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Abstract: Coarse registration of 3D point clouds plays an indispensable role for parametric, seman-
tically rich, and realistic digital twin buildings (DTBs) in the practice of GIScience, manufacturing,
robotics, architecture, engineering, and construction. However, the existing methods have promi-
nently been challenged by (i) the high cost of data collection for numerous existing buildings and
(ii) the computational complexity from self-similar layout patterns. This paper studies the regis-
tration of two low-cost data sets, i.e., colorful 3D point clouds captured by smartphones and 2D
CAD drawings, for resolving the first challenge. We propose a novel method named ‘Registration
based on Architectural Reflection Detection’ (RegARD) for transforming the self-symmetries in the
second challenge from a barrier of coarse registration to a facilitator. First, RegARD detects the innate
architectural reflection symmetries to constrain the rotations and reduce degrees of freedom. Then, a
nonlinear optimization formulation together with advanced optimization algorithms can overcome
the second challenge. As a result, high-quality coarse registration and subsequent low-cost DTBs
can be created with semantic components and realistic appearances. Experiments showed that the
proposed method outperformed existing methods considerably in both effectiveness and efficiency,
i.e., 49.88% less error and 73.13% less time, on average. The RegARD presented in this paper first
contributes to coarse registration theories and exploitation of symmetries and textures in 3D point
clouds and 2D CAD drawings. For practitioners in the industries, RegARD offers a new automatic
solution to utilize ubiquitous smartphone sensors for massive low-cost DTBs.

Keywords: digital twin building; 3D point cloud; architectural symmetry; coarse registration;
computer-aided design; building interior; building information model

1. Introduction

Digital twin building (DTBs), as real-time ‘as-is’ 3D building models, have attracted
great attention of both industry and academy due to the promised applications in the
GIScience [1], manufacturing , robotics, mapping, architecture, engineering, construction,
and operation (AECO) industries [2–5], and heritage documentation [6,7]. A DTB is a
virtual representation of a physical building “across its lifecycle, using real-time data to
enable understanding, learning, and reasoning” [8,9]. Three long-standing requirements
on the roadmap of DTB, i.e., parametric geometry, rich semantics, and realistic appear-
ances, are thus indispensable for fulfilling the functions of “understanding, learning, and
reasoning” [10–13]. For example, in the design and operation phases, digital models with
parametric geometry, rich semantics, and realistic appearances bring practitioners a more
comprehensive and thorough understanding of the built environment, as well as solid data
support for automation and analytics [4,8].
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Researchers have developed a profusion of automated 3D building reconstruction
methods, involving various expensive equipment such as Terrestrial Laser Scanner (TLS)
and Mobile Light Detection and Ranging (LIDAR) System (MLS). Many existing methods
can be used for DTBs; however, the methods are challenged in practices by (i) the high cost
of labor, equipment, and time in data collection for numerous existing buildings [14] and
(ii) the computational complexity from self-similar layout patterns [15]. In recent years,
there has been fast and continuing progress in embedding the 3D scanning technologies
in consumer-level mobile devices, such as smartphones and pads. Example projects and
products include Android ARCore, Tango, and Apple AR Kit [16,17]. Unlike the solutions
relying on costly TLS or MLS, new 3D scanning devices were increasingly affordable in
daily practices. However, the 3D data collected by the consumer-level devices often has a
quality problem, e.g., noisier or sparser than those produced by professional TLS or MLS
equipment. Fortunately, many applications still benefited from the affordable 3D data by
compensating noises with third-party data sources, such as pedestrian networks [18] and
floor plans. Floor plan is an available data source in many cities, which have long-standing
routines to collect the construction and renovation drawings. The building drawings can
also be requested online at low prices, such as in Hong Kong’s BRAVO (Building Records
Access and Viewing On-line, at HK$42 per sheet) system and New York City’s floor plan
services (at US$5 per page). The public accessibility and affordable prices of floor plans
make it a reliable source for DTBs.

This paper focuses on compensating the low-cost point clouds captured by ubiqui-
tous smartphones with low-cost and widely available 2D computer-aided design (CAD)
drawings for DTBs. Figure 1 summarizes how the two inexpensive data sets can comple-
ment each other. The main idea is that the scanning defects, including sparsity, noises,
occlusions, and distortions, can be reduced by the as-designed CAD drawings [19]. In
turn, smartphones’ colorful 3D point clouds can add the actual situations and realistic
appearances to the CAD drawings. Coarse registration, thus, is indispensable to transform
the 3D point cloud under the same spatial reference as the drawing, to integrate the as-built
and as-designed datasets [15].

As-built data
3D color point clouds captured by smartphones

As-designed data
2D CAD drawings

✓Precise, compact, and parametric geometry
✗A lack of appearance
✗Possibly inconsistent with the real 3D layouts

✓Rich in details and 3D appearance
✓Consistent with the real 3D layouts
✗A lot of defects, e.g., sparse, noisy, and misaligned

(a) (b)

Figure 1. Comparison of two inexpensive data sets for DTBs. (a) Smartphone’s colorful 3D point
clouds; (b) 2D CAD drawings.

The coarse registration problem is typically solved by finding the optimal transforma-
tion, i.e., rotation, translation, and scaling, which is often with high degrees of freedom
(DoFs). Many existing coarse registration methods thus rely on unique local features-based
initial alignments close to the global minimum to escape from the local optima in such high-
DoFs problems [20]. However, the self-similar layout patterns in building interiors make it
problematic for the conventional method to find promising initial alignments [15,21]. In
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summary, the high-level DoFs and self-similarities of indoor layouts challenge the local
feature-based ‘shortcuts’ in conventional registration methods.

Inspired by symmetric cross-sections as robust global–rather than local–features [5],
we propose a novel coarse registration method, named Registration based on Architectural
Reflection Detection (RegARD), that transforms the self-symmetries in the challenge from
a barrier to a facilitator. The RegARD first detects the symmetry axes in point clouds and
CAD drawings to reduce the DoFs by constraining the rotation in parallel or perpendicular
to the axes. Then, RegARD employs advanced nonlinear optimization algorithms, such as
CMAES [22], DIRECT [23], and Nelder-Mead [24], to obtain the optimum registration. In
other words, RegARD segments the high-DoF optimization of rotation, translation, and
scaling into a lower-DoF subproblem on rotation and another lower-DoF subproblem on
translation and scaling. As a result, both the efficiency and accuracy of coarse registration
can be improved notably. Based on RegARD’s results, DTBs can be generated in the
Industry Foundation Classes (IFC) format automatically with realistic textures mapped
from point clouds. Overall, RegARD can facilitate the creation of DTBs in several aspects:
parametric geometry, rich semantics, and realistic appearances, and processing time.

The remainder of this paper is organized as follows. Section 2 summarizes the point
cloud registration methods and the point cloud processing with architectural regularities.
Section 3 presents the details of RegARD. Section 4 reports the experimental registration
results of our large-scale dataset of seven stories and present the generated IFC models
as resulted DTB. We then discuss our digital twinning solution and RegARD method in
Section 5 and conclude the study in Section 6.

2. Literature Review
2.1. Point Cloud Registration

Pairwise point set registration is a fundamental yet challenging task in geometry
processing and digital twinning. The registration problem is often decomposed into two
sub-problems: (1) feature detection and (2) correspondence and transformation estimation.
In the literature, many related studies focusing on the second sub-problem are termed as
‘fine’ registration. A fine registration assumes high-quality initial correspondences with
correct and accurate features. Thus, the main task of fine registration is improving the
initial transformation in a close form with given correspondences. However, the optimal
correspondences are finally determined by the optimal transformation—there exists a
‘chicken-egg’ dilemma between determining high-quality correspondences and optimal
transformation. Therefore, ‘coarse’ registration emerged for resolving the dilemma by
solving both sub-problems.

For resolving the first sub-problem of coarse registration, hand-crafted features with
explicit meanings of point sets were proposed first to detect and describe key points
for correspondences establishment. Examples of explicit features are Spin Image [25],
Point Signature [26], and FPFH [27]. However, it is extremely difficult and burdensome
to craft robust and comprehensive local features for the wide diversity and deficiency of
points [28]. Recently, implicit features have been exploited for registration extensively
using deep neural networks [28–31]. For example, FCGF integrates a fully convolutional
network, 3D sparse representation, and contrastive loss, and achieved higher feature
detection compared to hand-crafted counterparts [29].

For resolving the second sub-problem, the Iterative Closest Point (ICP) [32,33] is a
classical mechanism. Yet, ICP can be easily stuck by local minima without high-quality
initial alignments [34]. Variants of ICP were thus proposed for escaping from the local
minim; examples are CPD [35], Go-ICP [36], and GMMTree [37]. Besides, researchers also
formulated the whole registration problem into end-to-end formulations, e.g., supervised
learning pipelines and nonlinear mathematical programming [38]. Representative studies
include the deep learning versions of ICP, of which one is coined as Deep Iterative Point [39]
and another is Deep Global Registration [40].
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However, the coarse registration of the point sets is not fully addressed for DTB,
especially in the complex and repetitive indoor settings. There are two possible reasons for
the limited effectiveness. First, the common self-similarity in multiple scales of building
interiors hinders traditional feature detection [15]. Secondly, building interiors’ 2D and 3D
manifolds without complex inner structures also lead to and creates massive local optima
“traps” for correspondences and transformation optimization.

2.2. Point Cloud Processing with Architectural Regularities

Researchers in remote sensing, construction, and computer vision have utilized archi-
tectural regularities in processing point clouds for modeling 3D buildings. For example,
the vertical and horizontal planes in urban and indoor spaces can be useful a priori primi-
tives for registration and reconstruction. Xu et al. [41] and Bueno et al. [15] introduced a
feature descriptor, i.e., four-plane congruent set (4PNCS), for urban and building scenarios,
respectively; 4PNCS significantly reduced the number of correspondences and improved
the matching efficiency. Similarly, plane sets representing the main structures of the built
environment are also applied in determining the structure-level correspondences robustly
and efficiently [42]. Besides, Zolanvari et al. [43] proposed an improved slicking model
(ISM) to segment facades based on some geometric characteristics of planes. Polewski and
Yao [44] used the intersections of adjacent planar surfaces as line correspondences and the
roof symmetry axes to co-register multimodal data such as LIDAR point clouds and digital
surface models. Chen et al. [45] regularized rooftop elements from LIDAR points onto
2.5D block-building models and validated them in a high-density high-rise area.

Moreover, repetition and similarity are also prevalent in heuristic rules for urban and
building reconstruction. For example, Wang et al. [46] incorporated the local symmetries
into a nonlinear least-squares optimization for reconstructing the contours of building roofs.
Ceylan et al. [47] recognized the windows on facades by the repetitions in photogram-
metric point clouds. Cheng et al. [48] applied rotational symmetry and slicing to register
buildings such as towers. Although the idea is very inspiring and similar to RegARD,
the targeted data of [48] is building exteriors with rotational symmetry, while ours are
building interiors with reflection symmetry and different self-similarities. For detecting
the reflection symmetry, Xue et al. [49] integrated state-of-the-art derivative-free optimiza-
tion (DFO) algorithms from applied mathematics and computer science for detecting the
architectural reflection effectively and efficiently. Xue et al. [5,50] demonstrated that the
reflection detection of points successfully improved indoor DTB and cross-section features
for clustering unknown objects in LIDAR clouds for a digital twin city. Therefore, it will be
intriguing to apply the architectural reflection symmetry to the challenging registration
problem of large-scale as-built 3D scans with as-designed 2D drawings.

2.3. Digital Twinning of Building Interiors

LIDAR and photogrammetric point clouds have been widely used for digital twins
of building interiors. Three groups of interior components received the most attention:
(i) the physical building components and structures, e.g., walls and slabs, (ii) indoor
spaces and partitions, e.g., stories and rooms, and (iii) indoor topology. For the physical
components, plane detection and curved surface segmentation usually precede the digital
twinning for candidate surfaces [51–53]. For the volumes, Bassier and Vergauwen [51]
estimated walls’ axes in different shapes; Nikoohemat et al. [53] designed heuristic rules
to label plane segments based on the adjacency graph; Ochmann et al. [54] processed
point clouds into 3D cell complexes and labeled them, as rooms and structures, using
integer programming; Wang et al. [52] generated a semantic wireframe of permanent
structures based on the boundaries of classified planes. For spaces and partitions, stores
are usually extracted by z-coordinates clustering of the whole point clouds or classified
planes [51,55]. Moreover, Ochmann et al. [54] cast rays onto the wall surfaces from
unoccupied locations for detecting wall loops and rooms; Murali et al. [56] detected room
cuboids from a wall graph; Jung et al. [55] projected a story’s point clouds to a 2D plane
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and segmented the rooms’ footprints. For indoor topology, Bassier and Vergauwen [51]
reconstructed four types of connections by heuristic rules; Wang et al. [52] regularized
the geometry of planar boundaries and repaired incorrect connections by a conditional
Generative Adversarial Network.

Apart from the DTBs using high-cost LIDAR systems, floor plans can serve as an
affordable data source to an alternative solution. For example, vectorized floor plans
contain semantic as-designed indoor layouts, which can be extracted via computer vision
and optimization methods [57,58]. The as-designed indoor layouts can facilitate processing
scanned point clouds. Wijmans and Furukawa [59] presented a Markov Random Field
inference formulation for the scan placements problem over a given floor plan image; the
formulation can guide the registration of multiple indoor scan fragments with as-designed
data. In summary, it is promising to triangulate the mainstream as-built point clouds
with as-designed floor plans in terms of reducing costs and improving the correctness and
accuracy of the digital twinning procedures.

3. Methodology
3.1. Overview

Figure 2 shows a flowchart of our automatic DTB creation pipeline. The inputs
included a point cloud captured by a smartphone and the corresponding 2D CAD drawing
of the floor plan. This pipeline output the registered point clouds with the 3D semantic
models generated from CAD drawings. Finally, we could create DTB with textures mapped
from the registered point clouds.

Preprocess (§3.2)

Extraction of vertical structures Story segmentation

Step 1: 
2-DoF ARD
(§3.3.3)

Step 2: 
4-/5-DoF 
transformation 
optimization
(§3.3.4)

No

Input 1: CAD drawings Input 2: Color Point cloud

Symmetry detection (Eq. 7) in C and D

Both found?

Align C and D to the axes 

Yes

4-DoF registration problem

Point cloud D sampled Point cloud C sampled

5-DoF registration problem

Transformation proposals from DFO solvers 

DoF (§3.3.2)

Compute RMSDs of the proposals (Eq. 8)

Terminated? DFO learning

Register C to D using the best transformation

No

Yes

Colorful point cloud registered with CAD

Extrude the polygons of CAD into a 3D model

Texture the 3D model with point clouds

Output DTB: a textured IFC model

Post-processing 
for digital twin 
building (DTB)
(§3.4)

Th
e 

pr
op

os
ed

 R
eg

A
RD

 m
et

ho
d

Symmetry (§3.3.1)

Figure 2. Flowchart of the proposed RegARD method for DTB.
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From the inputs to the outputs, there were two processing stages. The first stage
(Section 3.2) of this pipeline was the preprocessing of the inputs: separating the point
clouds into stories, extracting the semantic and vertical structures from CAD drawings
with a method named Plan2Polygon, and finally sampling the 2D points from the processed
point clouds and CAD drawings of each story respectively. The second stage (Section 3.3)
was the crucial registration, i.e., RegARD. The point cloud of each story here was the
source geometry, while its paired CAD drawing was the target geometry. The registration
transformed the source to match the target geometry. The first step of RegARD was the
Architectural Reflection Detection (ARD) part. The reflection symmetry axes of sampled
2D points from the point clouds and CAD drawings were detected. Next, an initial
transformation was applied to align the symmetry axes of the paired point cloud and
CAD drawing of the same story. By doing so, RegARD constrained the rotation in a set
{kπ/2 + θard|k = 0, 1, 2, 3} of four values down from [0, 2π), to reduce one DoF due to
4� |[0, 2π)| = ℵ0, where θard denotes the result of ARD and | · | indicates set cardinality.
Next, RegARD solves the remaining four DoFs, i.e., translation and scaling along the x and
y axes, by DFO algorithms and outputs the final transformation parameters to register the
story point cloud with its corresponding CAD drawing. Besides, we also briefly introduce
the process to generated textured DTB (Section 3.4) after the registration.

3.2. Preprocessing

This stage extracted and sampled the vertical structures from CAD drawings for
the coarse registration. The structure polygons and openings were parsed out from the
drawings, while stories were separated from the original point clouds. Finally, both the
vertical structures from drawings and point clouds were sampled with a range of proper
densities for registration. Note that the 3D scanning and the 2D CAD drawings were
sampled into 2D points to reduce the computational cost.

3.2.1. Parsing Cad Drawings (Plan2polygon)

The preprocessing employed a new in-house developed schema, called Plan2Polygon,
for parsing CAD drawings: using polygon-based rules to extract vertical structures, i.e.,
walls, pillars, and windows. A preliminary pipeline of the preprocessing schema con-
sisted of the following three parts: (i) CAD filtering, (ii) structure polygonization, and
(iii) openings simplification.

First, unnecessary elements and semantics were removed from CAD drawings (Figure 3a).
Annotations of names, dimensions, and furniture, isolated doors, and other unnecessary
elements could be quickly filtered out using CAD software.

Then, the building interior was polygonized based on the structure lines. We first
triangulated the planes with the structure lines as constraint segments (Figure 3b). These
triangles were merged into polygons by a region-growing process [60]: pick one triangle as
a seed and expand its neighborhood triangles until meeting the structure lines (Figure 3c).
Next, the polygons could be further classified into objects, such as walls, windows, and
staircases. This study focused on the vertical structures, especially walls, for the following
texturing process. Therefore, the approach extracted these ‘thin’ vertical structures by a
thickness index:

Ithickness =
a(b(g, t))

a(g)
. (1)

a(g) is the area function of a given polygon g whose external boundary is constructed
by an ordered list of n points (p1, p2, . . . , pn). Note that g may contain holes, i.e., internal
boundaries that are also constructed by ordered lists of points. b(g, t) is a buffer function
which offsets the boundary (or boundaries) of a given polygon g to its interior by a distance
of t. Polygons processed here are assumed to be not self-intersected. The longer and
narrower the polygon is, the smaller the Ithickness is. Therefore, we could extract the
polygons with an Ithickness less than a given threshold as vertical structures (Figure 3d).
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The values of t and the threshold of Ithickness in our experiments will be introduced in
Section 4.2. This filter was simple yet effective to extract the vertical structures of our
test data with very few square wall parts nor columns. Furthermore, one could easily
extend the Plan2Polygon with more advanced classifiers to recognize square wall parts
and columns.

(a) (b) (c)

(d) (e) (f)
Figure 3. Polygonization of 2D story plan based on CAD drawings. (a) Filtered segments of vertical
structures; (b) triangles by constraint triangularization; (c) merged polygons; (d) filtered and filled
polygons of structures; (e) simplified door symbols connecting walls; (f) details of simplified doors,
where the green lines are the original symbols and the red ones are simplified results.

Openings, such as doors in this study, were always drawn as curves and/or multiple
segments in CAD drawings. We simplified them into 2D segments for creating their 3D
blocks in the following stages. This simplification was adopted from [58]. Convex hulls
were generated for each door symbol and intersect with its adjacent vertical structure
polygons. The shortest path connecting two intersections was the final simplified segment
for each door symbol (Figure 3).

3.2.2. Segmentation of Point Clouds by Stories

The preprocessing also extracted each story in the as-built point cloud P, using a
similar process as [61]. We first calculated the distribution histogram of the heights, i.e.,
the z-components of all points in P, as shown in Figure 4. We set the bin interval of
the histogram as 0.3 m according to our experiments. Next, the peaks of the histogram
were detected as floors and ceilings. To remove some noisy peaks caused by facilities
or staircases, we also set two height-difference thresholds of continuous peaks, i.e., the
wall height of a story and the height between a ceiling and the floor of the upper story.
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Consequently, the filtered peaks were in a repeated ‘floor-ceiling’ pattern. Note that this
process was based on the assumption that the z-components of points only concentrated on
the floors and ceilings, which would be problematic when there were stepped floors and
other large z-components clusters in the middle of the stories. However, this assumption
holds in many standard buildings, including the test data in this study.

H
ei

gh
t (

m
)

Number of Points (106)

F8

F7

F6

F5

F4

F3

F2

Figure 4. Separation of stories in the point cloud, where the green dots are the detected floor and
ceiling heights, and the red crosses are the peaks filtered out.

3.2.3. Sampling 2D Points

Finally, we sampled points from the footprints of the parsed structures of CAD
drawings and the story-separated point clouds. To sample CAD structures, we extracted
points along the boundaries of structure polygons or opening lines. To sample point clouds,
we removed the floors and ceilings of the story-separated point clouds, projected the middle
part of a story onto a 2D horizontal plane, then randomly sampled the projected points.

3.3. The Proposed Regard Method

The pseudo-codes of the proposed RegARD are described in Figure 2. The RegARD
solved the coarse registration in two manageable steps. The first step of RegARD was the
architectural reflection detection (ARD) of both the source and destination point clouds,
e.g., C and D, as shown in Figure 2. If both symmetry axes were found, C and D were
aligned to the axes to constrain the searching space of the transformation as a four-DoF
problem. Otherwise, the RegARD received the coarse registration as a five-DoF problem,
which had an extra DoF of the relative rotation. The second step of RegARD optimized the
transformation iteratively for the four-/five-DoF problem.

3.3.1. Symmetry as a Global Feature

Registering point clouds to CAD drawings was challenging due to the omnipresent
self-similarity of building interiors and computation complexity to solve the transforma-
tion. Figure 5 shows an example of the Root-Mean-Square Distance (RMSD) curve of
registration with different rotations, while the translation and scaling DoFs were ‘frozen’ at
the fittest value.

The curve was also ‘rugged.’ In other words, many local minima of rotations could
trap the conventional methods. However, the rugged RMSD curve in Figure 5 also inspired
in us the idea of using the architectural reflection symmetry as a global feature. That is,
the minimal RMSD was associated with the optimum rotation that moves the reflection
symmetry axes of the source point cloud to the destination. Therefore, RegARD detected
the reflection symmetry axes of both the source and target geometry. By doing so, the fittest
rotation could be almost solved, and there are only four DoFs left for the optimization to
solve, which significantly eased the registration optimization.
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Fig. 6. Example registration RMSD curve against the rotation.

example of the Root-Mean-Squared Distance (RMSD) curve
of registration with different rotations, while the translation
and scaling DoFs were frozen at the fittest. The curve is
‘rugged.’ In other words, many local minima of rotations can
trap the conventional methods.

However, the rugged RMSD curve in Fig. 6 also has
inspired us the idea of RegARD: the minimal RMSD is located
at the rotation when the reflection symmetry axes of the
target and source geometry are aligned. Therefore, RegARD
is designed to first detect the reflection symmetry axes of
both the source and target geometry. By doing so, the fittest
rotation can be almost solved and there are only 4 DoFs
left for the optimization to solve, which significantly ease
the registration optimization. To demonstrate the RegARD
method, the definitions of symmetry detection, as well as the
transformation parameters, are introduced in Section III-C1,
while the algorithm is presented in Section III-C2.

1) Definitions:
a) Symmetry detection: Formally, a subset S of n-

dimensional Euclidean space En is symmetric with respect
to a transformation T if T (S) = S [48]. Moreover, since
the symmetry of a building may not be rigorous in every
detail, the transformation T can be determined by approximate
descriptors. For example, to determine the symmetry transfor-
mation T from a 2D point set, we can maximize the point
correspondence rate (PCR) and RMSD, which are defined as
follows [44], [49]:

d(p, T, C) = ‖Tp−N(Tp,C)‖, (2)

PCR(T,C) =
1

n
|{p|p ∈ C, d(p, T, C) > threshcorr}|, (3)

RMSD(T,C) =

√
1

n

∑

p∈C
d(p, T, C)2 (4)

In the above equations, C is the 2D point set
{p1, p2, . . . , pn} ⊂ R2(n > 0); N(p, C) denotes the
nearest point of p in C; d(p, T, C) is the distance of p to
C after transformation T; and the threshcorr is the default

distance threshold of correspondence. Both PCR and RMSD
measure the degree of shape preservation after transformation
T. The difference is that PCR counts the preserved points and
RMSD indicates the distance errors.

b) Reflection symmetry transformation: Different types
of symmetry have different parametrization the symmetry
transformation T presented in Equation 2 to 4. In this study,
we focus on the detection of reflection symmetry, one of the
most fundamental layout patterns in architecture for aesthetic
and practical reasons. For 2D point set C, the reflection
symmetry axis r can be parameterized by r(ρ, θref ), ρ ∈
R∗, θref ∈ [0, 2π), where ρ is the distance from the origin
O(0, 0) to the symmetry axis, while θref is the angle from the
positive x−axis direction to the line perpendicular to r through
O. Based on this parametrization, the reflection symmetry
transformation Tref applied on a 2D point p′ = Trefp is
parameterized as:

Tref =

[
1−2 cos2 θref −2 sin θref cos θref 2ρ cos θref

−2 sin θref cos θref 1−2 sin2 θref 2ρ sin θref
0 0 1

]
(5)

where p’ and p here are the 3D homogeneous coordinates, i.e.,
(x’, y’, 1) and (x, y, 1) respectively, of their 2D counterparts.

c) 5-DoF transformation: To register the 2D point set
sampled from the point cloud to that from the CAD drawing,
the 5-DoF transformation Treg, with the rotation angle θreg ,
scaling factors sx and sy, and translation offsets tx and ty,
applied on a 2D point p’ = Treg p is parameterized as:

Treg =



sx cos θreg −sy sin θreg tx
sx sin θreg sy cos θreg ty

0 0 1


 (6)

Similar to Equation 5, p′ and p are 3D homogeneous coordi-
nates in p′ = Tregp. We use individual scaling factors for x−
and y−axis because different drifting rates along the different
axes of 3D scanning by SLAM causes different scaling factor
along x− and y−axis of the registration.

2) The RegARD algorithm: The pseudo-codes of RegARD
are described in Algorithm 1. The RegARD method solves
the 5-DoF coarse registration in two manageable steps. The
first step of RegARD is the detection of architectural reflection
(ARD) and the determination of the initial alignment, as shown
in Line 2 to 5. The ARD follows open-source algorithmic
library ODAS of [44]. After ARD, an initial transformation
parameter set init can be created intuitively by aligning via
the two symmetry axes’ centers and directions, as shown in
Line 4.

In the second step (Line 6), since the detected reflection
symmetry axes of the source and target geometry are often
parallel or perpendicular to each other, only one element of the
set {0, π/2, π, 3π/2} can be the plausible rotation to register
the geometry, the source C after initial alignment, to the target
D. Therefore, the second step iteratively optimizes the left 4
transformation parameters sx, sy, tx, and ty, while determines
the best rotation in {0, π/2, π, 3π/2}.

To explain RegARD in more detail, the following two
paragraphs demonstrate the two crucial functions, i.e., archi-
tectural reflection detection and transformation optimization.

Figure 5. Example registration RMSD curve against the rotation.

3.3.2. DoFs in Regard

Different types of symmetry have different parameterization [49,62]. This study fo-
cuses on the detection of reflection symmetry, one of the most fundamental layout patterns
in architecture for aesthetic and practical reasons. For a point cloud C, the reflection sym-
metry axis s can be parameterized by (rs, θs), rs ∈ R+ ∪ {0}, θs ∈ [0, 2π), as shown in
Figure 2, where rs is the distance from the origin O(0, 0) to the symmetry axis, θs is the
angle from the positive x-axis direction to the line perpendicular to s through O. The polar
function of s can be writen as r = rs sec (θ − θs), where (r, θ) is the polar coordinates of
points on s. The polar coordinate (r, θ) can also be converted into a Cartesian coordinate as
(r cos θ, r sin θ). Based on this parameterization, the reflection symmetry transformation
Tref applied on a 2D point p′ = Tref p is parameterized as:

Tref =




1− 2 cos2 θs −2 sin θs cos θs 2rs cos θs
−2 sin θs cos θs 1− 2 sin2 θs 2rs sin θs

0 0 1


, (2)

p′ and p here are the 3D homogeneous coordinates, i.e., (x′, y′, 1) and (x, y, 1) respectively,
of their 2D counterparts.

To register the sampled point cloud to the 2D CAD drawing, the transformation Treg
has five DoFs, i.e., the rotation angle θreg, 2D scaling factors s, and 2D translation offsets t,
applied on a 2D point p′ = Treg p is parameterized as:

Treg =




sx cos θreg −sy sin θreg tx
sx sin θreg sy cos θreg ty

0 0 1


. (3)

Similar to Equation (2), p′ and p are 3D homogeneous coordinates in p′ = Treg p.
We used individual scaling factors for x-y axes because different drifting rates along the
different axes of 3D scanning by SLAM causeddifferent scaling factors along x-y axes of the
registration. Yet, if the rotation θreg was constrained as one (or four) constant, Treg became
a four-DoF problem.

3.3.3. Step 1: Two-DoF Architectural Reflection Detection

Formally, a subset S of n-dimensional Euclidean space is called symmetric with respect
to a transformation T, if T(S) = S [62]. Moreover, since the symmetry of a building may
not be rigorous in every detail, the transformation T can be determined by approximate
descriptors. For example, to determine the symmetry transformation T from a point cloud,
we can maximize the point correspondence rate (PCR) and RMSD, which are defined as
follows [49,63]:
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d(p, T, C) = ‖Tp− N(Tp, C)‖, (4)

PCR(T, C) =
1
|C| |{p|p ∈ C, d(p, T, C) < tc}|, (5)

RMSD(T, C) =
√

1
|C| ∑

p∈C
d(p, T, C)2, (6)

where C = {p1, p2, . . . , pn} is a cloud of n points; N(p, C) ∈ C denotes the nearest point of p;
||pi − pj|| is the Euclidean distance between two points pi and pj; d(p, T, C) is the distance
of p to C after transformation T; tc is a default distance threshold of correspondence [49];
and |C| is the cardinality, i.e., the number of points, of C. Both PCR and RMSD measure
the degree of shape preservation after transformation T. The difference is that PCR counts
the preserved points and RMSD indicates the distance errors.

In this study, we defined the symmetry detection function as in the ODAS [49] to:

arg min
rs,θs

1− PCR(Tref, C) +
RMSD(Tref, C)

diagC
. (7)

The problem to optimize in Equaiton (7) had two DoFs. The ARD determined the
reflection symmetry axis of a point cloud C, the reflection transformation based on this axis
should maximize the PCR and minimize the RMSD as defined in Section 3.3.3. Therefore,
the ODAS minimized the following objective, i.e., Equation (7), to solve rs and θs. Note
that the RMSD was subdivided by the diagonal length of C, denoted as diagC, to avoid the
scale impact of the point cloud.

3.3.4. Step 2: Four-DoF Transformation Optimization

The optimization problem of the coarse registration was thus simplified to:

arg min
θreg,sx ,sy ,tx ,ty

RMSD(Treg, C′, D), (8)

where C′ is the source geometry after the alignment of the reflection axes. θreg = θard + ∆θ,
where ∆θ ∈ {0, π/2, π, 3π/2}. Moreover, sx and sy are bounded in [1/bs, bs]. It is clear
that Equation (8) is equivalent to a four-DoF problem.

Note that the registration of RegARD in Equation (8) is a partial-to-full matching.
Therefore, most points in C′ can find their correspondences in D and the correspondences
are the nearest points when the transformation is close to the global minimum. Thus, it is
not necessary to build a correspondence set filtered out non-overlapping geometry in this
study. The RegARD employs a long list of up-to-date DFO solvers for computing the opti-
mum transformation in Equation (8) iteratively. Notably, the algorithms benchmarked in
this study included CMAES [22], DIRECT [23], MLSL, MMA, COBYLA, Nelder–Mead [24],
SBPLX [64], AUGLAG, and BOBYQA.

3.4. Texturing for Digital Twin Buildings

After the registration, a post-processing cropped the point cloud and creates texture
images for every major building element in the CAD, to form the final textured DTB.
The workflow is presented in Figure 6. The parsed 2D footprint polygons of the indoor
structures were vertically extruded into 3D blocks. The extrusion length was the height of
the corresponding story point cloud. Moreover, the blocks were organized in boundary
representation schema, so that the faces of blocks could be textured separately.

To texture a face, we buffered it into a rectangle along the face normal in both the
positive and negative directions, called face box here. This box was used to crop the
corresponding 3D region in the registered point cloud. However, repeatedly cropping
thousands of relatively small boxes from the whole point cloud with almost 10 million
points was very time-consuming. Therefore, to accelerate the cropping speed, the point
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cloud was first cropped into caching slices that covered the coplanar faces or parallel faces
with small distances to each other. Next, the corresponding 3D point cloud region of a face
was cropped by the face box from its corresponding caching slice. These caching slices
shrank the extent of the point cloud to crop from. Proven by our experiments, the slicing
reduced about 80% cropping time.

(0, 0) u

v

(x, y, z)

(u, v)

? R G B R
R B ? B ?
G R G B G

R R G B R
R B B B B
G R G B G

h

Extrude

Project

Crop

Buffer

Colorize

Inpaint

Texture 
mapping

Figure 6. Generating and texturing DTB from the point clouds and CAD drawings.

The points cropped out were then projected onto the face, i.e., converting their 3D
coordinates (x, y, z) into the 2D plane coordinates (u, v). The u-v coordinates were then
discretized into the column and row indices on the texture image of this face. Then the
corresponding image pixels were colorized with the projected point colors. Since not all
image pixels could be projected by points, there were ‘holes’ on this image. Therefore, we
applied the inpainting [65] and default colorizing to generate the final complete texture
images. Once generated, the texture images could be mapped onto the face by aligning the
image corners to the face vertices.

4. Experiments
4.1. Test Data

The proposed approach was tested on the point clouds and CAD drawings of seven
stories, from the second to eighth floor, in the Knowles Building at the Main Campus of The
University of Hong Kong. The target building had considerably different layouts from the
second to the eighth floor, as listed in Table 1 and Figure 7. Each storey’s area was >2000 m2,
yet every storey had different dimensions and topologies for indoor spaces and networks.

The boundary of F5 was considerably larger than others because of a footbridge con-
necting a nearby building. Thus, the CAD drawing’s center x-coordinate was 12.238 m away
from the reflection symmetry axis. Besides, the y-axis of the F3 drawing was perpendicular
to its symmetry axis, which created a large rotation compared with the corresponding
point clouds.

The colorful point clouds were scanned by a Google Tango AR phone (model: Lenovo
Phab 2), which is reproducible by current mainstream ARCore phones or AR Kit phones
(e.g., iPhone X and above and iPad Pro) [66]. The geometric error was less than 5 cm
initially, but gradually ‘drifted’ over the scanning course. Except for F5, the as-built scans
covered the public areas (e.g., corridors and stair networks) located in the center of the
CAD drawings’ spatial bounding boxes. Note that the corridors scans can be incomplete
for some stories.

We highlight the experimental results on F3 and F5, which would validate the Re-
gARD method with a large rotation offset and central differences, respectively. All seven
storeys were used for benchmarking the average performances in terms of accuracy and
computational time.
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F2 F3 F4

F5 F6 F7 F8

Figure 7. The CAD drawings and smartphone’s 3D point clouds of the seven test cases.

Table 1. List of the as-designed and as-built data sets from seven different floor plans.

Story LD (km) Area (m2) |D| |Craw| |C| Ovlp

F2 4.58 2046.46 295,305 14,395,380 3363 0.318
F3 4.76 2085.48 322,491 6,767,762 908 0.220
F4 5.46 2038.82 360,103 9,099,373 660 0.281
F5 5.49 2266.97 326,971 7,462,367 1074 0.271
F6 5.44 2038.71 379,294 6,433,582 721 0.235
F7 6.42 2097.15 457,639 6,001,598 969 0.210
F8 7.14 2038.61 519,177 11,307,407 1031 0.242

LD : sum perimeter of all vertical structure polygons and lengths of doors. |D|: the number of points sampled,
where interval = 1 cm. |Craw|: the point number of a story point cloud without sampling. |C|: the number of
points sampled from the middle part of a point cloud. Ovlp: the approximate overlapping ratio.

4.2. Implementation Details

In the preprocessing, the buffering distance t in Equation (1) was set as 0.01 m,
while the threshold of Ithickness was set as 0.95. The two parameters of ODAS (i.e., tc
in Equation (5) and the depth of the octree) were set to default values, while the solver was
the default DIRECT, all as suggested in [49]. The default bounding parameter bs is set as 1.2.
The DFO solvers listed in Section 3.3.4 were implemented by the open-source algorithmic
libraries libcmaes (ver. 0.9.6.1) [67] and NLopt (ver. 2.6.2) [68] in C++ and Python. Besides,
all the experiments were performed on (i) a laptop with an Intel Core i7 CPU (2.20 GHz,
four cores), 16 GB of RAM, and Ubuntu 20.04 installed on Windows Subsystem for Linux
2 (WSL2) and (ii) a workstation with an Intel Core i7 CPU (2.9 GHz, 16 cores), 128 GB of
RAM, and Ubuntu 20.04.

4.3. Generated Digital Twin Buildings

The resulted DTBs were created in the Industry Foundation Classes (IFC) format. As
introduced in Section 3.2.1, we extracted the vertical structures, i.e., walls and openings,
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from CAD drawings and generated them into IfcWall and IfcDoor instances, along with
the generated floors and ceilings as IfcSlab instances. The elevations and heights of IfcWall,
IfcDoor, and IfcSlab were set according to the floor and ceiling elevations estimated as
Section 3.2.2. Next, the RegARD method registered the scan point clouds to the design
models, following by the texturing process. To enable the instance texturing in IFC, the ge-
ometry of instances is stored as IfcFacetedBrep with faces as IfcFace. Therefore, the external
texture images could be linked to IfcFace by IfcImageTexture, IfcSurfaceStyleWithTextures,
IfcSurfaceStyle, and IfcStyledItem; the coordinate mappings between the texture images
and the IfcFace were given as IfcTextureMap and IfcTextureVertex.

As shown in Figure 8 (visualized in FZKViewer), those vertical and horizontal surfaces
scanned in the color point cloud were successfully textured, with an average density of
1403 points/m2. Coarse appearance was attached to the walls, doors, floors, and ceilings.
The corresponding IFC instances could link the real material color as well as the pasted
posters through the texture images. By this tight integration between the as-designed
CAD models and the as-built point clouds, our approach enabled the digital twinning
of buildings with geometry, semantics, and appearance simultaneously at a much more
affordable cost.

Figure 8. Example DTB textured by the registered point cloud.

4.4. Registration Quantitative Analysis

The coarse registration was the core problem to resolve. Hence, we evaluated and
compared the registration RMSD of RegARD with other state-of-the-art coarse registration
methods, including CPD [35], Go-ICP [36], and GMMTree [37]. To further demonstrate
the improvement by ARD, we compared the registration quality and efficiency with and
without ARD. Besides, the DFO solvers are also a crucial factor for the final registration
efficiency; we therefore tested the convergence of different DFO solvers to conclude the
appropriate solver for our registration.



Remote Sens. 2021, 13, 1882 14 of 22

4.4.1. Registration Benchmarking

Table 2 reports the benchmarking results of RegARD and other registration algorithms.
To control the total processing time, we set the number of iterations for all the algorithms
as 100, the sampling interval of CAD drawings as 10 cm, and the sampling rate of point
clouds as 0.001. The DFO solver of RegARD applied in this comparison was Nelder–Mead.
Besides, the computational time of RegARD included the time of ARD, and that of Go-ICP
includes the time for building distance transformation structures. Moreover, the outlier
ratio of the source point cloud over the target was required by the CPD algorithm. They
were set as 1−Ovlp, which are given in Table 1.

Table 2. Registration metrics of RegARD and other coarse registration algorithms (100 iterations,
10 runs).

Metric Story Init. CPD a Go-ICP a GMMTree a RegARD %imp b

F2 0.871 0.923 0.865 0.871 0.345 60.17
F3 2.168 0.732 0.592 2.168 0.295 50.12

Avg. F4 0.663 0.735 0.650 0.664 0.290 55.34
RMSD F5 1.997 0.708 1.533 1.997 0.322 54.52

(m) F6 0.645 1.626 0.636 0.645 0.478 24.87
F7 0.667 1.148 0.651 0.664 0.352 45.90
F8 1.063 2.170 0.974 1.063 0.407 58.21

Average 49.88

F2 − 279.78 14.25 8.08 5.17 36.02
F3 − 85.58 14.49 8.19 1.67 79.66

Avg. F4 − 69.77 14.09 8.36 1.42 83.06
Time F5 − 99.50 14.48 8.24 2.02 75.53

(s) F6 − 77.50 14.03 8.48 1.44 83.03
F7 − 123.98 14.04 8.60 1.89 78.02
F8 − 150.82 14.06 8.73 2.05 76.57

Average 73.13
a: CPD and GMMTree were from Tanaka et al. [69], while Go-ICP from [70]. b: The %imp is the improvement over
the best of the baseline results. The lowest RMSDs and shortest running time of each story are highlighted in bold.

As shown in Table 2 and Figure 9, our algorithm showed significant advances in both
registration accuracy and computational time above all the best baseline methods. RegARD
reduced the RMSD by a considerable amount ranging from 24.87% to 60.17% compared
with the baseline methods. Figure 9 shows the visual results of F2, F3, and F5. The results of
CPD, Go-ICP, and GMMTree yielded obvious rotation or translation errors, while RegARD
successfully registered as-designed and as-built data. Meanwhile, the computational time
of RegARD on all the tested stories was shortened by 36.02 % to 83.06% compared with
the most efficient baseline, i.e., GMMTree. On average, RegARD’s RMSD was 49.9% less
than the best results of the baselines, while RegARD also saved 73.1% time cost. The
RegARD’s results in Table 2 were very close to the global minima. By the decomposition
as two sub-problems, the RegARD outperformed with only 100 iterations. Meanwhile,
other coarse registration methods such as Go-ICP and GMMTree should search in a large
solution space to approach the global minima gradually. Besides, since the asymptotic time
complexity of RegARD was proportional to the number of source points, it took a longer
computational time on F2, the point number of which was greater than others, as shown in
Table 1.
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F2

F3

F5

CPD Go-ICP GMMTree RegARD

Figure 9. Comparison of the registration results by different methods.

4.4.2. Regard Component Analysis

We further measured the ARD’s effects by comparing the registration with and without
ARD solved by DFO. The sampling interval of CAD drawings was 10 cm and the sampling
rate of the point clouds was 0.001. The DFO solver of RegARD was Nelder–Mead. The
resulted metrics are reported in Table 3. The visual comparisons on F3 and F5 are presented
in Figure 10. They can be summarized into three situations based on the metrics and the
initial poses of point clouds and CAD models:

1. The inputs were close to the fittest transformation, e.g, the stories except for F3 and
F5. The transformation between the sampled points of drawings and point clouds
could be solved in a limited number of iterations. The results with 100 iterations were
close to the converged solutions.

2. There was a large translation between the initial poses of the two inputs, e.g., F5.
The DFO solvers could optimize these translations to optima or sub-optima, with or
without ARD. This could be verified by the F5’s RMSDs in Table 3, the visual results
in Figure 10, and the RMSD curves in Figure 11.

3. There was a large rotation between the initial poses of the two inputs, e.g., F3. This
was the most challenging situation. As shown in Table 3, the registration without
ARD was recorded an RMSD that was 4.5 times RegARD’s. The corresponding
visual results of F3 and the RMSD convergence curves are presented in Figure 10
and Figure 11a, respectively. The curve comparison in Figure 11a demonstrated
a considerably faster convergence with ARD. This result proved the argument in
Section 3.3: rotation was a crucial DoF that could trap optimization algorithms in
the problem equipping with strong self-similarities (e.g., building interiors). By
decomposing the optimization of rotation and other DoFs, RegARD enabled the
problem to be solved around 100 iterations.
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Moreover, to select appropriate DFO solvers for building interior registration, we
compared different DFO solvers, as shown in Figure 11b–e. The sampling interval of
drawings was 1 cm, while the point clouds’ sampling rate was 0.001. All results were the
average values of 10 independent runs. SBPLX, BOBYQA, and Nelder–Mead showed a high
degree of efficiency and robustness when ARD was applied. Besides, both DIRECT and
CMAES converged to find the best objective value if the number k of iterations was large
enough. We also noticed that DIRECT and CMAES performed well at solving problems
with many local minima, e.g., the F3 case with a large rotation and the F5 case with a large
translation. Besides, MMA and MLSL were inappropriate or unstable regardless of ARD.
Therefore, SBPLX, BOBYQA, and Nelder-Mead were the appropriate choices for RegARD
with architectural reflection symmetries, while DIRECT and CMAES were more robust for
registration without architectural reflection detection.

Table 3. Metrics of registration with and without ARD (100 iterations, average of 10 runs).

Metric Story RegARD (with ARD) Reg (without ARD)

F2 0.345 0.341
F3 0.295 1.327

Avg. F4 0.290 0.291
RMSD F5 0.322 0.311

(m) F6 0.478 0.490
F7 0.352 0.359
F8 0.407 0.403

Average 0.356 0.626

F2 5.17 4.71
F3 1.67 1.39

Avg. F4 1.42 1.05
Time F5 2.02 1.63

(s) F6 1.44 1.14
F7 1.89 1.53
F8 2.05 1.59

Average 2.23 1.86
The lower RMSDs and shorter running time of each story are highlighted in bold.

F5

F3

Initial Pose Reg
(without ARD)

RegARD Step1
(ARD aligned)

RegARD Step2
(4-DoF transformation optimized)

Figure 10. Comparison of registration with and without ARD on F3 and F5.
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Figure 12. RMSDs with different numbers of iterations on F3 and F5. The best RMSDs among all the DFO solvers and the individual
RMSDs are shown in (a) and the group of (b) to (e), respectively.

Figure 11. RMSDs with different numbers of iterations on F3 and F5. The best RMSDs among all the
DFO solvers and the individual RMSDs are shown in (a) and the group of (b–e), respectively.

5. Discussion

In this study, we present a digital twinning approach based on low-cost data sources:
point clouds captured by smartphones and available 2D CAD drawings for existing build-
ings. The critical part of our approach is the RegARD method to register point clouds with
drawings. The theoretical breakthrough of RegARD is using the architectural reflection
symmetry to successfully isolate the optimization rotation from the DoFs. As a result, the
challenging registration of noisy and self-similar indoor point clouds becomes solvable
through a two-step process. Moreover, together with the preprocessing and the 3D gen-
eration and texturing, our approach can generate DTBs with parametric geometry, rich
semantics, and realistic appearance in a short processing time.

However, there are still some limitations and possible improvement directions in our
approach, including:

1. Registration quality: RegARD is a rigid registration method aiming at applying a
global transformation to align indoor point clouds and CAD drawings. However,
there could be local misalignment as well as translation and rotation drifts which
cannot be robustly registered with only one global rigid transformation. The right
top of F3 and the left top of F5 shown in Figure 10 are examples. To resolve this issue,
the rigid alignment with the non-rigid corrections or piece-wise rigid registration [71]
can be applied. Moreover, as-designed data, such as floor plans, can serve as a
priori information to make proper assumptions on the deformations and guide the
piece-wise segmentation of point clouds. For example, an indoor point cloud can be
segmented into rooms and represented as a graph. Then, rigid transformations can
be estimated on the nodes and edges to counteract the local misalignment or drifts.

2. Semantics richness: in Section 3.2.1, this paper applies a thickness filter to extraction of
wall instances from the CAD drawings. The filter has a limited capability in extracting
vertical structures with square cross sections, though. Moreover, the vertical structures
could be further classified, e.g., as external walls, inner walls, windows, and sliding
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doors. One possible way is to replace the thickness filter in this paper with supervised-
learning-based classifiers, such as Decision Tree and Support-Vector Machine. Besides,
it is also possible to perform object detection and semantic/instance segmentation on
point clouds to attach more detailed semantics to IFC elements.

3. Appearance quality: as shown in Figure 12, the resolution of the texture images is not
high enough and defects such as blurring exist. This is a result of several reasons, such
as the limitations of the scanning sensors, embedded Simultaneously Localization
And Mapping (SLAM) algorithms, and unavoidable dynamic objects and texture
lacking in the scanned environment. This issue can be improved by using the recent
and even the next generations of consumer-level scanning devices with advanced
sensors or embedded SLAM algorithms for point cloud collection.

4. Processing time: the speed of the whole pipeline can be improved. For example,
the asymptotic time complexity of RegARD is proportional to the number of source
points, meaning the processing time can grow fast when the point number grows. This
issue can be mitigated by applying weighted sampling [49] to reduce the processing
scale of point clouds.

5. Availability of reflection symmetry: when a building is asymmetric or with other
types of symmetry, e.g., rotation or translation, rather than reflection, we can di-
rectly optimize the transformation without reflection detection. Examples without
reflection detection are given in Table 3 and Figure 10. Moreover, because there is
less self-similarity of asymmetric buildings, there are fewer local minima to trap
the optimization.

6. Inconsistency detection: there could be inconsistencies between the as-built and as-
designed data. For example, the two red circles in Figure 12a show the on-going
temporary construction work on the F2 of Knowles building. The temporary work
covered one pathway between two soundproof curtains. These consistencies can
cause a larger RMSD in registration or texturing noise. Inconsistency detection should
be further exploited to improve the registration and final realistic models. At the
same time, it is also desirable for maintenance and renovations.

(c)(a)

(b)

Figure 12. Temporary construction works and indoor textures in the DTB. (a) Temporary construction
works circled in red; (b) textures in the DTB; (c) ground truth of the texture.

6. Conclusions

Digital twin buildings (DTBs) are increasingly demanded by GIScience, manufactur-
ing, robotics, mapping, and AECO industries. However, creating DTBs with parametric
geometry, rich semantics, and realistic appearances with limited labor, device, and time
cost is very challenging. This paper proposes a prototype method named ‘Registration
based on Architectural Reflection Detection’ (RegARD) for high-quality and low-cost DTBs.
Our approach exploits two low-cost data sources: 3D point clouds captured by ubiquitous
mobile devices and widely available 2D drawings of existing buildings. Pilot experiments
showed the RegARD can register smartphones’ point clouds with CAD drawings in high
quality and efficiency. Based on the results of the RegARD, DTBs can be automatically
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generated with realistic textures mapped from point clouds as well as parametric geometry
and rich semantics parsed from drawings.

Multiple directions of future work can be depicted from the findings and limitations
of this paper. First, since the first coarse registration towards digital twin building creation
is solved by the RegARD method, researchers can explore the seamless integration of
indoor texture, objects, and topologies in the as-built 3D scans and the building structures
and systems in the as-designed 2D drawings and 3D extrusions. Some researchers may
be interested in adopting the first step of RegARD to other 3D registration or modeling
methods. Another research opportunity is transforming the rigid indoor 3D point clouds
into flexibly constrained networks of segmented rooms and spaces. One possible direction
for practitioners is to migrate the RegARD method efficiently from single-threading com-
puter CPUs to smart devices’ ARM architectures. The authors are optimistic that digital
twin buildings in the future will be an approachable and functional reality rather than a
rhetoric term.

Author Contributions: Conceptualization, Y.W. and F.X.; methodology, Y.W.; software, Y.W. and J.S.;
validation, Y.W., J.S. and F.X.; data curation, Y.W. and F.X.; writing—original draft preparation, Y.W.;
writing—review and editing, J.S. and F.X.; funding acquisition, F.X. All authors have read and agreed
to the published version of the manuscript.

Funding: The work presented in this paper was financially supported by the Research Grants Council
(RGC) of Hong Kong SAR under grant numbers 17200218 and 27200520. The APC was funded by
the RGC.

Data Availability Statement: The source code of the latest version of RegARD is available at
https://github.com/eiiijiiiy/RegARD (Updated on 30 April 2021). The test dataset is available in the
source code. Local data are available from the corresponding author upon reasonable request.

Acknowledgments: We would like to express our gratitude to the Academic Editor and anonymous
reviewers for the constructive suggestions to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xue, F.; Chiaradia, A.; Webster, C.J.; Liu, D.; Xu, J.; Lu, W. Personalized walkability assessment for pedestrian paths: An

as-built BIM approach using ubiquitous augmented reality (AR) smartphone and deep transfer learning. In Proceedings
of the 23rd International Symposium on the Advancement of Construction Management and Real Estate, Guiyang, China,
24–27 August 2018.

2. Wen, C.; Pan, S.; Wang, C.; Li, J. An indoor backpack system for 2-D and 3-D mapping of building interiors. IEEE Geosci. Remote
Sens. Lett. 2016, 13, 992–996. [CrossRef]

3. Lim, K.Y.H.; Zheng, P.; Chen, C.H. A state-of-the-art survey of Digital Twin: Techniques, engineering product lifecycle
management and business innovation perspectives. J. Intell. Manuf. 2019, 31, 1313–1337. [CrossRef]

4. Khajavi, S.H.; Motlagh, N.H.; Jaribion, A.; Werner, L.C.; Holmström, J. Digital twin: Vision, benefits, boundaries, and creation for
buildings. IEEE Access 2019, 7, 147406–147419. [CrossRef]

5. Xue, F.; Lu, W.; Chen, Z.; Webster, C.J. From LiDAR point cloud towards digital twin city: Clustering city objects based on Gestalt
principles. ISPRS J. Photogramm. Remote Sens. 2020, 167, 418–431. [CrossRef]

6. Bianchini, C.; Nicastro, S. From BIM to H-BIM. In Proceedings of the 2018 3rd Digital Heritage International Congress
(DigitalHERITAGE) Held Jointly with 2018 24th International Conference on Virtual Systems & Multimedia (VSMM 2018),
San Francisco, CA, USA, 26–30 October 2018; pp. 1–4. [CrossRef]

7. Attenni, M. Informative Models for Architectural Heritage. Heritage 2019, 2, 2067–2089. [CrossRef]
8. NIC. Data for the Public Good. 2017. Available online: https://nic.org.uk/app/uploads/Data-for-the-Public-Good-NIC-Report.

pdf (accessed on 10 May 2021).
9. Xue, F.; Guo, H.; Lu, W. Digital twinning of construction objects: Lessons learned from pose estimation methods. In Proceedings

of the 37th Information Technology for Construction Conference (CIB W78), São Paulo, Brazil, 2–4 June 2020. [CrossRef]
10. Xue, F.; Lu, W.; Chen, K.; Zetkulic, A. From semantic segmentation to semantic registration: Derivative-Free Optimization–based

approach for automatic generation of semantically rich as-built Building Information Models from 3D point clouds. J. Comput.
Civ. Eng. 2019, 33, 04019024. [CrossRef]

11. Lu, Q.; Chen, L.; Li, S.; Pitt, M. Semi-automatic geometric digital twinning for existing buildings based on images and CAD
drawings. Autom. Constr. 2020, 115, 103183. [CrossRef]

https://github.com/eiiijiiiy/RegARD
https://github.com/eiiijiiiy/RegARD
http://doi.org/10.1109/LGRS.2016.2558486
http://dx.doi.org/10.1007/s10845-019-01512-w
http://dx.doi.org/10.1109/ACCESS.2019.2946515
http://dx.doi.org/10.1016/j.isprsjprs.2020.07.020
http://dx.doi.org/10.1109/DigitalHeritage.2018.8810087
http://dx.doi.org/10.3390/heritage2030125
https://nic.org.uk/app/uploads/Data-for-the-Public-Good-NIC-Report.pdf
https://nic.org.uk/app/uploads/Data-for-the-Public-Good-NIC-Report.pdf
http://dx.doi.org/10.46421/2706-6568.37.2020.paper023
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000839
http://dx.doi.org/10.1016/j.autcon.2020.103183


Remote Sens. 2021, 13, 1882 20 of 22

12. Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research.
Autom. Constr. 2020, 114, 103179. [CrossRef]

13. Xue, F.; Wu, L.; Weisheng, L. Semantic enrichment of building and city information models: A ten-year review. Adv. Eng. Inform.
2021, 47, 101245. [CrossRef]

14. Xu, H.; Yu, L.; Fei, S. Hand-held 3-D reconstruction of large-scale scene with kinect sensors based on surfel and video sequences.
IEEE Geosci. Remote Sens. Lett. 2018, 15, 1842–1846. [CrossRef]

15. Bueno, M.; Bosché, F.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P. 4-Plane congruent sets for automatic registration of as-is
3D point clouds with 3D BIM models. Autom. Constr. 2018, 89, 120–134. [CrossRef]

16. Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D mapping with an RGB-D camera. IEEE Trans. Robot. 2013, 30, 177–187.
[CrossRef]

17. Linowes, J.; Babilinski, K. Augmented Reality for Developers: Build Practical Augmented Reality Applications with Unity, ARCore,
ARKit, and Vuforia; Packt Publishing Ltd.: Birmingham, UK, 2017.

18. Xu, J.; Xue, F.; Chiaradia, A.; Lu, W.; Cao, J. Indoor-Outdoor Navigation without Beacons: Compensating Smartphone AR
Positioning Errors with 3D Pedestrian Network. In Construction Research Congress 2020: Infrastructure Systems and Sustainability;
American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 444–452. [CrossRef]

19. Gimenez, L.; Robert, S.; Suard, F.; Zreik, K. Automatic reconstruction of 3D building models from scanned 2D floor plans. Autom.
Constr. 2016, 63, 48–56. [CrossRef]

20. Han, J.; Yin, P.; He, Y.; Gu, F. Enhanced ICP for the registration of large-scale 3D environment models: An experimental study.
Sensors 2016, 16, 228. [CrossRef]

21. Lin, W.Y.; Liu, S.; Jiang, N.; Do, M.N.; Tan, P.; Lu, J. RepMatch: Robust feature matching and pose for reconstructing modern
cities. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham,
Switzerland, 2016; pp. 562–579. [CrossRef]

22. Hansen, N.; Müller, S.D.; Koumoutsakos, P. Reducing the time complexity of the derandomized evolution strategy with
covariance matrix adaptation (CMA-ES). Evol. Comput. 2003, 11, 1–18. [CrossRef]

23. Jones, D.R.; Perttunen, C.D.; Stuckman, B.E. Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl.
1993, 79, 157–181. [CrossRef]

24. Nelder, J.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
25. Johnson, A.E.; Hebert, M. Efficient multiple model recognition in cluttered 3-D scenes. In Proceedings of the 1998 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (Cat. No. 98CB36231), Santa Barbara, CA, USA, 25 June 1998;
pp. 671–677. [CrossRef]

26. Chua, C.S.; Jarvis, R. Point signatures: A new representation for 3d object recognition. Int. J. Comput. Vis. 1997, 25, 63–85.
[CrossRef]

27. Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [CrossRef]

28. Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3DMatch: Learning Local Geometric Descriptors from RGB-D
Reconstructions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 199–208. [CrossRef]

29. Choy, C.; Park, J.; Koltun, V. Fully Convolutional Geometric Features. In Proceedings of the 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 8957–8965. [CrossRef]

30. Yew, Z.J.; Lee, G.H. 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration. In Proceedings of
the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; Springer: Cham, Switzerland, 2018;
pp. 630–646. [CrossRef]

31. Deng, H.; Birdal, T.; Ilic, S. PPFNet: Global Context Aware Local Features for Robust 3D Point Matching. In Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 195–205.
[CrossRef]

32. Besl, P.; McKayN, N. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [CrossRef]
33. Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155. [CrossRef]
34. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D

Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152. [CrossRef]
35. Myronenko, A.; Song, X. Point set registration: Coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2262–2275.

[CrossRef] [PubMed]
36. Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern

Anal. Mach. Intell. 2015, 38, 2241–2254. [CrossRef] [PubMed]
37. Eckart, B.; Kim, K.; Kautz, J. Hgmr: Hierarchical gaussian mixtures for adaptive 3d registration. In Proceedings of the European

Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 705–721.
38. Yang, H.; Shi, J.; Carlone, L. TEASER: Fast and certifiable point cloud registration. IEEE Trans. Robot. 2020, 37, 314–333. [CrossRef]
39. Wang, Y.; Solomon, J. Deep Closest Point: Learning Representations for Point Cloud Registration. In Proceedings of the 2019

IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 3522–3531.
[CrossRef]

http://dx.doi.org/10.1016/j.autcon.2020.103179
http://dx.doi.org/10.1016/j.aei.2020.101245
http://dx.doi.org/10.1109/LGRS.2018.2866280
http://dx.doi.org/10.1016/j.autcon.2018.01.014
http://dx.doi.org/10.1109/TRO.2013.2279412
http://dx.doi.org/10.1061/9780784482858.049
http://dx.doi.org/10.1016/j.autcon.2015.12.008
http://dx.doi.org/10.3390/s16020228
http://dx.doi.org/10.1007/978-3-319-46448-0_34
http://dx.doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1007/BF00941892
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1109/CVPR.1998.698676
http://dx.doi.org/10.1023/A:1007981719186
http://dx.doi.org/10.1109/ROBOT.2009.5152473
http://dx.doi.org/10.1109/CVPR.2017.29
http://dx.doi.org/10.1109/ICCV.2019.00905
http://dx.doi.org/10.1007/978-3-030-01267-0_37
http://dx.doi.org/10.1109/CVPR.2018.00028
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1016/0262-8856(92)90066-C
http://dx.doi.org/10.1109/IM.2001.924423
http://dx.doi.org/10.1109/TPAMI.2010.46
http://www.ncbi.nlm.nih.gov/pubmed/20975122
http://dx.doi.org/10.1109/TPAMI.2015.2513405
http://www.ncbi.nlm.nih.gov/pubmed/26731638
http://dx.doi.org/10.1109/TRO.2020.3033695
http://dx.doi.org/10.1109/ICCV.2019.00362


Remote Sens. 2021, 13, 1882 21 of 22

40. Choy, C.; Dong, W.; Koltun, V. Deep Global Registration. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 2511–2520. [CrossRef]

41. Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U. Pairwise coarse registration of point clouds in urban scenes using voxel-based
4-planes congruent sets. ISPRS J. Photogramm. Remote Sens. 2019, 151, 106–123. [CrossRef]

42. Chen, S.; Nan, L.; Xia, R.; Zhao, J.; Wonka, P. PLADE: A Plane-Based Descriptor for Point Cloud Registration With Small Overlap.
IEEE Trans. Geosci. Remote Sens. 2019, 58, 2530–2540. [CrossRef]

43. Zolanvari, S.I.; Laefer, D.F.; Natanzi, A.S. Three-dimensional building façade segmentation and opening area detection from
point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 143, 134–149. [CrossRef]

44. Polewski, P.; Yao, W. Scale invariant line-based co-registration of multimodal aerial data using L1 minimization of spatial and
angular deviations. ISPRS J. Photogramm. Remote Sens. 2019, 152, 79–93. [CrossRef]

45. Chen, K.; Lu, W.; Xue, F.; Tang, P.; Li, L.H. Automatic building information model reconstruction in high-density urban areas:
Augmenting multi-source data with architectural knowledge. Autom. Constr. 2018, 93, 22–34. [CrossRef]

46. Wang, H.; Zhang, W.; Chen, Y.; Chen, M.; Yan, K. Semantic decomposition and reconstruction of compound buildings with
symmetric roofs from LiDAR data and aerial imagery. Remote Sens. 2015, 7, 13945–13974. [CrossRef]

47. Ceylan, D.; Mitra, N.J.; Zheng, Y.; Pauly, M. Coupled structure-from-motion and 3D symmetry detection for urban facades. ACM
Trans. Graph. (TOG) 2014, 33, 1–15. [CrossRef]

48. Cheng, L.; Wu, Y.; Chen, S.; Zong, W.; Yuan, Y.; Sun, Y.; Zhuang, Q.; Li, M. A symmetry-based method for LiDAR point
registration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 285–299. [CrossRef]

49. Xue, F.; Lu, W.; Webster, C.J.; Chen, K. A derivative-free optimization-based approach for detecting architectural symmetries
from 3D point clouds. ISPRS J. Photogramm. Remote Sens. 2019, 148, 32–40. [CrossRef]

50. Xue, F.; Lu, W.; Chen, K.; Webster, C.J. BIM reconstruction from 3D point clouds: A semantic registration approach based on
multimodal optimization and architectural design knowledge. Adv. Eng. Inform. 2019, 42, 100965. [CrossRef]

51. Bassier, M.; Vergauwen, M. Unsupervised reconstruction of Building Information Modeling wall objects from point cloud data.
Autom. Constr. 2020, 120, 103338. [CrossRef]

52. Wang, C.; Hou, S.; Wen, C.; Gong, Z.; Li, Q.; Sun, X.; Li, J. Semantic line framework-based indoor building modeling using
backpacked laser scanning point cloud. ISPRS J. Photogramm. Remote Sens. 2018, 143, 150–166. [CrossRef]

53. Nikoohemat, S.; Diakité, A.A.; Zlatanova, S.; Vosselman, G. Indoor 3D reconstruction from point clouds for optimal routing in
complex buildings to support disaster management. Autom. Constr. 2020, 113, 103109. [CrossRef]

54. Ochmann, S.; Vock, R.; Klein, R. Automatic reconstruction of fully volumetric 3D building models from oriented point clouds.
ISPRS J. Photogramm. Remote Sens. 2019, 151, 251–262. [CrossRef]

55. Jung, J.; Stachniss, C.; Ju, S.; Heo, J. Automated 3D volumetric reconstruction of multiple-room building interiors for as-built BIM.
Adv. Eng. Inform. 2018, 38, 811–825. [CrossRef]

56. Murali, S.; Speciale, P.; Oswald, M.R.; Pollefeys, M. Indoor Scan2BIM: Building information models of house interiors. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 6126–6133. [CrossRef]

57. Liu, C.; Wu, J.; Kohli, P.; Furukawa, Y. Raster-to-Vector: Revisiting Floorplan Transformation. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2214–2222. [CrossRef]

58. Wu, Y.; Shang, J.; Chen, P.; Zlatanova, S.; Hu, X.; Zhou, Z. Indoor mapping and modeling by parsing floor plan images. Int. J.
Geogr. Inf. Sci. 2020. [CrossRef]

59. Wijmans, E.; Furukawa, Y. Exploiting 2D Floorplan for Building-Scale Panorama RGBD Alignment. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1427–1435.
[CrossRef]

60. Adams, R.; Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 641–647. [CrossRef]
61. Turner, E.; Zakhor, A. Watertight as-built architectural floor plans generated from laser range data. In Proceedings of the 2012

Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, Zurich, Switzerland,
13–15 October 2012; pp. 316–323. [CrossRef]

62. Sun, C.; Sherrah, J. 3D symmetry detection using the extended Gaussian image. IEEE Trans. Pattern Anal. Mach. Intell. 1997,
19, 164–168. [CrossRef]

63. Kazhdan, M. An approximate and efficient method for optimal rotation alignment of 3D models. IEEE Trans. Pattern Anal. Mach.
Intell. 2007, 29, 1221–1229. [CrossRef]

64. Rowan, T.H. Functional Stability Analysis of Numerical Algorithms. Ph.D. Thesis, The University of Texas at Austin, Austin, TX,
USA, 1990.

65. Telea, A. An image inpainting technique based on the fast marching method. J. Graph. Tools 2004, 9, 23–34. [CrossRef]
66. Taberna, G.A.; Guarnieri, R.; Mantini, D. SPOT3D: Spatial positioning toolbox for head markers using 3D scans. Sci. Rep. 2019,

9, 12813. [CrossRef]
67. Benazera, E. Libcmaes: A Multithreaded C++11 Library with Python Bindings for High Performance Blackbox Stochastic

Optimization Using the CMA-ES Algorithm for Covariance Matrix Adaptation Evolution Strategy. 2020. Available online:
https://github.com/beniz/libcmaes (accessed on 2 November 2020).

http://dx.doi.org/10.1109/CVPR42600.2020.00259
http://dx.doi.org/10.1016/j.isprsjprs.2019.02.015
http://dx.doi.org/10.1109/TGRS.2019.2952086
http://dx.doi.org/10.1016/j.isprsjprs.2018.04.004
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.004
http://dx.doi.org/10.1016/j.autcon.2018.05.009
http://dx.doi.org/10.3390/rs71013945
http://dx.doi.org/10.1145/2517348
http://dx.doi.org/10.1109/JSTARS.2017.2752765
http://dx.doi.org/10.1016/j.isprsjprs.2018.12.005
http://dx.doi.org/10.1016/j.aei.2019.100965
http://dx.doi.org/10.1016/j.autcon.2020.103338
http://dx.doi.org/10.1016/j.isprsjprs.2018.03.025
http://dx.doi.org/10.1016/j.autcon.2020.103109
http://dx.doi.org/10.1016/j.isprsjprs.2019.03.017
http://dx.doi.org/10.1016/j.aei.2018.10.007
http://dx.doi.org/10.1109/IROS.2017.8206513
http://dx.doi.org/10.1109/ICCV.2017.241
http://dx.doi.org/10.1080/13658816.2020.1781130
http://dx.doi.org/10.1109/CVPR.2017.156
http://dx.doi.org/10.1109/34.295913
http://dx.doi.org/10.1109/3DIMPVT.2012.80
http://dx.doi.org/10.1109/34.574800
http://dx.doi.org/10.1109/TPAMI.2007.1032
http://dx.doi.org/10.1080/10867651.2004.10487596
http://dx.doi.org/10.1038/s41598-019-49256-0
https://github.com/beniz/libcmaes


Remote Sens. 2021, 13, 1882 22 of 22

68. Steven, J. NLopt: A Free/Open-Source Library for Nonlinear Optimization. 2020. Available online: https://nlopt.readthedocs.
io/en/latest/ (accessed on 2 November 2020).

69. Tanaka, K.; Schmitz, P.; Ciganovic, M.; Kumar, P. Probreg: Probablistic Point Cloud Registration Library. 2020. Available online:
https://probreg.readthedocs.io/en/latest/ (accessed on 2 November 2020).

70. Srinivasan, R. Go-icp_cython: A Cython Version of the Original Go-ICP. Available online: https://github.com/aalavandhaann/
go-icp_cython (accessed on 2 November 2020).

71. Tam, G.K.; Cheng, Z.Q.; Lai, Y.K.; Langbein, F.C.; Liu, Y.; Marshall, D.; Martin, R.R.; Sun, X.F.; Rosin, P.L. Registration of 3D point
clouds and meshes: A survey from rigid to nonrigid. IEEE Trans. Vis. Comput. Graph. 2012, 19, 1199–1217. [CrossRef]

https://nlopt.readthedocs.io/en/latest/
https://nlopt.readthedocs.io/en/latest/
https://probreg.readthedocs.io/en/latest/
https://github.com/aalavandhaann/go-icp_cython
https://github.com/aalavandhaann/go-icp_cython
http://dx.doi.org/10.1109/TVCG.2012.310

	Introduction
	Literature Review
	Point Cloud Registration
	Point Cloud Processing with Architectural Regularities
	Digital Twinning of Building Interiors

	Methodology
	Overview
	Preprocessing
	Parsing Cad Drawings (Plan2polygon)
	Segmentation of Point Clouds by Stories
	Sampling 2D Points

	The Proposed Regard Method
	Symmetry as a Global Feature
	DoFs in Regard
	Step 1: Two-DoF Architectural Reflection Detection
	Step 2: Four-DoF Transformation Optimization

	Texturing for Digital Twin Buildings

	Experiments
	Test Data
	Implementation Details
	Generated Digital Twin Buildings
	Registration Quantitative Analysis
	Registration Benchmarking
	Regard Component Analysis


	Discussion
	Conclusions
	References

