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Abstract: Synthetic Aperture Radar (SAR) has become one of the important technical means of
marine monitoring in the field of remote sensing due to its all-day, all-weather advantage. National
territorial waters to achieve ship monitoring is conducive to national maritime law enforcement,
implementation of maritime traffic control, and maintenance of national maritime security, so ship
detection has been a hot spot and focus of research. After the development from traditional detection
methods to deep learning combined methods, most of the research always based on the evolving
Graphics Processing Unit (GPU) computing power to propose more complex and computationally
intensive strategies, while in the process of transplanting optical image detection ignored the low
signal-to-noise ratio, low resolution, single-channel and other characteristics brought by the SAR
image imaging principle. Constantly pursuing detection accuracy while ignoring the detection speed
and the ultimate application of the algorithm, almost all algorithms rely on powerful clustered
desktop GPUs, which cannot be implemented on the frontline of marine monitoring to cope with
the changing realities. To address these issues, this paper proposes a multi-channel fusion SAR
image processing method that makes full use of image information and the network’s ability to
extract features; it is also based on the latest You Only Look Once version 4 (YOLO-V4) deep learning
framework for modeling architecture and training models. The YOLO-V4-light network was tailored
for real-time and implementation, significantly reducing the model size, detection time, number of
computational parameters, and memory consumption, and refining the network for three-channel
images to compensate for the loss of accuracy due to light-weighting. The test experiments were
completed entirely on a portable computer and achieved an Average Precision (AP) of 90.37% on the
SAR Ship Detection Dataset (SSDD), simplifying the model while ensuring a lead over most existing
methods. The YOLO-V4-lightship detection algorithm proposed in this paper has great practical
application in maritime safety monitoring and emergency rescue.

Keywords: synthetic aperture radar (SAR); ship detection; YOLO-V4; YOLO-V4-light; non-subsampling
laplacian pyramid decomposition (NSLP); high-speed lightweight

1. Introduction

With the continuous exploitation of marine resources, countries have begun to pay
attention to the safety monitoring of the territorial sea and near the coast to ensure the
safety of passing ships in the territory and protect the offshore ecological environment, so
ocean monitoring has received extensive attention and research. One of the most critical
is the detection of ships in the territorial sea and near the coast. There are many means
for ship monitoring, but the characteristics of the marine environment led to its greater
influence by weather, waves, and other uncontrollable factors of nature, and the SAR, with
its all-day, all-weather, high-resolution, wide-area imaging capability, is well suited to
surface vessel detection. In 1987, the United States first acquired SAR images of sea ships
from the Seasat-1 satellite, which opened up the exploration of ship detection technology
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in SAR images, more and more marine and radar researchers have devoted themselves to
the research of SAR ship detection algorithms. So far, the field of SAR ship detection can be
roughly divided into two development stages with the emergence of deep learning as a
watershed: traditional methods and methods based on modern deep learning.

Before deep learning, traditional target detection algorithms include, e.g., Graph
Cuts segmentation algorithms based on graph theory, and several thresholds-based, edge-
based, and region-based detection methods, Haar-like features and cascade classification
for face detection, deformable component models (DPM) based on components and the
used Support Vector Machine (SVM) combined with Histogram of Orientation Gradients
(HOG) for pedestrian detection. Specifically in the field of SAR image ship detection, there
are traditional detection methods such as area segmentation detection, fractal detection,
wavelet detection, fuzzy detection, and feature matching methods, but all these methods
also have many disadvantages such as sensitivity to speckle noise, more false alarms in
complex backgrounds and complexity in constructing feature functions. One of the most
widely studied and applied algorithms is Constant False Alarm Rate (CFAR), which detects
ship targets by modeling the statistical distribution of background clutter [1], but the clutter
distribution in complex backgrounds is difficult to model well with a suitable probability
density function. Much research has therefore been devoted to the variation, combination,
and adaption of parametric models to meet the required statistical modeling accuracy of
clutter for detection and hence the determination of detection thresholds. However, in
practical applications, the distribution of sea clutter in complex environments is easily
affected by uncertainties such as currents and waves, and it is still difficult to fit the real
background clutter even when a multi-parameter, multi-method joint approach is used to
select a suitable statistical distribution. Moreover, the processing speed of the algorithm
is not sufficient for practical needs due to the large number of calculations performed in
solving for the parameters of the above distribution [2].

Since AlexNet [3] won the ImageNet image classification challenge in 2012, deep neu-
ral networks have shown very high accuracy and reliability in image detection, and since
then fusion applications of deep learning in target detection have started to develop, and
traditional feature extraction methods have started to be gradually replaced by automatic
extraction by convolutional neural networks. The current mainstream target detection
algorithms based on deep learning models can be roughly divided into two main categories:
(1) Two-Stage target detection algorithms, which are divided into two stages: first, the first
stage generates candidate regions (Region Proposals) containing the approximate location
information of the target, and then the second stage fine-tunes the category and specific
location of the target in the candidate regions, typically represented by Region-Based Con-
volutional Network (R-CNN) [4], Fast R-CNN [5], Faster R-CNN [6], etc. (2), One-Stage
target detection algorithms, and these detection algorithms do not require a region proposal
stage and can generate the class probability and location coordinate values of an object
directly from a Stage. Typical algorithms are You Only Look Once (YOLO) [7], Single Shot
Multibox Detector (SSD) [8], and Corner-Net. The Two-Stage algorithm has an advantage
in accuracy, but is limited in speed performance by the bottleneck of the proposed region,
while the One-Stage algorithm has a speed advantage and is beneficial for application
scenarios where real-time performance is required. It has to be said that accuracy and
speed are an oxymoron, and how to better balance them has been an important direction in
the research of target detection algorithms. With the development of research and thanks to
the application of GPUs in deep learning in recent years, various algorithms have achieved
better results in terms of speed and accuracy. Ref. [9] uses Feature Fusion Transfer Learning,
and Hard negative mining to optimize the Faster R-CNN and [10] replace the threshold
decision criterion of Faster R-CNN with the maximum stability extremal region (MSER)
method both improve the accuracy on the original basis, but still lack in detection speed
and model complexity.

The speed of SAR ship detection is limited by two main aspects: the imaging speed
of SAR and the detection speed of the algorithm. As the imaging speed of military SAR
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currently applied to maritime security is increasing rapidly, the speed of detection of
algorithms is particularly important. The practical application environment of maritime
ship detection is difficult to accommodate the computer volume and configuration of
computationally intensive and complex models. Therefore, the overall lightness of the
algorithm model and the amount of computation required by the algorithm to cope with
maritime emergencies in different environments determines whether the algorithm can
complete model training and ship detection on low-profile computers or even portable
computers, and thus whether the algorithm can be implemented. There are already
researchers who have done some research on the trade-off between speed and accuracy,
ref. [11] proposed a faster grid convolutional neural network (G-CNN) by combining the
ideas of CNN and YOLO; ref. [12] proposed a YOLO v2-reduced that eliminated some
unwanted layers, resulting in shorter detection time but with reduced accuracy and still
high model complexity.

Moreover, SAR image ship detection is transposed from optical image detection, but
this still has significant differences which are previously ignored by researchers. Optical
images usually consist of image data acquired by visible and partial infrared band sensors,
while SAR sensors operate in the microwave band. SAR images have a relatively low
resolution and low signal-to-noise ratio, so the amplitude information contained in SAR
images is far from the same level of imaging as optical images; Visible optical images
often contain multiple bands of grey-scale information, represented by a combination
of three color channels, RGB or HSV, to facilitate target recognition and classification
extraction, while SAR images, on the other hand, only record the echo information of one
band. Existing image detection research is more focused on RGB three-channel optical
image detection and recognition, and has not been optimized for the single-channel, low
resolution, and low signal-to-noise ratio characteristics of SAR images. In particular,
the single-channel characteristics of SAR images make most of the current migration
applications simply fill the single-channel replication with three channels, which greatly
wastes the multi-channel feature extraction potential of neural networks, and how to
better use the remaining two channels for SAR image processing to improve algorithm
performance is also the direction of next research. On the other hand, the proportion of
ships in the near-shore dock and the wide sea context is different and mostly does not
exceed 10% of the whole image, so we can extract features from different perceptual fields
while reducing the number of network layers to simplify the model and improve accuracy.

In this paper, we use the state-of-the-art YOLO-V4 [13], the latest version of the widely
recognized YOLO algorithm, the well-known sliding window-based bounding box deep
learning model in computer vision, as the basis for fast, accurate, and low-equipment-
required real-time ship detection. Additionally, we introduce a new non-subsampling
laplacian pyramid decomposition (NSLP) image pre-processing method for extracting
contour information and denoising, expanding the single-channel SAR image information
to three channels. Finally, we propose a new lightweight network YOLO-V4-light for
the NSLP-processed SAR images, which significantly increases the speed of detection
and significantly reduces model complexity with guaranteed accuracy. We evaluated the
performance of Faster R-CNN, YOLOv4, and YOLO-V4-light was evaluated on the SSDD
using a mobile RTX2060 GPU. The proposed algorithm model has lower complexity, shorter
training time and detection time, and higher AP.

The main contributions of our work are as follows.

1. The proposed image preprocessing method expands the single-channel SAR image
originally sent to the network for learning to three channels, with ship target contour
information while reducing the impact of speckle noise, making full use of network
extraction capabilities, and increasing network interpretability.

2. Aiming at the existing advanced and complex detection algorithms, combined with
the above-mentioned preprocessing methods, a lighter network model is proposed.
Compared with the existing methods, the training time is shorter, the detection speed
is fast, the accuracy is high, and the hardware requirements are low.
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2. Methods
2.1. YOLO-V4 Algorithm Description

In this paper, we construct an end-to-end convolutional neural network based on
YOLO-V4 for ship detection. YOLO-V4 is another optimization after YOLO-V3 [14]. Based
on the original YOLO target detection architecture, it adopts the best optimization strategies
in the field of CNN in recent years, with different degrees of optimization in various
aspects from data processing, backbone network, network training, activation function,
loss function, etc.

YOLO solves object detection as a regression problem, dividing the entire image into
a grid, each grid being responsible for detecting objects that “fall” into that grid. If a grid
happens to contain the center of an object, then this grid is responsible for detecting the
object that has fallen into it. Each Bounding box contains five components:(x, y, w, h, c), the
(x, y) represent the normalized center coordinates of the predicted object for that grid; (w, h)
represent the normalized width and height of the Bounding box; c reflects whether the
current bounding box contains an object and the accuracy of the object position, determined
mainly by whether it contains a target and the IoU (Intersection over Union) of the predicted
box and the ground truth. Each grid is pre-defined with three different sizes (corresponding
to different perceptual fields) of a priori frames, generating a total of S × S × ((N + 5) × 3)
dimensions of feature data for the final prediction, where N represents the type of object
detected (1 for the SSDD, 20 for the PASCAL VOC 2007 dataset [15] and 80 for the COCO
dataset [16]), and then the prediction frames are continuously scaled according to the real
frames. The input image size is resized to either 416 × 416 or 608 × 608 and fed into the
network for training, with the network structure shown under Figure 1 as follows.
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Figure 1. You Only Look Once version 4 (YOLO-V4) network architecture. Figure 1. You Only Look Once version 4 (YOLO-V4) network architecture.

Firstly, compared to YOLO-V3, the backbone extraction network was replaced by
DarkeNet-19 with CSPDarkeNet53, while retaining important features of the Residual
in DarkeNet53. Residual is essentially performing a 3 × 3 convolution with a step size
of 2, then saving that convolution layer, performing another 1 × 1 convolution and a
3 × 3 convolution, and adding this result to the layer as the final result. Its internal residual
block uses jump connections to alleviate the problem of gradient disappearance caused
by increasing depth in deep neural networks, and applies a Cross Stage Partial Network
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(CSP-Net) structure, Figure 2 shows its structure schematically, splitting the original stack
of residual blocks into two parts: the backbone part continues the original stack of residual
blocks; the other part like a residual edge, is directly connected to the end after a small
amount of processing, so it can be considered that there is a large residual edge in the CSP,
which is beneficial for enhancing the learning ability of CNN, eliminating computational
bottlenecks and reducing memory costs [17].
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Secondly, the Spatial Pyramid Pooling (SPP) structure was introduced to participate
in the convolution of the last feature layer of CSPdarknet53, and then after three Darknet-
Conv2D_BN_Leaky convolutions of the last feature layer of CSPdarknet53, finally four
different scales were used for maximum pooling, with pooling kernel sizes of 13 × 13,
9 × 9, 5 × 5, and 1 × 1 (no processing), which can greatly increase the perceptual field and
separate the most significant contextual features.

After the backbone network extracts the three useful feature layers and inputs them
into the feature pyramid, YOLO-V4 chooses the instance segmentation algorithm Path Ag-
gregation Network (PANet) [18] as the network for enhanced feature extraction. The most
important difference that distinguishes this feature extraction network from traditional fea-
ture extraction networks is that, after completing the feature pyramid from bottom to top,
top-to-bottom feature extraction is also performed. the FPN is top-down, passing down the
strong semantic features from the higher levels to augment the whole pyramid, although
only the semantic information is augmented and no localization information is passed on.
PANet, on the other hand, addresses this by adding a bottom-up pyramid, and such an
operation complements FPN by passing up the strong localization features from the lower
levels. The optimized fused features will be used for target detection. After the model has
finished training, the feature layer predictions are decoded, i.e.: each grid point is added
with its corresponding x and y, the result of this addition is the center of the prediction
frame, and then the length and width of the prediction frame are calculated using the
combination of the prior frame and h and w. The final filtering is done using score sorting
and non-maximal suppression, which gives the position of the whole prediction frame.

Although YOLO-V4 has an excellent performance in the field of target detection, as
mentioned earlier, it is also a computationally intensive algorithm. Current surface ship
computers may not be able to complete migratory training learning to cope with real-time
changing conditions when faced with this type of algorithm, with problems such as too
long training times, slow detection speeds, and too large models limiting the practical
application of the algorithm.

2.2. Algorithm Design and Improvement
2.2.1. Construction of Three-Channel RGB SAR Image

Due to the single-channel characteristics of SAR images, most of the datasets used
for research and testing are simply copied from single-channel grayscale images and then
expanded to three-channel images, that is, the color values of the three RGB color channels
are identical. In this section, we seek additional information useful for detection from the
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original SAR image to replace the same two channels and construct a completely new RGB
SAR image.

The unique contour features of a ship are characteristics that are difficult to be found
in various man-made clutter on the coastline. Using the ship’s contour features as a
criterion for target detection and identification can effectively improve the sensitivity and
accuracy of detection even in complex background conditions, and is very suitable for
target detection in complex backgrounds.

This paper introduces Non-Subsampling Laplacian Pyramid Decomposition (NSLP)
to address the single-channel characteristics of SAR images by using the wavelet transform
principle. NSLP can extract the ship morphological features from the original image by
decomposing and transforming the SAR image and construct a new channel image to
highlight the ship contour information while reducing the effect of speckle noise.

The basic principle of NSLP: NSLP is a decomposition algorithm based on the Lapla-
cian pyramid (LP) Non-Subsampled Contourlet Transform (NSCT). Both are widely used
in the field of image contour transformation [19,20]. We borrowed the idea from NSCT
and added a Non-Subsampled Pyramid Filter Bank (NSPFB) to make the decomposed
image translation invariant. At the same time, it has the same multi-scale feature as the LP
algorithm, which can decompose images at different scales. Difference from LP decomposi-
tion, NSLP does not downsample the components after filtering but upsamples the filter
accordingly. That is to say, the secondary filter of the NSLP can be obtained by upsampling
the filter of the previous stage with a step size of 2. When an image undergoes the L-level
NSLP decomposition, L + 1 subband images with the same size as the original image can
be obtained.

Figure 3 shows the NSLP structure of a three-stage filter cascade, where, for example,
the low-pass filter is represented H0; H2

0 is the second-stage filter obtained by upsampling
the previous filter in steps of two; the other filters in the figure follow the same pattern. Let
the i-th image feature be mapped as xi and the L + 1 subbands will be obtained by L-layer
NSLP decomposition as follows.

xi(m, n) = y1
i (m, n) + y2

i (m, n) + . . . + yL+1
i (m, n) (1)

where L is the number of NSLP filter levels and (m, n) denotes the pixel position in the
picture, the m-th row and nth column of the pixel matrix. The decomposed subbands are
denoted as

{
y1

i , y2
i , . . . , yL+1

i

}
, where

{
y1

i , y2
i , . . . , yL

i
}

at the output of each filter level is the

high-frequency component obtained from each level of decomposition, and
{

yL+1
i

}
at the

output of the last filter level is the low-frequency component.
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We take a SAR image in the SSDD as an example, and Figure 4a shows the original
image, where the shoreline of the quay and the ships in the near harbor are linked together
and are both highlighted. Figure 4b shows the four subbands after NSLP decomposition,
corresponding to {y4 y3 y2 y1} in Figure 3, where the first subgraph corresponds to {y4},
which has undergone three decompositions in the NSLP structure, and the low-frequency
subbands obtained from each layer of decomposition will continue to be decomposed in
the next layer, and the scale of the filter is twice that of the previous layer of decomposition,
and the final obtained also {y4} has the largest decomposition scale. It contains most of
the information of the ship, the pier, and the coast in the original image, and the overall
area information is relatively complete. The multiple low-frequency filtering makes the
intensity of the scattering noise significantly reduced, but the absence of the high-frequency
component makes the image clarity decrease significantly, and the boundaries of the
targets in the image are more difficult to distinguish. The remaining three sub-maps
correspond to {y3 y2 y1} which are high-frequency subbands obtained from different scale
decompositions. Although they contain less visible information than the low-frequency
self-bands, they extract the important contour information of the original image and evenly
disperse the scattering noise into the three sub-bands. The high-frequency subbands can
reflect the contour information of the ship SAR image well, and as the scattering noise is
non-uniformly distributed in multiple subbands, the high-frequency subbands only contain
part of the attenuated scattering noise, which effectively reduces the effect of scattering
noise when composing the three-channel image. We then normalized the four subbands of
the decomposed image to obtain the four normalized subbands shown in Figure 4c.
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gether and are both highlighted. Figure 4b shows the four subbands after NSLP decom-
position, corresponding to {y4 y3 y2 y1} in Figure 3, where the first subgraph corresponds 
to {y4}, which has undergone three decompositions in the NSLP structure, and the 
low-frequency subbands obtained from each layer of decomposition will continue to be 
decomposed in the next layer, and the scale of the filter is twice that of the previous lay-
er of decomposition, and the final obtained also {y4} has the largest decomposition scale. 
It contains most of the information of the ship, the pier, and the coast in the original im-
age, and the overall area information is relatively complete. The multiple low-frequency 
filtering makes the intensity of the scattering noise significantly reduced, but the absence 
of the high-frequency component makes the image clarity decrease significantly, and the 
boundaries of the targets in the image are more difficult to distinguish. The remaining 
three sub-maps correspond to {y3 y2 y1} which are high-frequency subbands obtained 
from different scale decompositions. Although they contain less visible information than 
the low-frequency self-bands, they extract the important contour information of the 
original image and evenly disperse the scattering noise into the three sub-bands. The 
high-frequency subbands can reflect the contour information of the ship SAR image 
well, and as the scattering noise is non-uniformly distributed in multiple subbands, the 
high-frequency subbands only contain part of the attenuated scattering noise, which ef-
fectively reduces the effect of scattering noise when composing the three-channel image. 
We then normalized the four subbands of the decomposed image to obtain the four 
normalized subbands shown in Figure 4c. 
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After the above operation, we transform the single-channel polarization feature de-
composition into three contour subbands and one low-frequency subband., and then we
select the original image and the two normalized high-frequency subbands that contain
the ship’s contour information, respectively, as the combination of the three color channels
of R, G, B of the new image to form a three-channel polarized SAR image. as shown in
Figure 5. This method retains all the information in the original image and adds important
contour information, while reducing the effect of scattering noise compared to the case
where all three channels are original images, greatly enriching the information contained in
the training data. The new images can guide the network in feature mining and selection
in the low-frequency subbands and contour subbands, which can be mapped into the CNN
to improve model training efficiency, balance the feature contribution of each subband,
reduce noise interference and enhance the sensitivity and accuracy of model detection.
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We performed the above operation on the SSDD to generate a completely new three-
channel dataset, RGB-SSDD, with the same divisions.

2.2.2. Light-Weighting Model

When we consider the limitations of the application scenario, the goodness of the
predictive model is not the only factor to consider, you also need to worry about:

(1). the amount of space the model takes up in equipment—a single model of Faster
R-CNN may add Hundreds of MBs to the download size of equipment

(2). the amount of memory used at runtime—when the model runs out of free memory
algorithm may be terminated by the system

(3). how fast the model runs—especially in emergency situations where real-time is
essential [21].

The vast majority of authors of academic papers never worry about these things, they
train and run the designed models on huge desktop GPU computing clusters. However, the
light-weighting of the model can reduce the need to communicate with the server; using
fewer parameters is more suitable for deployment on embedded, mobile devices such as
FPGA where memory is first available, and also for faster downloading and deployment
from the cloud servers. The ship detection algorithm should be developed toward a better
balance of accuracy, speed, and lightness to speed up the process of serving the safety of
the territorial sea.

The field of deep learning typically measures the complexity of an algorithm model us-
ing floating-point operations (FLOPs) (s denotes plural numbers), which can be interpreted
as computational effort. Assuming a sliding window implementation of convolution and
ignoring the non-linear computational overhead, the FLOP of the convolution kernel is:

FLOPs = 2HW
(

Cin K2 + 1
)

Cout (2)
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where H, W, Cin, is the height, width, and the number of channels with the input element
map (the input image). K is the core width, Cout is the number of output channels, and
for fully connected layer networks is FLOPs = (2SI − 1)SO, where SI is the input size and
SO is the output size. Similar to it is the MADD (Multiply-Add) [22].

This paper borrows ideas from the GitHub open source project [23] and combines
the new three-channel SAR dataset that contains denoising and contouring information
to propose YOLO-V4-light, which decreases from 60 million parameters in YOLO-V4
to 6 million, resulting in a significant reduction in model size and hardware computing
power requirements, and a significant increase in training speed and prediction speed. The
network structure is shown in Figure 6. Comparing Figures 1 and 6, the new light network
has greatly reduced the number of convolutional layers in CSPDarkNet53, kept the SPP
structure to facilitate the extraction of contour features of ships of different sizes. Drawing
on PANet’s idea of iterative feature extraction, the new fused features are obtained by up-
sampling the deep features and fusing them with the shallow features, and down-sampling
the shallow features and fusing them with the deep features for the final discriminant
detection. This bottom-up information fusion is more conducive to the precise positioning
of ship detection. Iterative extraction and fusion of features facilitate the better use of the
feature information contained in the new three-channel SAR image.
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Table 1 shows a comparison of the parameter sizes of several algorithmic networks.
The parameters of the Light algorithm model mentioned in this paper are only 1/20 of
Faster R-CNN and 1/10 of YOLO-V4; the number of floating-point operations is only 3.2%
and 11.8% of the two; the demand of read–write memory at runtime is only 0.05% and
15% of the two. Another [24] shows that the parameter scale of Faster-RCNN is already
much smaller than YOLO V1-V3, RetinaNet, and comparable to SSD. In summary, the
proposed new network has a definite advantage in terms of model parameter size and
running memory.
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Table 1. Algorithm network size comparison.

Networks Params Memory (MB) MemR+W (GB) G-MAdd GFLOPs

Faster R-CNN 136,689,024 377.91 361.4 109.39 109.39
V4 64,002,306 606.26 1.12 59.8 29.92

V4-light 6,563,542 74.53 0.177 7.06 3.53
The optimal index has been bolded.

3. Experimental and Results
3.1. Dataset

As the nature of deep learning dictates that only a dataset with a sufficiently large
amount of data and significant accompanying target features can be selected to show a clear
advantage over other traditional methods, we use the SSDD of ships in packet-swapped
different environmental contexts [25], which was mainly acquired by RadarSat-2, TerraSAR-
X and Sentinel-1 sensors in four polarizations, HH, HV, VV, and VH, in Yantai, China, and
Visakhapatnam, India, with a resolution of 1–15 m, and ship target scenarios including
open ocean and offshore ports. A total of 1160 images of size 416 × 416, containing a
total of 2456 ships, with an average of 2.12 ships per image. We use LabelImg software
to annotate all the images and convert the annotation information into a standard XML
format, with each target’s box represented as (x, y, w, h), as shown in Figure 7. This dataset
is a typical dataset used by researchers in the field of SAR image detection to evaluate the
performance of their algorithms.
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We generate a new three-channel dataset RGB-SDDD for the SSDD according to the
method proposed in Section 2.2.1 and divide the two datasets into a train set, a test set, and
a validation set in the same ratio of 7:2:1, each containing a wide sea area, an inshore dock
and different ships of different sizes, as shown in Table 2.

Table 2. SSDD distribution.

Datasets Number of Samples

Training Set 812
Validation Set 116

Testing set 232
Total 1160
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Average Precision (AP) is the most common metric used to evaluate all types of models
and involves Precision, Recall, and Intersection over Union (IoU). True positive (TP) is an
instance where the model classification considers a positive sample and is indeed a positive
sample, false negative (FP) is an instance where the classifier considers a positive sample
but is not a positive sample, and FN is an instance where the classifier considers a negative
sample but is not a negative sample. instances. IoU is calculated as the ratio of the overlap
between the prediction frame and the real frame:

IoU =
S∩
S∪

(3)

where S∩ is the area of the intersection of the prediction frame and the ground truth, and
S∪ is the area of the concurrent set of the two. When the IoU is greater than 0.5, which
means that the prediction frame and the real frame have at least half overlap, then the ship
detection is considered correct, i.e., TP, otherwise the ship detection is considered incorrect,
i.e., FN, and the relationship is as in Figure 8.
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The AP and F1metrics relate to Precision and Recall and are calculated as follows:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(4)

F1 =
2× Precision× Recall

Precision + Recall
(5)

The AP value, on the other hand, is the area enclosed under the Precision and Recall
curves, effectively avoiding the high level of false detections and missed detections that
may occur with a single evaluation criterion, with higher AP indicating better detection
performance of the model.

3.2. Experiment 1

We trained the YOLO-V4-based ship detection model on SSDD while introducing
YOLO-V4-tiny [23], a simplified version of YOLO-V4, as a comparison. All experiments
were performed on a portable computer with AMD Ryzen 7-4800H at 2.9 GHz, 8 cores
and 16 threads, 8G × 2 RAM, NVIDIA GeForce RTX 2060, CUDA 10.0 cuDNN7.6.5,
and Windows 10 as the operating system. Experiments were conducted to compare and
evaluate various ship detection algorithms in terms of accuracy, speed, and low hardware
requirements. The results validate the effectiveness and correctness of the image processing
approach and the lightweight network modification.

Figure 9 shows some of the results of the YOLO-V4 in the test set, with eight different
scenarios, resolutions, and ship sizes selected to demonstrate its detection performance.
We can see that YOLO-V4 shows good detection capability for images of ships docked at
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near-shore piers, ships sailing in wide-open waters and near-shore bays and rivers, as well
as images of ships with degraded image quality due to noise.
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Figure 9. Target detection results of YOLO-V4 in different scenarios (ground truth is marked in green
predict result is marked in red): (a) shows ship detection docked at an inshore pier, (b) shows ship
detection in an inshore bay and river, (c) shows ship detection of small targets in wide-open water
far out at sea, and (d) shows ship detection under the influence of low resolution and scattered noise.

All the above results are the average results of the parameter settings under the mobile
hardware configuration, we can see that YOLO-V4 has a relatively large performance
improvement in both accuracy and time compared to Faster-R-CNN. However, for the
actual application environment of maritime ship detection, it still does not satisfy the
lightweight of the algorithm model and the real-time speed of detection, especially in the
process of algorithm training, the minimum GPU computing power requirement is NVIDIA
GTX-1080ti or GTX-2080 GPU. This volume of GPU is an almost impossible hardware
configuration for both the frontline battlefield and coastal policing.

Tables 1, 3 and 4 show the evaluation indexes of YOLO-V4 under the SSDD, it can
be seen that: compared with FasterR-CNN, YOLO-V4 has great advantages in all aspects
except for the larger model file. Especially in terms of accuracy, Faster R-CNN sacrifices
speed for accuracy advantage in SAR ship detection is not effective. Despite having
an excellent recall rate, the excessive false detection rate creates an imbalance between
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accuracy and recall. This imbalance is highly undesirable in ship detection. The lightweight
tiny network, although with a reduced AP due to the very reduced network depth, still
balances accuracy and recall well and achieves good detection performance, still needs to
be optimized to meet the hard AP requirements.

Table 3. Comparison of ship testing indicators on SSDD.

Networks AP Train Time (min) Model File Size (MB) Time (ms)

Faster R-CNN 87.13% 812 108 126
YOLO-V4 96.32% 380 244.3 44.21

V4-tiny 88.08% 98 22.5 12.25
The optimal index has been bolded.

Table 4. Comparison of ship testing indicators on SSDD.

Networks AP Precision Recall F1

Faster R-CNN 87.13% 52.85% 92.42% 0.67
YOLO-V4 96.32% 96.98% 95.96% 0.96

V4-tiny 88.08% 92.00% 81.99% 0.87
The optimal index has been bolded.

3.3. Experiment 2

Experiment 1 shows that YOLO-V4 is not well suited to the needs of high-speed
lightweight. We continue to try to explore the performance of the new image processing
method NSLP and the new high-speed lightweight model YOLO-V4-light for ship detection.
Experiments were conducted using the new network architecture proposed in Section 2.2.2
in comparison with the tiny algorithm, loaded with pre-trained models pre-trained with the
VOC dataset (experiments show that the VOC pre-trained model with 20 classes performs
better than the COCO dataset with 80 classes for single-class ship detection). Since the
pre-trained weight backbone network is backward compatible with the ship detection
backbone network, we chose to freeze the training in the first 50 epochs and choose a
higher initial learning rate of 0.001 to focus more resources on training the later part of
the network parameters, which resulted in a significant improvement in both time and
resource utilization. This results in a significant improvement in both time and resource
utilization. The latter 150 epochs of unfrozen training, setting a lower initial learning rate of
0.0001 and fine-tuning the network using a simulated annealing strategy, were trained and
tested under both SSDD and RGB-SSDD, and the results validated the effectiveness and
correctness of the image processing approach and the lightweight network modification
with metrics such as accuracy, speed, and small hardware requirements.

Table 1 shows the differences in the overall parameters, memory occupied, and the
number of operations; Table 5 shows the performance of ship detection under various
types of lightweight networks and different datasets, the results of the table are the average
test results of multiple models. Figure 10 shows the performance metrics of AP, F1 for some
experiments, where (a,b), (c,d), and (e,f) correspond to rows 1–3 of Table 5, respectively.
The experimental results demonstrate that YOLO-V4-tiny guarantees accuracy while

(1). Significant reduction in training time (12% for Faster R-CNN, 25% for YOLO-V4)
(2). Significant reduction in model size (21% for Faster R-CNN, 9.2% for YOLO-V4)
(3). Significant reduction in single-frame detection time (9.7% for Faster R-CNN, 27.7% for

YOLO-V4)

The effectiveness of the three-channel contour image synthesis method proposed
in Section 2.2 was also verified: 1.56% improvement in AP. The new model YOLO-V4-
light, proposed for the three-channel data processing method, improves AP by 2.29%,
reaches 90.37%, without much change in model size, training time, and detection time,
and outperforms the AP of YOLO-V2-reduced and G-CNN in the literature [11,12] by
89.76% and 90.16%. subject to the lack of GPU the method cannot be fully reproduced and
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compared due to the lack of GPUs, but the GPU computing power required for YOLO-V4-
light (mobile RTX 2060) is much less than the two experiments in the literature (GTX 1080
and TITAN X). The validity of the adaptation to the three-channel data network structure
proposed in Section 2.2.2 is verified.

Table 5. Ship detection performance with different datasets and network architectures.

Networks Dataset AP Train Time
(min)

Model Size
(MB)

Time (ms)

V4-tiny SSDD 88.08% 98 22.5 12.25
V4-tiny RGB-SSDD 89.64% 99 22.5 12.15
V4-light RGB-SSDD 90.37% 110 30 13.42

The optimal index has been bolded.
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4. Result

For the same lightweight algorithm, on the one hand, the tiny algorithm without
the three-channel dataset is weak in recognizing the ship’s contour, and in Figure 11a,b
the shore jetty embankment is mistakenly detected as a ship, and (c) (d) the channel
shoal and jetty trestle are mistakenly detected as a ship. The light algorithm with the
new three-channel dataset can avoid the occurrence of false identification and accurately
distinguish ships from similar embankments and shoals. On the other hand, the new
proposed light algorithm in this paper, with the addition of SPP structure and multiple
fused feature pyramid network, can also detect large ships near shore in Figure 12a and
small target ships in (b–d) over a wide sea surface more accurately. The false detection
rate is effectively reduced, which also confirms the improvement of AP indicators in
Figure 10a,c,e. The above analysis verifies the correctness and feasibility of the proposed
ship detection algorithm in terms of both experimental performance metrics and actual
detection results.
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Figure 11. Ship detection ground truth and different precision results for YOLO-V4-tiny and YOLO-
V4-light. (a–d) Comparison of the detection results of different algorithms in different scenarios.

From the perspective of the application target, the deep learning target detection
algorithm mainly targets the images of life scenes contained in the VOC and COCO
datasets, which are quite different from the SSDD. The aspect ratio of VOC is mostly 1,
with a small number of 2 and 3, while ship targets are larger in length and width. It can
be seen from Figure 13a that the ratio of the ship target’s length to the image size is in
the range of 0.04 to 0.24, which is much smaller than the VOC’s 0.2 to 0.9. Figure 13b
shows the statistical results of the aspect ratio of the ship bounding box in the SSDD. The
NSLP three-channel synthesis method focuses more on the extraction of horizontal and
vertical contour features and discards the bandpass directional subband feature, which is
of little use for small targets. The wider distribution of aspect ratios and the more regular
ship targets also contribute to the improved performance with the addition of contour
information and feature pyramids.
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Figure 12. Ship detection ground truth and different recall result for YOLO-V4-tiny and YOLO-V4-light. (a–d) Comparison
of the detection results of different algorithms in different scenarios.
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Figure 13. Statistical results of ship target bounding box in the SSDD: (a) Statistical results for the
length of the ship target bounding box in the SSDD; (b) Statistical results for the aspect ratio of the
ship target bounding box in the SSDD.

5. Conclusions

In this paper, we first evaluate the performance of the latest YOLO-V4 deep neural
network architecture for ship detection in several different scenarios. Experiments were
conducted on a widely recognized dataset, and its accuracy and speed for both small vessel
targets in vast seas and complex vessel targets in near-shore ports outperformed existing
algorithms, and was particularly accurate in complex scenarios to a much higher degree
than Faster R-CNN, although we still believe that the detection speed, model size, training
time and hardware requirements of YOLO-V4 are not sufficient for current frontline safety
precautions at sea. Therefore, we propose a three-channel image construction scheme
based on NSLP contour extraction, which enriches the contour information of the dataset
while reducing the impact of noise, and better transposes the algorithms in the field of
optical image detection. At last, we combined the three-channel images with the proposed
lightweight network, using only 10.3% of the YOLO-V4 algorithm’s parameters and 15.8%
of the memory requirement to achieve 93.8% of its AP performance, reaches 90.37%,
while increasing the speed to its 3.3 times. Compared with lightweight algorithms shown
in existing research, it also has an advantage in accuracy. The proposed three-channel
construction method and lightweight model were verified in experiments to better meet
the requirements of the actual real-time maritime ship inspection system.

Future work should aim to find more useful information about ships to enrich the
redundant color channels of SAR images, and further optimize the network structure,
especially for the detection performance of small and dense ships.
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