sensitive to the LUCC. Thus, permafrost
degradation accelerates frost hazards (e.g., thaw slumps and active-layer detachment
failure induced landslides, mudflows, and thaw subsidence), threatening the ecosystems,
engineered infrastructures, and human communities. With the growing demand for
scientific and prudent management of regional forest and water resources, it is essential
to obtain the accurate status and dynamic changes of LUCC. Mapping and monitoring of
LUCC in Northeast China are vital for regional sustainable development, land planning,
and environmental management. Furthermore, the combined effects of climate change and
human activities on landscape changes in a specific region are insufficiently assessed [27].
This study aims at detecting the landscape changes over the last 46 years (1973–2019) in the
Hola Basin, Northeast China, as jointly induced by climate change and human activities.
The objectives are to: (i) Produce LUCC inventories from the Landsat imagery for the
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period of 1973–2019; (ii) Evaluate land cover characteristics and spatial distribution; and
(iii) Quantify the impact of climate change and human activities for the LUCC.

2. Materials and Methods
2.1. Study Area

Northeast China, with the largest area of natural forests in China, represents the
main national source for wood products and an important ecoregion [28]. At elevations of
500 to 620 m a. s. l., the Hola River Basin is situated in a mosaicked transition zone of the
discontinuous, sporadic, and isolated permafrost in the northernmost part of Northeast
China (Figure 1). The ground temperature measurements in boreholes revealed an average
thickness of permafrost in the basin between 60 and 80 m and an active-layer thickness of
1.5–2.0 m [29]. Mean annual ground temperature at the depth of zero annual amplitude
(10 to 20 m in depth) ranges from−3.0 ◦C to−0.5 ◦C for zones underlain by permafrost [29].
The Hola Basin is characterized by a continental monsoonal climate with long, dry, and
cold winters and short, moist, and warm summers. The multi-year average (1961–2015) of
mean annual air temperature (MAAT) was −4.0 ◦C; that of annual precipitation, 437.5 mm,
and that of annual evaporation, 1000 mm [29,30].
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The surficial lithology in the Hola Basin consists of Quaternary deposits, mainly peat,
clay, loam, gravel, and sand. The vegetation is characterized by mixed forests of the needle-
and broad-leaved trees, shrubs, under-bushes, and Sphagnum lichens [29]. In the Hola
Basin, around the Yueya (Crescent) Lake, the Gulian’he strip coal mine started to operate
in 1978, producing a direct impact on the underlying permafrost. From the Hola Basin, an
area of 957 km2 was selected to quantify the LUCC with a focus on the mining expansion
around the Yueya Lake (115 km2).

2.2. Remotely Sensed Data and Pre-Processing

Landsat archive was employed for this study because it is the most comprehensive
database of satellite images at moderate temporal and spatial resolution (30-m). The first
image acquired is a Landsat 1–5 MSS from 1973, followed by Landsat 4–5 TM (1986), Land-
sat 7 ETM+ (2000), and Landsat 8 OLI (2019) (Table 1). The criteria for image acquisition
were to have low cloud contamination and to cover the summer or early fall period with
the climax vegetation and peak phenological features. All the images represent a Level-1
precision and terrain corrected product (L1TP) on which geometric corrections are applied
and precisely registered with sub-pixel misregistration, without affecting the analysis [17].
The image from 1973 has a coarser spatial resolution (60-m), the lowest quality (5 from
maximum 9), and the highest RMSE of 27.7 for the geometric model (Table 1). Moreover,
the image from 1973 was acquired in November, making it difficult to distinguish between
forest and grass in some areas. However, the water and anthropic areas are obvious to
distinguish from vegetation.

Table 1. Technical details of the satellite images for the Hola Basin, Northeast China.

Acquisition
Date

Satellite Mission
and Sensor

Processing
Level

Pixel
Size (m)

Cloud
Cover Quality RMSE

21 November
1973 Landsat 1–5 MSS L1TP_T2 60 22 5 27.7

6 August 1986 Landsat 4–5 TM L1TP_T1 30 3 7 5.7

20 August 2000 Landsat 7 ETM+ L1TP_T1 30 4 9 3.4

1 August 2019 Landsat 8
OLI_TIRS L1TP_T1 30 14 9 7.3

The raw calibrated pixel values were rescaled to surface reflectance using the atmo-
spheric correction module Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) in ENVI 5.3. The Landsat 1–5 MSS image from 1973 has been resampled to the
30-m spatial resolution to match with the other images. Clouds and their shadows have
been masked using the function of mask (Fmask) algorithm [32]. The image from 1986
was covered with clouds on an area of 48 km2 in the south-east corner and for that area
the classes from 1973 were considered (Figure 2). The small clouds identified in the image
from 2000 were successfully removed during pre-processing and classification steps.
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Figure 2. Examples of Landsat composites (left side, band combination: near-infrared-red-green for 1973 and red-green-blue
for other years) and the land cover classes (right side) for the Hola Basin, Northeast China, in (a) 1973, (b) 1986, (c) 2000,
and (d) 2019. The black box marks the location of the Yueya Lake and the Gulian’he coal mine.
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2.3. Image Classification and Change Detection Analysis

Image segmentation is the first step of OBIA that consists of dividing the image into
relatively homogeneous objects. Then, the objects are used for image classification and
change detection analysis based on their spectral, spatial, and contextual attributes [20].
Image classification was performed using the OBIA implemented in the semiautomatic
feature extraction tool in ENVI 5.3. The popular multiresolution segmentation approach
was employed using the Edge algorithm with a scale level of 10 for the segmentation step.
The Full Lambda Schedule algorithm with a merging level 80 was used to aggregate the
small segments within the larger ones based on their common spectral properties, texture,
and geometry. Of the several tested settings, the proposed one attains the best visually
agreeable results.

Due to the low quality of the Landsat image from 1973, only four LUCC classes were
selected: forest, grass (including shrubs and cultivated land), water, and anthropic (includ-
ing construction land, bare ground, disturbed ground, and erosions). The classification
of the resulted objects into the four classes was conducted using the SVM algorithm. The
SVM is a machine-learning method based on statistical learning theory that transforms
original input space into a higher-dimensional feature space to find an optimal separating
hyperplane [33]. Please refer to Appendix A for more details on the method SVM. We
applied a radial basis function (RBF) kernel, one of the widely used and recognized kernels,
to provide high results in remote-sensing applications. Different values were tested for
kernel width (γ) and the penalty parameter { ranging from 10−5 to 101 and 10−1 to 105,
respectively. Cross validation and trial and error methods were used to optimize these
user-defined parameters [34].

The input layers for classification were the spectral bands and the normalized differ-
ence indices derived from the spectral bands available for every scene (Table S1). Addi-
tionally, a digital elevation model (DEM) at 12.5-m spatial resolution, generated from the
Phased Array type L-band Synthetic Aperture Radar (PALSAR) microwave sensor onboard
the Advanced Land Observing Satellite (ALOS), was used. Therefore, for the Landsat 1–5
MSS (1973) the input layers were the DEM, the spectral bands green, red, near-infrared,
and the normalized indices: Normalized Difference Vegetation Index—NDVI [35], Nor-
malized Difference Water Index—NDWI [36], and Optimized Soil Adjusted Vegetation
Index—OSAVI [37]. For the Landsat 5 TM (1986), 7 ETM+ (2000), and OLI (2019) the
following input layers were used: DEM, spectral bands: blue, green, red, near-infrared,
short-wave infrared 1, short-wave infrared 2, and the normalized indices: NDVI, NDWI,
OSAVI, Normalized Difference Moisture Index—NDMI [38], Normalized Difference Built-
up Index—NDBI [39], Normalized Burn Ratio—NBR [40], Modified Normalized Difference
Water Index—MNDWI [41], and Enhanced Vegetation Index—EVI [42]. From these in-
puts, several attributes were extracted, including spectral properties (mean, minimum,
maximum, and standard deviation), texture (range, mean, and variance), and shape (area,
length, convexity, and major and minor lengths). This richer information allows exploiting
the spatial context in grouping the segments with similar properties [15]. After the image
classification was performed for each period, the transition dynamics of the LUCC were
conducted using the Thematic Change module in ENVI 5.3.

The segments (n = 400) for calibrating and validating the algorithm were visually
selected from the band combination red-green-blue of every image. These segments were
divided into the training data set (70%) used to classify the LUCC types and the validation
data set (30%) used to assess the accuracy of classified maps. Validation was performed
using kappa coefficient (K) and the confusion matrix with its accuracy indices: overall
accuracy (OA), user’s accuracy (UA), and producer’s accuracy (PA).

3. Results
3.1. Accuracy Assessment of Land Cover Classification

The classified images from 1986, 2000, and 2019 revealed a high OA (>90%) with a
perfect agreement (K > 0.8) (Table 2). Unsurprisingly, the classification from 1973 recorded
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an OA of 80% with a substantial agreement (K = 0.73). This happens because the Landsat
1–5 MSS image has the lowest quality with an RMSE of 27.7 and a coarser native spatial
resolution of 60-m. The classification from 1973 also presented the lowest values for the UA
and PA for all the classes. The lowest UA was recorded by anthropic and grass with 72.7%
and 77.4%, respectively, while the lowest PA was for water (60%) and anthropic (64%). The
classification maps from 1973 revealed that the algorithm had difficulties in mapping the
small rivers (Figure 2). Thus, only the lakes visible in the 1973 image have been considered
for the change detection analysis. However, the PA for forest and grass was high even for
the image from 1973 with 100% and 96%, respectively. Forest also presented the highest
PA (95.5 to 100%) for the classifications from 1986, 2000, and 2019, followed by anthropic
(89.6 to 100%), grass (85.6 to 100%), and water class (90.2 to 93.7%). For the same years, the
UA was slightly higher for anthropic (96.3 to 100%) and water (91 to 100%), than for forest
(85.5 to 94.7%) and grass (84 to 96%).

Table 2. Accuracy indices for classified images for the Hola Basin, Northeast China. Presented are overall accuracy (OA),
kappa coefficient (K), user’s and producer’s accuracy for the classes anthropic, forest, grass, and water. All values are
represented in percentage, except for kappa values, which range between 0 and 1.

Year OA K
User’s Accuracy (UA) Producer’s Accuracy (PA)

Anthropic Forest Grass Water Anthropic Forest Grass Water

1973 80.00 0.73 72.73 83.33 77.42 88.24 64.00 100.00 96.00 60.00

1986 96.91 0.96 100.00 92.86 96.00 100.00 100.00 100.00 96.00 90.48

2000 90.09 0.86 96.26 85.48 84.07 91.09 89.55 95.50 85.59 90.20

2019 97.10 0.96 100.00 94.74 94.44 100.00 94.44 100.00 100.00 93.75

3.2. LUCC in the Hola Basin

Time-series of Landsat satellite images provide the spectral information necessary
to identify the LUCC. Furthermore, we present changes in the three classes of forest,
grass, and anthropic; classes that have the highest accuracy and the most obvious changes.
From the water class only the lakes around the Yueya Lake were analyzed (Section 3.3).
Landsat images are too coarse to reliably detect the evolution of the meandered small rivers,
especially in the forested areas (Figure 2) as revealed by the low PA. Through the observed
period (1973 to 2019), the forest was the dominant class in this region covering an area
between 620 and 750 km2, which represents 65 to 78.6% of the investigated area (Figure 3a).
It is followed by the grass class with an area ranging between 187 and 295 km2 (19.5 to
31%). The anthropic class was ranging between 10 and 37 km2 (0.4 to 1%). The amount of
these classes varied substantially in our study area during the last 46 years. Forest class
revealed a net cover decrease of 88 km2, a decrease of 11.8% from 1973 to 1986 (Figure 3b,c).
From 1986 to 2000, the forest class continued to decrease by 42 km2 (6.4%), while from 2000
to 2019 increased by 78 km2 (12.5%). On the contrary, the grass class showed an increasing
trend of 86 km2 (46.5%) from 1973 to 1986 and 23 km2 (8.3%) from 1986 to 2000. From
2000 to 2019, the grass class presented a sharp decrease of 90 km2, representing a 30% loss
from the total grass cover in 2000. Therefore, for the entire study period (1973 to 2019),
the forest class declined by 53 km2 (7%), while the grass class grew by 20 km2 (10.6%).
The anthropic class presented a continuous increase from a total surface area of 10.6 km2

(1973) to 13.7 km2 (1986), 26.5 km2 (2000), and 37 km2 (2019). Accordingly, it represents an
increase of 29% (3 km2) in the first period (1973–1986), 93% (13 km2) in the second period
(1986–2000), and 40% (10.6 km2) in the last period (2000–2019). Thus, the surface area of the
anthropic class increased 2.5 times over the last 46 years. The change maps (Figure 4) show
the spatiotemporal patterns of LUCC, revealing both very stable areas, in contrast to areas
with substantial changes. The stable areas prevail on the mountain slopes, while the LUCC
appear mainly along the roads and in the proximity of the coal mine and settlements.
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LUCC in the Hola Basin for the period 2000–2019 have been quantified based on
the permafrost zonation model of Obu et al. [31] developed for 2000–2016 at 1 km2 scale.
According to this zonation map, in the Hola Basin, the isolated permafrost prevails (70.6%),
and it is followed by sporadic permafrost (29.2%) (Figure 5a). Only a small patch of discon-
tinuous permafrost (0.2%) is located around the Yueya Lake with little LUCC compared to
other permafrost types. The area of isolated permafrost is more widespread than that of
sporadic permafrost, while the LUCC are in a relatively similar proportion (Figure 5b,c).
The LUCC for the forest and grass classes in the isolated permafrost zones are ranging from
−76 to 74%, and in the sporadic permafrost, from −64 to 52%. However, the anthropic
extent is significantly larger in the sporadic permafrost zone (65%) than that in the isolated
permafrost zone (31%), and it is also notable in the discontinuous permafrost (4%).
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3.3. LUCC around the Yueya Lake

In 1973, in addition to the Yueya Lake, there was another unnamed lake, and the
surrounding area was undisturbed (Figure 6a). The road construction and mining activities
started to show up mainly from 1986 (Figure 6b), gradually expanded until 2000 (Figure 6c),
and after 2000 a boom in coal mining was recorded (Figure 6d). In 1986, in the vicinity of
the lake, there was only one quarry, with a surface area of 0.23 km2. In 2000, 12 quarries
scattered around the lake, covering an areal extent of 2.32 km2 (Figure 7a,b). Until 2019,
these quarries significantly expanded and aggregated each other, counting for eight quarries
with a surface area of 19.61 km2. The other nameless lake, close to the Yueya Lake, with a
surface area of 0.113 km2, disappeared from 1973 to 1986 (Figure 6a,b), while the Yueya
Lake shrank from 0.110 to 0.075 km2. The Yueya Lake continued to shrink to 0.067 km2

in the period of 1987–2000 and drained completely by 2019. However, from 1986 to 2000,
13 new lakes appeared around the Yueya Lake, especially in the quarry areas (Figures 6c
and 7a). The surface area of these lakes was around 0.28 km2. By 2019, the number of lakes
increased to 32, covering an area of 0.82 km2 (Figure 7a,b). The large extension of quarries
in this area caused substantial disturbances to the forest class and more severely to the
grass class particularly after 2000 (Figure 6c,d).
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4. Discussion
4.1. Change Dynamics in the Hola Basin

The disturbance and regrowth of the forest class are mainly concentrated along the
roads and around the major settlements (residential areas) (Figure 4a). This suggests that
the main cause for forest disturbance is deforestation for lumbering, resource exploitation,
agriculture cultivation, and other activities of economic development. There are also a few
spots of forest disturbance on the mountain slopes, far from any roads. These disturbances
could be attributed to pest/bug outbreaks, drought, fires, landslides, and windfall that
prevail in this area [43]. Forest fires have been documented in Northeast China since the
1960s with a frequency ranging from 9.6 to 42 forest fires per year [6,44,45]. Severe burns
also occurred in the Hola Basin in 1987 and 2002, causing large disturbances to the forest
class, in turn, significantly impacting the permafrost environment. Even 30 years after the
fires, the vegetation types have not fully recovered and reached the climax community [46].
Increasing wildfires extent, frequency, and severity are also observed in many boreal and
Arctic regions, causing irreversible degradations to permafrost landscapes. Effects of
wildfires coupled with climate change include a warmer and deeper active layer, expansion
of taliks (unfrozen ground in permafrost regions), and rapid losses of soil carbon stock [6,47].
For example, in western Canadian permafrost peatlands, the impact of wildfires tripled the
rate of thermokarst bog expansion [48].

Larger areas of forest disturbances in the Hola Basin are observed for the first two
analyzed periods (1973–1986 and 1986–2000) compared to the third period (2000 to 2019).
Rapid population growth and land shortage have forced the clearance of natural vegetation
for the expansion of croplands, industry, and urbanization. In the northern part of the
Hola Basin, forest area decreased significantly from 1986 to 2000 due to the 6 May 1987
fire. This has led to environmental degradation, soil and water pollution risks, high carbon
emissions, local climate change, and the loss of wildlife habitat and biodiversity [2,3].
The disturbances in the third period are concentrated in the mining area, at the airport
location, and along the roads in the south and south-west. However, in this period, the
areas of forest regrowth are larger than those of forest disturbance. This could be explained
by the forest regrowth on previously disturbed forest areas or abandoned farmlands.
Starting with the 1980s, a considerable cropland decline has been observed all over China
while urban and forest areas expanded [3]. Between 1978 and 2017, over 118,205 km2 of
croplands in China were converted into urban areas [14]. Zhang and Liang [49] concluded
the forest development and climate controls as the main drivers for the increase in forest
biomass in Northeast China from 2001 to 2010. Forest recovery from fires, afforestation,
and reforestation also represent important factors for the increasing trend [49]. With the
initiation of the Natural Forest Conservation Program in 1998, a substantial reduction was
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observed in wood production and fire-burned areas. Moreover, 85.9% of the decrease in
areas affected by forest fire was concentrated in Northeast and North China [7]. A gradual
restoration of vegetation after the 1987 fire was observed in the Hola Basin but currently, it
mainly grows broad-leaved forest.

As with those in the forest class, spatiotemporal changes in the grass class (Figure 3b)
are concentrated mainly along roads, around settlements, and exploitation sites. Extensive
areas of grass disturbances occurred after 2000 when Northeast China experienced the
lowest grassland growth in China [50]. On the other hand, the largest areas of grass
recovery were recorded from 1973 to 1986, mainly synchronous with forest decline. He
et al. [51] also observed an increase in the forest area and a decrease of grasslands over
China from 1982 to 2013.

The high rates of disturbances and regrowth for forest and grass in some areas from
the Hola Basin may be overestimated. The UA for these classes is relatively low, ranging
between 77 and 85% in the classification maps from 1973 and 2000 (Table 2). However, the
UA is above 93% for the classification maps from 1986 and 2019.

The areal extent of the anthropic class started to increase more rapidly in the Hola
Basin from 1986, especially after 2000 (Figure 3c). Until 2000, the infrastructure developed
mainly by the construction of roads and city/town expansion, while areas disturbed by
coal mining were relatively small. However, the areas affected by mining grew significantly
after 2000, marking the main reason for the expansion of the anthropic class. Additionally,
the airport construction, extension of Mo’he city, and the construction of the new road
between the coal mine and Gulian town all contributed to the rapid expansion of the
anthropic class after 2000. All these anthropic expansions are fragmenting the landscape
and ecosystem and disturbing the wildlife by blocking their migration routes [52]. Likewise,
human activities are contributing to 50.46% of vegetation changes in Northwest China,
while the climate factors (e.g., precipitation and temperature), only 16.39% and 4.33%,
respectively [27]. At the same time, on the northeastern QTP, climate warming is the main
driver for permafrost degradation and the shrinking of thermokarst lakes and ponds [53].

In Northeast China, climate warming is significantly impacting the LUCC. At a
national scale, Northeast China underwent the largest increase in temperature and a sig-
nificant decrease in summer-autumn precipitation [54]. Persistent warming was recorded
in Northeast China from 1970 to 2000, particularly after 1991. During 1991–2000, the
decadal average air temperature was 0.9–2.2 ◦C higher than those from the 1960s, being
the largest temperature increase in China [44]. At the Mo’he meteorological station, air
temperature increased by 0.31 ◦C/decade from 1960 to 2015 [55]. This increase is higher
even compared to the concurrent global averages of climate warming. The air temperature
in Northeast China has increased at an average rate of 0.35 ◦C/decade from 1961 to 2012
while the global temperature increased at 0.12 ◦C/decade from 1951 to 2012 [56]. This
significant temperature increase corresponds well with the frequent forest fires and the
severe burns from the 1980s and 2000s in the Hola Basin. Ground temperatures also in-
creased, for example, with 0.7 ◦C at 20 m depth (1973 to 1978) and 0.2 ◦C at 13 m depth
(1984 to 1997) [44]. Therefore, the permafrost environment in Northeast China is one of the
areas with the most rapid response to climate change. The southern limit of permafrost
has been notably moved northwards by about 50–120 km, reducing its areal extent from
3.9 × 105 km2 in the 1970s to 2.6 × 105 km2 in the late 2000s [55]. Climate warming and
deforestation have accelerated permafrost degradation by deepening the active layer, rising
ground temperatures, expanding taliks, and developing thermokarst landforms. The rapid
urbanization, disturbances from road construction, urban heat-islands, and forest fires
contributed to permafrost degradation [44]. LUCC are significantly present in the sporadic
permafrost zone, suggesting that permafrost degradation is contributing to the LUCC in
the Hola Basin as well. In other areas such as the Pechora catchment (Russia), permafrost
degradation is larger in discontinuous and sporadic zones as suggested by a much denser
thermokarst lake network [57]. Additionally, in the Hola Basin, the thermokarst lakes are
present only in the discontinuous permafrost zone. Permafrost degradation has induced
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natural hazards, such as thaw settlement, thaw slump, and landslides that are threatening
the foundation soils of buildings and infrastructure. Furthermore, it was observed a more
rapid permafrost degradation under the engineering infrastructure, such as the Mo’he
airport [55] and the China–Russia Crude Oil Pipeline [58–60]. The deepening of the active
layer is also affecting the ecosystems by reducing the plant cover, below-ground biomass,
and species richness [61]. The increased thickness of the active layer is facilitating rapid
drainage and loss of soil water in the active layer that leaves less available water for plant
growth, increasing the potential for droughts [56]. To maintain the diverse ecosystems
from Northeast China, several natural reserves have been established to protect boreal
coniferous forests, wetlands, rare waterfowls, and cold-water fish [52].

4.2. Change Dynamics around the Yueya Lake

The change detection analysis has revealed that mining activities are the main factor
of landscape changes around the Yueya Lake and possibly the cause for the lake drainage.
It was noticed that the spatiotemporal distributive patterns of mining pits and quarries
were strongly correlated with the appearance or disappearance of the lakes. Due to
quarries extension and underground mining galleries, extensive and intensive disturbances
to permafrost, such as open the forested lands, land stripping and clearance, and pit
and tunnel excavations, eventually led to thaw subsidence on the ground surface and
thermokarst lakes drainage. Through drilling prospects in the 1980s and mid-2000s, several
taliks were identified around the Yueya Lake, as well as an open talik under the lake.
The expanding mining activities and declining forest coverage extended the thaw depths
of taliks that increased surface water supplies to the sub-permafrost water [62]. The
hydrothermal stability of the thermokarst lake and the surrounding permafrost has been
further complicated by the nearby coal deposits and pumping of the lake water for a local
power plant (Kengkou Powerplant) [62]. These disturbances led to the sudden drainage of
the lake before 2013, but when the power plant was closed, the lake level was able to recover.
The local government has made great efforts to restore the environment for recreational
purposes, with the Yueya Lake as one of the tourist scenic spots [62]. However, in the
winter of 2012/2013, the Yueya Lake rapidly drained. During the field observation from
September 2019, large subsidence with remnant timber from underground galleries and 30
to 40 cm wide cracks were found on the bottom of the drained Yueya Lake (Figure S1a).
Near the Yueya Lake depression, there was still a small residual thermokarst lake but
with a surface area below the capabilities of the mapping method. This lake also shows a
shrinking trend with the active collapse of the lakeshore and retrogressive erosion of the
thaw slump (Figure S1b). Thus, patches or islands of permafrost are still present around
the Yueya Lake depression, especially in the forested areas. Evidence is the presence of
the “drunken” forest on the west side of the lake depression that indicates the melting of
ground ice. Trees growing on clayey soils with a shallower permafrost table and under the
disturbances of thermokarst are conducive to form “drunken” forest [63]. The geophysical
surveys using the electrical resistivity tomography (ERT) from September 2019 revealed
small patches of permafrost in this area [64]. Drunken forests, clusters of sinkholes, frozen
debris flows, and landslides, probably as a result of permafrost degradation, have been
frequently observed in other permafrost environments from Northeast China.

Extensive manifestations of LUCC were also observed in the Arctic region based on
satellite images and aerial photographs caused by rapid climate change and intensive
industrial activities. In the Bovanenkovo gas field, Yamal Peninsula, the affected areas
substantially increased from 70 km2 in 1984 to 836 km2 in 2011 in association with the
oil exploration and development activities [65]. The industrial transformation continued
at this site where the length of gas pipelines increased by 7.4 times between 2004 and
2016 [66]. Similarly, in northern Alaska the oil field development had affected 34% of the
mapped area from 1949 to 2011 [67]. Satellite observations also indicated a pronounced
shrub expansion in the circumpolar Arctic tundra driven by climate warming and per-
mafrost degradation [68]. In Northeast China, as with many boreal and Arctic regions, the
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combination of climate warming and anthropogenic activities has significantly changed the
landscape. Consistent LUCC over short periods, without adequate mitigative measures,
are causing considerable disequilibrium in the landscape. Permafrost is thawing rapidly
and dramatically, leading to changes in the landscape, increasing the risks of natural haz-
ards, and threatening the water resources and ecosystems. These changes could result in
hydrological, ecological, societal, and environmental consequences of extensive concern.

5. Conclusions

Analysis of permafrost landscape changes for 46 years around the Yueya Lake and the
Hola Basin based on Landsat satellite images revealed the following conclusions:

The object-oriented classification based on the Support Vector Machine algorithm
revealed high overall accuracy (OA > 90%) and a perfect agreement of the kappa coefficient
(K > 0.8) for the 1986, 2000, and 2019 images. Due to the lower quality of the image from
1973, the OA was 80% and K = 0.73. In the change detection analysis, this may add some
overestimations, which are acceptable due to the large changes observed in this area.

Forest, the largest class (620–750 km2), declined by 88 km2 (11.8%) from 1973 to 1986
and by 42 km2 (6.4%) from 1986 to 2000. From 2000 to 2019, the forest class was recovered
by 78 km2 (12.5%). Grass, the second-largest class (187–295 km2), showed an opposite
trend. In the first (1973–1986) and second (1986–2000) periods, increased by 86 km2 (46.5%)
and 23 km2 (8.3%), while in the third period (2000–2019), it decreased by 90 km2 (30%).
The anthropic class revealed a sharp and continuous expansion from 10 km2 in 1973 to
37 km2 in 2019. These changes are spatially concentrated among the isolated and sporadic
permafrost zones, along the roads, and around the residential settlements. The frequent
forest fires reported in this area could also explain the forest decline in the isolated areas
far from roads and settlements. The post-2000 trends for forest expansion and grassland
degradation correspond well with the implementation of the Natural Forest Conservation
Program in 1998 for reducing wood production and preserving and expanding forest
ecosystems.

From 1973 to 1986 the forest disturbance and grass regrowth are caused by deforesta-
tion for settlement development and cropland expansion. Starting with 1986 are observed
changes caused by mining activities with an increasing number of quarries and lakes. A
significant quarries expansion was noted during 2000–2019 when the area affected by
quarries reached 19.61 km2. During this period, also the Yueya Lake drained completely.
Thus, the mining activities are the main factor for permafrost degradation around the
Yueya depression, where only small sporadic islands and patches of permafrost are still
present. Permafrost is thawing fast, leading to changes in the landscape, increasing the
risks of natural hazards, and threatening the water resources and ecosystems.

This study reveals the rapidly developing permafrost landscape and land use and
cover changes in the Hola Basin and provides baseline information for sustainable develop-
ment in this area. Further research should focus on better understanding the mechanisms
of landscape changes, predicting the change trends, and establishing adaptive strategies.
In particular, the mechanisms related to the hydrothermal and mechanical dynamics of the
active layer, sub-permafrost and subaerial supra-permafrost taliks, and groundwater flow
systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13101910/s1. Figure S1: On-site survey photos taken during field observation from
September 2019 at the Yueya Lake from the Hola Basin, Northeast China. (a) The large subsidence
with remnant timber from underground galleries and with 30 to 40 cm wide cracks on the bottom of
the drained Yueya Lake. (b) The small thermokarst lake near the drained Yueya Lake with a shrinking
trend and active collapse of the lakeshore and retrogressive erosion of the thaw slump; Table S1:
Variables used for LUCC classification. “x” marks the corresponding years when the variables were
used.
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Appendix A

The SVM principle is that the training samples, where the x are the input features,
and y, the binary labels (presence and absence of a class), are linearly separable by a
hyperplane [69]:

(w·x) + b = 0 (A1)

where w is the hyperplane normal, x is the input feature, (·) corresponds to the scalar
product, and b represents the scalar base.

The SVM seeks to maximize the distance between the training vectors and the hy-
perplane and is illustrated as 2

‖w‖ after the normalization [69]. Therefore, the maximum
margin is obtained by:

min
w,b

1
2
‖w‖2 (A2)

Rarely, the training vectors are linearly separable, thus a slack variable ξi and a penalty
term { are inserted:

yi((w·xi) + b) ≥ 1− ξi, i = 1, 2, . . . , n, ξi ≥ 0 (A3)

Therefore, the maximum margin equation is changed to:

min
w,b

1
2
‖w‖2 + {

n

∑
i=1

ξi (A4)

The non-linear classification is conducted using the same concept, but only by em-
ploying a kernel function that converts the input data into a high-dimensional feature
space [33,69].
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