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Abstract: Inland open water bodies often pose a systematic error source in the passive remote sensing
retrievals of soil moisture. Water temperature is a necessary variable used to compute water emissions
that is required to be subtracted from satellite observation to yield actual emissions from the land
portion, which in turn generates accurate soil moisture retrievals. Therefore, overestimation of soil
moisture can often be corrected using concurrent water temperature data in the overall mitigation
procedure. In recent years, several data sets of lake water temperature have become available,
but their specifications and accuracy have rarely been investigated in the context of passive soil
moisture remote sensing on a global scale. For this reason, three lake temperature products were
evaluated against in-situ measurements from 2007 to 2011. The data sets include the lake surface
water temperature (LSWT) from Global Observatory of Lake Responses to Environmental Change
(GloboLakes), the Copernicus Global Land Operations Cryosphere and Water (C-GLOPS), as well
as the lake mix-layer temperature (LMLT) from the European Centers for Medium-Range Weather
Forecast (ECMWF) ERA5 Land Reanalysis. GloboLakes, C-GLOPS, and ERA5 Land have overall
comparable performance with Pearson correlations (R) of 0.87, 0.92 and 0.88 in comparison with
in-situ measurements. LSWT products exhibit negative median biases of −0.27 K (GloboLakes) and
−0.31 K (C-GLOPS), whereas the median bias of LMLT is 1.56 K. When mapped from their respective
native resolutions to a common 9 km Equal-Area Scalable Earth (EASE) Grid 2.0 projection, similar
relative performance was observed. LMLT and LSWT data are closer in performance over the 9 km
grid cells that exhibit a small range of lake cover fractions (0.05–0.5). Despite comparable relative
performance, ERA5 Land shows great advantages in spatial coverage and temporal resolution. In
summary, an integrated evaluation on data accuracy, long-term availability, global coverage, temporal
resolution, and regular forward processing with modest data latency led us to conclude that LMLT
from the ERA5 Land Reanalysis product represents the most optimal path for use in the development
of a long-term soil moisture product.

Keywords: lake mix-layer temperature (LMLT); lake surface water temperature (LSWT); ERA5 Land;
Global Observatory of Lake Responses to Environmental Change (GloboLakes); Copernicus Global
Land Operations Cryosphere and Water (C-GLOPS)

1. Introduction

Soil moisture is a critical component of the Earth’s systems, mainly because of its
capability to control surface energy fluxes, potentially exchange with the atmosphere, and
partitioning precipitation into infiltration and surface runoff in terms of water budget [1–4].
Given its relatively slow variance, soil moisture has been recognized as an essential variable
in climatic studies and numerical weather predictions [1,3]. Knowledge of accurate soil
moisture measurements could benefit a variety of applications, ranging from drought
monitoring, flood and landslide prevention, agricultural productivity improvements, and
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weather forecasts [1–3]. However, a global coverage of long-term soil moisture monitoring
by in-situ measurements is impractical only from the perspectives of expenditure and
manpower required by the operation and maintenance of the associated facilities.

In recent decades, satellite-based surface soil moisture products have created extensive
opportunities to study terrestrial-atmosphere interactions and hydrological cycles at a
global scale. Compared to optical and active microwave sensors, passive microwave
sensors are more sensitive to surface soil moisture in the presence of the same confounding
factors (e.g., clouds, vegetation, surface roughness, etc.) [5,6] while offering more frequent
repeat global coverage of about 2–3 days, as compared to more than 10 days by active
sensors. These advantages of passive microwave remote sensing of soil moisture have been
the principal driving force behind the application of various spaceborne radiometers (e.g.,
Special Sensor Microwave Imager (SSMI) [7], Advanced Microwave Scanning Radiometer
(AMSR-E) [8], Soil Moisture and Ocean Salinity (SMOS) [9] and Soil Moisture Active
Passive (SMAP) [3]) for soil moisture retrieval over the last decade. Lately, there has been
tremendous progress in the area of improving the spatial resolution of satellite derived soil
moisture to 1 km [10–12] and 400 m [13].

However, the accuracy of soil moisture retrieved from satellite observations can be
influenced by several factors [14], such as vegetation, topography, surface roughness etc.
Inland open water bodies (e.g., lakes, rivers, wetlands, etc.) are also an important error
source for passive remote sensing of soil moisture [14–16]. Specifically, signals detected
by satellite sensors include both emissions by land areas as well as water bodies. Without
proper correction procedures, the contribution of the microwave emissions of water can
add to microwave emissions from adjacent land, resulting a systematic wet bias in soil
moisture estimates [14]. To mitigate this contamination, it is necessary to separate the
mixture of land-water brightness temperature and remove the partial emissions contributed
by water bodies. This can be achieved through subtraction of water emissions from the
total brightness temperatures. Water temperature representative of inland water bodies is
thereby a required variable in the estimation of water radiation within the field-of-view
(FOV) of the radiometer upon antenna gain pattern correction, in addition to the fractions
of water cover.

Recently, a number of assimilation and reanalysis data sets that describe long-term
variations of water temperatures have been released [17–19]. These data sets include lake
surface water temperature (LSWT) from the Global Observatory of Lake Responses to En-
vironmental Change (GloboLakes) [17] and the Copernicus Global Operations Cryosphere
and Water (C-GLOPS) [19], as well as the lake mix-layer temperature (LMLT) from the
European Centers for Medium-Range Weather Forecast (ECMWF) ERA5 Land Reanaly-
sis [18,20]. These recent LSWT products have adopted the algorithms used in estimating
sea surface temperature but with modifications of processing procedures and additions of
lake-related parameters [21,22], thus yielding more reliable estimations of water tempera-
ture specific to inland water bodies (compared to those derived from algorithm designed
for sea surface temperature). In addition, the above LSWT and LMLT data sets are expected
to provide data over the open water adjacent to land, given that they are projected in
regular latitude-longitude grids, which is especially helpful for the water correction in
passive soil moisture retrieval algorithms. However, these water temperature data sets
are supplied at vastly different spatial and temporal resolutions [17–19] because of diverse
computational procedures and input sources.

Lake temperature data sets that incorporate long-term satellite remote sensing ob-
servations have been widely investigated, evaluated and applied [23–33], since LSWT is
considered as an important indicator of climate change [34] and highly related to the chem-
ical and physical process within the water bodies [28]. In order to study lake responses
to climate change, validation efforts of LSWT products are generally carried out at the
lake scale or at a coarse temporal resolution [23–25,27–29]. For example, [28] evaluated the
LSWT derived from the Advanced Very High Resolution Radiometer (AVHRR) with in-situ
measurements over 26 European Lakes where AVHRR LSWT data have absolute biases
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within 2 K and Pearson Correlations (R) of more than 0.9. In addition, LSWT data provided
by Landsat 5 and 7 were evaluated [29] in 59 water bodies, and their mean absolute error
is 1.34 K for those grids away from the land areas more than 180 m. Moreover, studies
of intra- and inter-annual variability of LSWT as a response to climate change normally
requires long-term LSWT data with a coarse temporal resolution [28,31]. The authors
of [31] analyzed seasonal patterns of LSWT and constructed global lake thermal regions
based on the LSWT data at a half-monthly time step.

However, requirements for water temperature data of inland water bodies are greatly
different in the application of water correction in the derivations of soil moisture from
passive remote sensing observations. Water temperature data are expected to be repre-
sentative over a large but fixed spatial scale, such as the 9 km Equal-Area Scalable Earth
(EASE) Grid 2.0 [35] which is a typical satellite-based Level 2 passive soil moisture retrieval
setting (e.g., SMAP). Data sets with a higher temporal frequency are more optimal and
conform to the instantaneous satellite observations of soil moisture given that the surface
temperature variations in time can greatly impact soil moisture retrieval. Assessments and
inter-comparisons of lake water temperature data sets in the frame of soil moisture are
insufficient.

LMLT data of ERA5 Land represent the average temperatures for the top layer of
lakes, which are different from surface skin temperatures (on the orders of micrometers and
millimeters) illustrated by satellite-based LSWT products. A default depth of 25 m has been
widely used in the derivation of ERA5 Land LMLT given the unavailability of water depths
over most inland water bodies [18]. Therefore, systematic discrepancies between LMLT
and LSWT data sets are expected as they reflect the lake thermal conditions at different
depths, but this is rarely investigated. Research from [20] updated the depth information
and compared LMLT data with in-situ measurements (with only one station having hourly
data), and concluded that the mean absolute errors of ERA5 Land are from 2.25 to 3.22 K.
Nevertheless, the representative depth (about 1 m) of in-situ observed temperature is also
different from GloboLakes and C-GLOPS LSWT products. Moreover, inter-comparisons
between areal LSWT and LMLT data sets could also be useful to more or less indicate their
quality over a wider geographical coverage.

In light of these, three lake temperature data sets were selected for evaluation and
inter-comparison over a five-year period from 2007 to 2011, including LSWT from Globo-
Lakes and C-GLOPS, and LMLT from ERA5 Land. Since the assessments of the above
products emphasize their usefulness in providing correction for microwave emissions from
open water for passive soil moisture retrieval, performance evaluation was conducted at
their native spatial scales and on the 9 km EASE Grid as an illustration. The latter was
used to demonstrate how these data sets perform in a larger spatial extent common in
passive soil moisture retrieval products. In addition to data accuracy, several aspects were
also examined in this study, which are long-term availability, global coverage, temporal
resolution, regularity in data maintenance and extension.

This paper is structured as follows. Section 2 introduces the three lake temperature
products and the in-situ measurements considered in this analysis. Section 3 presents the
statistical metrics to quantify product performance. The evaluation results and discussions
are reported in Sections 4 and 5, respectively, followed by a summary in Section 6.

2. Study Regions and Lake Temperature Data Sets
2.1. Study Regions

In this study, the buoys used to represent the in-situ measurements of lake water
temperature are distributed over 11 lakes in the North America as shown in Figure 1. Most
available stations are concentrated on the Great Lakes region composed of Lake Superior
(47.7◦N, 87.5◦W), Lake Huron (44.8◦N, 82.4◦W), Lake Erie (42.2◦N, 81.2◦W), Lake Michigan
(44.0◦N, 87.0 W), and Lake Ontario (43.7◦N, 77.9◦W). Along the border of the United
States and Canada, the total surface area of these five lakes is around 244,106 km2 [36].
Additionally, the Great Lakes have abundant freshwater resources, approximately 21% of
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the global surface freshwater volume [37]. There are also several stations within the Great
Lakes area, including Lake Saint Clair (42.5◦N, 82.7◦W), Lake Nipissing (46.3◦N, 79.8◦W),
and Lake Smicoe (44.4◦N, 79.3◦W). The remaining three lakes are Lake Great Slave (61.5◦N,
114.0◦W), Lake Winnipeg (52.1◦N, 97.3◦W), and Lake of the Woods (49.2◦N, 94.8◦W) that
locate in the further north regions. According to the classification of lake thermal regions
developed by [31], these lakes could be grouped into Northern Temperate and Northern
Cool with average temperatures around 282.95 K and 279.25 K, respectively.
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Figure 1. Distribution of in-situ buoys (red points).

2.2. Lake Temperature Data Sets

Three lake temperature products consisting of two satellite-based LSWT and one-
model based LMLT were examined in this study. The specifications of these data sets are
summarized in Table 1. In-situ measurements from buoys available within the studying
period were used as the reference in the validation.

Table 1. Summary of lake temperature data sets used in this study.

Datasets GloboLakes C-GLOPS ERA5 Land

Variable LSWT LSWT LMLT

Spatial Coverage 991 inland waters 1018 inland waters Global inland water bodies
and coastal waters

Spatial Resolution 0.05◦ × 0.05◦ 1 km × 1 km 0.1◦ × 0.1◦

Temporal Coverage June 1995–December 2016 May 2002–March 2012; June
2016–present January 1981 to present

Temporal Resolution Daily 10-day interval Hourly
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2.2.1. Global Observatory of Lake Responses to Environmental Change (GloboLakes)

GloboLakes LSWT version 4.0 provides daily averages of surface water temperature
for around 1000 lakes mostly extracted from the Global Lakes and Wetland Database
(GLWD) Level 1 product [17,38]. The retrievals of LSWT were derived using the same
algorithms on satellite observations from various types of sensors and platforms, including
the Along Track Scanning Radiometer (ATSR-2) on European Remote Sensing Satellite
(ERS-2), Advanced Along Track Scanning Radiometer (AATSR) on Envisat, and AVHRR
on MetOpA [39]. This data set contains a long-term daily LSWT data ranging from 1995 to
2016 with a spatial resolution of 0.05◦.

In this study, daily files with a regular latitude-longitude grid were used. In addition
to skin temperature of lakes’ surface, the information of uncertainty estimations and
quality level related to LSWT retrievals is also included in the data set. Quality level is
considered as a flag to quantify the confidence of LSWT retrievals, such as the degree of
interference caused by cloud contamination, and is unable to necessarily represent the
accuracy level. Data with all quality levels were retained in order to satisfy the need
of high temporal frequency in water correction of soil moisture retrievals. It should be
noted that a static land-water mask based on the European Space Agency Climate Change
Initiative (ESA CCI) Land Cover map with a spatial resolution of 300 m for the time period
2005–2010 has been applied to identify and delineate the lake pixels, which could lead to
inappropriate estimations of LSWT over water bodies with dynamic surface extensions [39].
In addition, the combined use of observations from different satellite sensors will inevitably
introduce more error sources despite the increase of available samples and the harmonized
processing.

2.2.2. Copernicus Global Land Operations (C-GLOPS)

LSWT of C-GLOPS contains gridded 10-day mean surface water temperature over
more than 1000 lakes composed of the world’s largest and those water bodies of partic-
ularly scientific interest [19]. Specifically, the 10-day LSWT data of C-GLOPS are tempo-
rally aggregated and generated via calculating the weighted average of Level 3 gridded
daytime files partitioned by the 1st to 10th, and 11th to 20th, and 21st to the end of
each month. Three types of LSWT are included in this data set, which are historical
(v1.0.2), reprocessed (v1.0.2), and near real-time products (v1.0.1 and v1.1.0), depending
on the timeliness and completeness of the Level 1b inputs during processing [26]. Since
the LSWT retrievals at a regular 1/120◦ resolution grid are originally derived from the
visible and infrared from the AATSR and Sea and Land Surface Temperature Radiome-
ter (SLSTR) onboard Envisat, and Sentinel 3A and 3B, the temporal coverage of this
data set was separated into two periods: May 2002 to April 2012, and November 2016
to present. This data set can be freely accessed and downloaded through the Coperni-
cus Global Land Portal (https://land.copernicus.eu/global/products/lswt, accessed on 9
March 2021). Similar to GloboLakes LSWT, the uncertainty information and quality levels
are also available and all quality-level data were adopted in this work.

According to [26], the accuracy of C-GLOPS overall fulfills the uncertainty requirement
of 1 K comparing against in-situ measurements. However, the utilization of LSWT with
a quality level lower than 3 should be handled carefully [22]. Again, one common factor
that could influence the observations is the presence of clouds given that the AATSR
and SLSTR operate at visible and infrared bands [22]. Additionally, the application of a
uniform threshold standard has risks in the identification of water and non-water grid
cells [22]. Contamination from land associated signals could affect the retrieval quality. As a
result, LSWT retrievals in the areas near the land are more likely to have lower performance.
Moreover, the numbers and observation times used in the temporal aggregation varies from
place to place, possibly leading to spatially or temporally inconsistent thermal conditions,
even for the same lake [22]. Furthermore, a static mask representing the maximum surface
water extent of lakes from 2015 to 2010 was adopted [22], which is improper for those water
bodies with evident changes in areas at the 1 km2 scale.

https://land.copernicus.eu/global/products/lswt
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2.2.3. ERA5 Land

ERA5 Land is a reanalysis product containing a series of variables that describe the
state of various land components from 1981 to the current time [18,20]. Although ERA5
Land utilizes ERA5 atmospheric forcing as inputs to derive the land components, the
ERA5 Land data set has a higher spatial resolution at 0.1◦ compared to its predecessor at
0.25◦. Without coupling with the atmospheric module of ECMWF’s Integrated Forecasting
System and ocean wave models as well as data assimilation, the processes related to the
computation and delivery of ERA5 Land are expected to be more efficient. The core of
ERA5 Land is the Tiled ECMWF Scheme for Surface Exchanges over Land incorporating
land surface hydrology (H-TESSEL) (version CY45R1) [40].

In this study, hourly LMLT from the ERA5 Land data set was selected to reflect the
thermal conditions over various inland water bodies. The ECMWF Integrated Forecasting
System separates the vertical structure of inland water bodies into two levels: the upper
(mix layer) and lower (thermocline layer) layers given the implementation of the Flake
model [41,42]. In light of this, LMLT represents the average water temperature at the
uppermost layer of lakes and differs from skin temperature at the water surface. Lake-
related variables can be calculated for each pixel so as to incorporate the sub-grid features
of the small to medium-size lakes [20,42,43]. ERA5 Land data set provides a spatially
complete temperature map for both inland water bodies and coastal waters, but it is
necessary to use an auxiliary data set that describes the water fraction within the grid cell
simultaneously with LMLT. This static map of lake cover is provided by the reanalysis
product of ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5
-single-levels?tab=overview, accessed on 15 November 2020) at 0.25◦ and then interpolated
into 0.1◦ and the 9 km EASE grid. For inland water bodies where lake depths are not
available, a default value of 25 m has been used [18], which is likely to result in unreasonable
LMLT retrievals, especially for those lakes with shallow depths.

2.2.4. In-Situ Measurements of Lake Surface Temperature

In-situ lake surface temperatures collected by the moored buoys from fixed locations
were used to benchmark the performance of assimilated and reanalysis products. Based
on the stations considered in the Quality Validation Report of C-GLOPS [26], 34 buoys
(Table A1 in Appendix A) over lakes in Northern America were selected. These measure-
ments are from either the National Data Buoy Center (NDBC) (https://www.ndbc.noaa.
gov/, accessed on 14 March 2021) or Fisheries and Ocean Canada (FOC) (https://www.
meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/data-donnees/index-eng.asp, ac-
cessed on 14 March 2021). Figure 1 describes the geographical locations of in-situ mea-
surements. Historical files of hourly water temperature can be used in validation for
remotely-sensed and modelled lake temperature data sets.

3. Methodology and Assessment Metrics
3.1. Validation against In-Situ Measurements

Evaluation of lake temperature data sets were firstly assessed by comparing against
34 in-situ buoys distributed in the North America at their native spatial and temporal
resolutions. LSWT data of all quality levels from GloboLakes and C-GLOPS were retained
in the assessments to incorporate as many observations as possible. Although low-quality-
level samples does not necessarily represent inferior accuracy, the overall better statistic
metrics for LSWT data at quality levels of 4 or 5 have been obtained [26]. Despite that, the
degradation on the performance of LSWT data sets is expected to be limited as the majority
of LSWT data with quality levels of 4 and 5 [26]. Following a similar manner used in [15],
data with water temperature below 275.15 K (2 ◦C) were screened out to avoid unreliable
observations near the freezing point.

Given that in-situ data were collected from different sources (Table A1), quality control
measures have been adopted to filter out those abnormal and suspicious observations. A
pre-determined threshold (in addition to 275.15 K mentioned above) and manual inspection

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://www.ndbc.noaa.gov/
https://www.ndbc.noaa.gov/
https://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/data-donnees/index-eng.asp
https://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/data-donnees/index-eng.asp
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were used. Firstly, a threshold of 306.55 K was employed and those in-situ observations
with temperatures above this value were removed. This boundary value represents the
maximum temperature for lakes under Northern Temperate and Northern Cool classi-
fications (all in-situ stations are within these areas) [31]. Then, some sudden spikes or
extremely low temperatures described by the in-situ time series were manually masked.

Since the temporal resolutions of in-situ observation, LMLT and LSWT data sets
vary from sub-hourly to 10-day intervals, temporal averaging procedures were required
before assessments. Similar to the steps applied in [26], for example, 10-day averages of
in-situ observations were computed for evaluating C-GLOPS LSWT. In addition, it should
be noted that data from in-situ observations, ERA5 Land, GloboLakes, and C-GLOPS
reflect water temperature at different depths. Generally, LSWT data measured by satellite
instruments could represent the water temperature from many micrometers to a few
millimeters depending on the instrument frequencies, whereas the in-situ buoys usually
detect the water temperature at around 1 meter (as described in Table A1) under the water
surface and without significant effects from diurnal cycles. In terms of ERA5 Land, LMLT
reflects the average temperature for the top-most layers of lakes and its corresponding
depth is dependent on lake depth used in the Flake model [20]. However, a default
depth of 25 meters was used in the derivations of LMLT over most inland water bodies
due to the common unavailability of depth information [18]. Therefore, discrepancies
between LMLT and LSWT are expected to exist but have not been widely investigated yet.
Regarding the LSWT and in-situ observations, skin effect could account for the -0.2 K error
mainly generated by the different observing depths between in-situ measurements and
satellite sensors [26]. The remaining residuals could be contributed by other unquantified
factors, such as the near-surface stratification, underestimating atmospheric attenuation or
overestimating surface emissivity [26,27].

Subsequently, ERA5 Land, GloboLakes, and C-GLOPS were resampled into the EASE
9 km scale by bilinear interpolation in order to quantify the performances of these data
sets in the context of soil moisture retrievals as well as analyze the influences on their data
accuracy by rescaling processing. Again, in-situ measurements were used as reference
to assess the performances of three lake temperature products at the 9 km EASE grid
after temporal averaging. It should be noted that statistical metrics were considered to
be effective and calculated only if there are at least 30 paired data between two data
sets [44–46]. In addition to the uncertainty of products, seasonal trends captured by lake
temperature data sets were also illustrated and examined by time series over Lake Superior
and Lake Huron. Furthermore, dependency of errors between the above data sets and
in-situ measurements on temperature ranges were also investigated.

3.2. Inter-Comparisons among Lake Temperature Products at the 9 km Scale

Due to the fact that in-situ measurements are only available in the limited geographical
regions, a global-scale assessment based on in-situ observations is difficult to achieve.
Therefore, inter-comparisons among different lake temperature products could be an
effective alternative to corroborate their relative performances. It is particularly feasible
when the LSWT retrieval algorithm is found on physics [26] to guarantee the consistency of
derived LSWT values. The EASE 9 km grid cells with lake fractions smaller than 0.05 were
not considered in accordance the requirements of passive remote sensing soil moisture
retrieval algorithm.

Following similar steps adopted in the Section 3.1, overlapped pixels among three lake
temperature data sets were firstly determined and then temporal averaging was separately
applied before three groups of pairwise comparisons (Figure 2). For example, EAR5 Land
hourly LMLT data were temporally aggregated at a 10-day scale prior to comparing with
C-GLOPS LSWT. The general workflow adopted for the assessments and comparisons of
performances of considered water temperature data sets has been described in Figure 2,
and different filling colors correspond to various temporal scales. Additionally, differences
and correlations among LMLT and LSWT products were studied conditioned by lake cover
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fractions. More importantly, the numbers of available pixels and data during the studying
period were investigated and compared given that the requirements of high temporal
resolution and wide spatial coverage in the soil moisture retrievals.
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3.3. Assessment Metrics

Six statistical metrics were adopted to reflect the accuracy of assessed products, which
are mean bias, standard deviations of bias, root mean square error (RMSE), the Pearson
correlation coefficient (R), median bias, and robust standard deviation (RSD). Standard
deviation and RSD describe the dispersion of mean bias and median bias, respectively.
Robust statistical metrics (i.e., median bias and RSD) were considered because they are less
susceptible to outliers due to extreme observations [26]. However, unreliable estimations of
water temperature over inland water bodies are inevitable, possibly due to the undetected
clouds or horizontal variability at water surface caused by winds [21,26]. RSD is calculated
as the following steps: (1) calculate the absolute differences between the biases and median
bias (2) determine the median value of those prior absolute differences (3) multiply a factor
(1.5) with the median value obtained in Step (2) as RSD [26]. Here, water temperatures
from the evaluated data sets and in-situ measurements are denoted as Test and Ttrue. The
formulas of those statistical metrics are given in Equations (1)–(6), where E[. . .], M[. . .], σ,
µ, and N represent the arithmetic mean, median, standard deviation, mean bias, and the
number of samples, respectively.

mean bias = E[Test]− E[Ttrue] (1)

σ =

√
(xi − µ)2

N
(2)

RMSE =

√
E
[
(Test − Ttrue)

2
]

(3)
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R =
E[(Test − E[Test])(Ttrue − E[Ttrue])]

σestσtrue
(4)

median bias = M[Test − Ttrue] (5)

RSD = M[|(xi −M[xi])|]× 1.5 (6)

4. Results

In this section, assessment results of LMLT from ERA5 Land and LSWT from Globo-
Lakes and C-GLOPS are presented. Firstly, validations against their corresponding tem-
poral averaged in-situ measurements were conducted to reflect their innate performances
at native scales. Time series and scatter plots were applied to describe the consistency in
terms of the seasonal trends and proximity of absolute values among different products.
In the framework of passive remote sensing soil moisture retrievals, the performances of
ERA5 Land, GloboLakes and C-GLOPS at the EASE 9 km pixels were further analyzed,
and the effects of the errors along the increased temperatures were also investigated. Ad-
ditionally, spatial coverages, temporal resolutions, and overlapped pixels of LMLT and
LSWT data sets were studied and prepared for inter-comparisons over wider areas where
in-situ measurements are scarce or unavailable. Discrepancies between LMLT and LSWT
products were then examined across various lake cover fractions.

4.1. Overall Performance of Lake Temperature Products at Their Original Resolutions

Figure 3 describes the boxplots of median bias, RMSE and R for hourly LMLT of
ERA5 Land, daily LSWT of GloboLakes, and 10-day aggregated LSWT from C-GLOPS,
relative to the lake temperature from in-situ observations. In terms of median bias and
RMSE, LSWT from GloboLakes and C-GLOPS is closer to in-situ measurements than LMLT
from ERA5 Land. LSWT products tend to underestimate while ERA5 Land product is
inclined to overestimate. Additionally, all three data sets have exhibited a strong capacity
to capture the temporal variations because their R values are consistently higher than 0.8.
In general, marginally inferior accuracy of ERA5 Land is expected because LSWT data
from GloboLakes and C-GLOPS are able to reflect the thermal conditions over smaller
areas by mapping at finer spatial resolutions and thereby correspond better to point in-situ
measurements.
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10-day LSWT of C-GLOPS at their native spatial resolutions. N represents the number of in-situ stations used to calculate
the metrics.

As mentioned in Section 3, median bias and RSD are considered to be more reliable
in the assessments of water temperature data sets by reducing the impacts of possibly
contaminated observations, compared to mean bias and its standard deviation [26]. Ac-
cording to Table 2, differences between the conventional and robust statistical metrics are
straightforward. RSD values of LSWT products are around half of their standard deviations
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whereas the discrepancies of two types of metrics are minor for LMLT from model-based
ERA5 Land data set.

Comparisons of time series have been carried out over Lake Superior and Lake
Huron, where several buoys are available during the studying period to further assess the
seasonal consistency between in-situ measurements and lake temperature data sets. As
shown in Figures 4 and 5, seasonal trends of lake water temperature are relatively stable,
and the maximum and minimum water temperatures occur in late summer (August or
September [23]) and spring (April or May) regardless of ice cover periods. Overall, seasonal
patterns and averages of lake water temperatures in Lake Superior and Lake Huron are
highly similar. The ERA5 Land product has shown noticeable overestimation, especially
during summer seasons compared to GloboLakes and C-GLOPS.
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Figure 4. Variations of lake water temperature on Lake Superior from 2007 to 2011 ((a): Station 45001 48.06◦N, 89.79◦W;
(b): Station 45004 47.59◦N, 86.59◦W; (c): Station 45006 47.34◦N, 89.79◦W; (d): Station 45136 48.54◦N, 86.95◦W; (e): Station
45023 47.27◦N, 88.61◦W; (f): Station 45025 46.97◦N, 88.40◦W; (g): Station 45027 46.86◦N, 91.93◦W; (h): Station 45028 46.81◦N,
91.83◦W).
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Figure 5. Variations of lake water temperature on Lake Huron from 2007 to 2011 ((a): Station 45003 45.53◦N, 82.84◦W;
(b): Station 45008 44.28◦N, 82.42◦W; (c): Station 45137 45.54◦N 81.02◦W; (d): Station 45143 44.94◦N, 80.63◦W; (e): Station
45149 43.54◦N, 82.08◦W; (f): Station 45154 46.05◦N, 82.64◦W).

Table 2. Statistical metrics between in-situ measurements and lake temperature products at their native resolutions and the
9 km EASE grid.

Resolution Native Resolution 9 km EASE Grid

Data
sets/Metrics

Median
Bias RSD Mean

Bias STD * RMSE R Median
Bias RSD Mean

Bias STD * RMSE R

ERA5 Land 1.56 2.76 1.64 2.76 3.41 0.88 1.36 2.68 1.40 2.68 3.34 0.89

GloboLakes −0.27 0.86 −0.97 2.77 2.91 0.88 −0.29 0.83 −0.90 2.82 2.97 0.88

C-GLOPS −0.31 0.93 −0.60 2.18 2.33 0.92 −0.36 0.92 −0.69 2.15 2.24 0.94

* STD: Standard Deviation.

According to Figure 6a–c, most data from lake temperature data sets and in-situ
measurements are consistent and distributed along the 1:1 line. Again, ERA5 Land tends
to overestimate, and LSWT values from GloboLakes and C-GLOPS have smaller biases
relative to in-situ measurements. Over the locations where in-situ stations are considered
in this study, lake water temperature data are mostly concentrated on the interval from 290
to 295 K. Deviation extents between in-situ observations and lake temperature data sets are
relatively stable with the increase of water temperature (Figure 7a–c). Moreover, the ranges
of differences seem to become larger under warmer conditions.
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Figure 6. Scatter plots of data from lake temperature data sets at their original resolutions (a,c,e) and at the 9 km EASE grid
(b,d,f) compared to in-situ measurements. The number on the color bar represents the number of available data samples
within each assigned temperature interval. Points closer to yellow mean more samples lie in that temperature range whereas
these closer to blue mean less samples lie in that temperature range.
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lie in that temperature range whereas these closer to blue mean less samples lie in that temperature range.

4.2. Overall Performance of Lake Temperature Products at the 9 km EASE Resolution

Lake temperature data sets were resampled to the 9 km EASE resolution and compared
with in-situ measurements to measure the effects of changing spatial resolution on the
estimations of lake temperature. Similar to the results obtained at their original resolutions,
LSWT values from the GloboLakes and C-GLOPS have smaller bias and RMSE than LMLT
from ERA5 Land (Figure 8). In terms of temporal correlations, all three data sets have
comparable performances with R values of 0.89, 0.88, and 0.94 (Figure 8 and Table 2).
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Figure 8. Boxplots of median bias (a), RMSE (b), and R (c) for hourly LMLT of ERA5 Land, daily LSWT of GloboLakes, and
10-day LSWT of C-GLOPS at the 9 km EASE grid. N represents the number of in-situ stations used to calculate the metrics.

According to Table 2, the median bias (mean bias) of ERA5 Land, GloboLakes, and
C-GLOPS are 1.36 K (1.40 K), −0.29 K (−0.90 K), and −0.36 K (−0.69 K). RSD values
of LSWT products are smaller than the standard deviations of mean bias. Lake water
temperatures provided by the resampled products were matched and compared with
in-situ measurements at various corresponding temporal resolutions (Figure 6b,d,f). LSWT
data of GloboLakes and C-GLOPS at the 9 km EASE resolution still have a good agreement
with in-situ observations but the numbers of paired samples decrease compared to those at
their native resolutions. As shown in Figure 7d,f, the errors between LSWT products at the
coarser resolution and in-situ measurements are negatively extended.

4.3. Matchup Intercomparison of Lake Temperature Products

Comparisons of resampled lake temperature data sets have been performed on all their
overlapping regions across the world to comprehensively assess the performance of ERA5
Land LMLT, GloboLakes LSWT, and C-GLOPS LSWT. Since all three lake temperature
products gridded on the 9 km EASE map still have different temporal resolutions, temporal
averaging is required before their inter-comparisons. As mentioned earlier, a lake cover
fraction threshold of 0.05 was used to screen out some land grids. On one hand, this
percentage of lake cover conforms to the threshold of static water fraction considered in
SMAP in which the quality of soil moisture retrieved in areas with a water fraction of more
than 5% may be unreliable [14]. On the other hand, compared to 0.5, a smaller threshold
is conducive to involving as many inland water bodies as possible, especially for narrow
bodies and minor water areas. The inclusion of such water bodies is essential and critical in
soil moisture retrievals because small-scale shallower lakes commonly have more distinct
diurnal variations in temperature than sea water or deeper lakes [42].

The number of grids with ERA5 Land product exceeds, by an order of magnitude,
the GloboLakes and C-GLOPS products, which have 12781 and 11722 available pixels,
respectively (Table 3). Although the temporal resolutions of GloboLakes and C-GLOPS are
nominally daily and 10 days, they actually have effective LSWT data around every 4 days
and 26 days, respectively. However, the ERA5 Land product has the ability to continuously
update LMLT as long as the input data are available. There are a total of 10,111 grids
where all three products have available temperature data that are necessarily obtained
in coincidence. It should be noted that there may be only one effective LSWT in certain
overlapped grids. Those pixels are distributed over various locations spanning from the
Arctic region to Africa. Long-term frozen conditions could be one possible reason leading
to very few observations for high-latitude grids.
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Table 3. Spatial and temporal characteristics of lake temperature data sets.

Datasets ERA5 Land GloboLakes C-GLOPS

Available Pixels 171,969 12,781 11,722
Average Temporal Resolution per available pixel (day) 1/24 ~4 ~26

Overlapped pixels 10,111

Based on the available overlapping pixels between any two lake temperature products,
5-year averages were calculated to represent the grid-scale water temperatures. According
to Figure 9, lake water temperatures from all three products are close to each. 5-year
averages of LMLT are overall higher than 5-year averages of LSWT, with the results
comparing consistently against the in-situ measurements. At the range from 280 to 285 K,
5-year averages of LSWT from C-GLOPS are slightly higher than those from GloboLakes,
partially due to a small number of C-GLOPS LSWT samples over some pixels.
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Figure 9. Scatter plots of 5-year averages lake temperature data. (a): GloboLakes versus ERA5 Land (N = 10111); (b).
C-GLOPS versus ERA5 Land (N = 10111); (c). GloboLakes versus C-GLOPS (N = 10111). N represents the number of pixels
with paired data. The number on the color bar represents the number of available data samples within each assigned
temperature interval. Points closer to yellow mean more samples lie in that temperature range whereas these closer to blue
mean less samples lie in that temperature range.

As shown in Figure 10, those statistical metrics were computed based on Figure 10a,d:
daily ERA5 Land LMLT and daily GloboLakes LSWT, Figure 10b,e: 10-day ERA5 Land
LMLT and 10-day C-GLOPS, and Figure 10c,f: 10-day GloboLakes LSWT and 10-day
C-GLOPS. In addition, their discrepancies were further conditioned by the lake cover
fractions. Again, the composite 10-day LSWT from GloboLakes and C-GLOPS have shown
great consistency in both absolute values and temporal variations because of the utilization
of observations from AATSR (Figure 10c,f). In addition, ERA5 Land products have also
exhibited high correlations with GloboLakes and C-GLOPS on R values near or even
more than 0.9 (Figure 10d,e). LMLT tend to be lower than LSWT in the regions with low
water coverage (0.05–0.25) whereas the scenarios are opposite over areas with more water
bodies (Figure 10a,b). In terms of differences and R, data of ERA5 Land are closer to LSWT
products when the lake cover fraction ranges from 0.05 to 0.5.
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5. Discussion

The impacts of varying spatial resolutions on the performances of LSWT and LMLT
products can be studied by comparisons of their statistical metrics at their original reso-
lutions and the 9 km EASE grids. Generally, metric values at the coarser resolution are
within the same magnitude and comparable to those at their original spatial resolutions.
Therefore, it is expected that any given resampling procedure only has limited effects on
degrading quality of lake temperature data sets, especially for ERA5 Land whose native
resolution is close to the 9 km EASE grid. Despite that, absolute values of median bias of
C-GLOPS and GloboLakes at the 9 km EASE grid have slightly increased. This is partly
because the resampled LSWT products have a coarser resolution, representing the LSWT
over broader water areas, and become more deviated from in-situ data collected at a point
scale.

Underestimations of LSWT products compared to the in-situ measurements conform
to previous validation results [26–29,32]. According to [26], the differences between C-
GLOPS with a quality level higher than 3 and in-situ measurements are −0.24 K ± 0.88 K,
which is comparable to the results shown in Table 2 (−0.31 K ± 0.93 K). A slightly larger
bias could be partially caused by the consideration of all quality-level data here. In addition,
all the lakes with positive biases presented in [26] are not included in this study, possibly
leading to a higher negative median bias. A negative 0.2 K error between the LSWT and in-
situ data is considered to be normal due to the cool skin effect of surface water temperature
relative to in-situ measurements of the sub-surface [26]. Similarly, systematic discrepancies
among LMLT and LSWT products cannot be ignored since the water depths modeled
by ERA5 Land (default 25 m [18]), and LSWT products (skin temperature) are different.
Moreover, the mean absolute error of the ERA5 Land data set (0.1◦) here is 2.83 K, close to
the results shown in [20] (2.25 to 3.22 K).

Despite LSWT being closer to in-situ observations in terms of absolute values, the
spatial coverage of ERA5 Land is greater than the LSWT products mainly focusing on larger
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water bodies [17,19] given the differences in the available pixel numbers. Additionally, as
observed in Figures 4 and 5, the provision of discrete or even sporadic satellite observations
from GloboLakes and C-GLOPS could be insufficient to continuously reflect instantaneous
thermal variations of inland water bodies required in the frame of soil moisture. As
mentioned earlier, the quality of LMLT is less disturbed by the resampling procedures
as well as the local weather conditions at a certain time. Moreover, ERA5 Land LMLT
data are available from 1981 to present, compared to GloboLakes (1995–2016) or C-GLOPS
with a gap period. Furthermore, consistently high temporal correlations of hourly LMLT
and hourly in-situ measurements, daily LMLT and daily LSWT of GloboLakes, and 10-
day LMLT and 10-day LSWT of C-GLOPS provide confidence in making LMLT closer to
in-situ measurements by adopting proper rescaling approaches in the future. In light of
these, ERA5 Land LMLT could be the optimal water temperature product used for water
correction in soil moisture retrievals.

It should be noted that there are several limitations to this study. Firstly, the obtained
evaluation results are based on lake temperature products from 2007 to 2011, which is
only a partial portion of the temporal extent for each data set. In particular, the C-GLOPS
product is separated into two intervals using observations from different satellite sensors.
There might be a slight underestimation related to the quality of the C-GLOPS product,
given that the newly reprocessed C-GLOPS LSWT is aggregated using the observations
from SLSTR instruments with a higher temporal frequency [26].

In addition, in-situ measurements considered here are all distributed in North America
and thus unable to fully represent lake temperatures globally across various climatic
and geophysical conditions. However, those areas with in-situ measurements pertain to
Northern Cool in terms of lake thermal regions, representing more than 40% of total lake
areas [31]. The evaluation results are thereby sufficient to indicate some aspects of the
quality of considered LMLT and LSWT products. The retrieval method of LSWT products is
based on physics and their stable performances are expected [22], and therefore the analyses
of inter-comparison results between LMLT and LSWT data sets are of more importance.
Nevertheless, it is still challenging to assess those grids with inland water bodies beyond
the scopes of GloboLakes and C-GLOPS. Furthermore, some areas contiguous to oceans
have been excluded from the ERA5 Land data set. However, those pixels are also critical
in the retrieval of global soil moisture. Therefore, plenty of products associated with sea
surface temperature may be evaluated and compared with ERA5 Land LMLT in order to
complement those coastal grids in future studies.

6. Conclusions

The accuracy of land surface emissions governs the quality of retrieved soil moisture
products, and reasonable partitioning of water and land emissions from satellite-based
observations requires accurate estimations of water temperature. In light of this, three
newly released lake temperature products, ERA5 Land, GloboLakes, and C-GLOPS, have
been evaluated by comparing with in-situ observations as well as inter-comparisons among
them from 2007 to 2011. Six statistical metrics have been selected to reflect the performance
in aspects of temporal correlations and the proximity of absolute values. Overall, the
LMLT of the ECMWF ERA5 Land product has been considered as the optimal option to be
used in correction procedures of passive remote sensing soil moisture retrievals due to its
wide spatial coverage, long-term consistent performance, less interference from resampling
procedures, and the continuous provision of hourly updated data.

Generally, the three lake temperature data sets have comparable performances and
adequate capacity to capture the dynamic variations of water temperatures (indicated by
R values more than 0.8). The yielded differences between lake temperature products and
in-situ measurements are 1.56 K ± 2.76 K, −0.27 K ± 0.86 K, and −0.31 K ± 0.93 K in the
original spatial resolutions, and 1.36 K ± 2.68 K, −0.29 K ± 0.83 K, and −0.36 ± 0.92 K
in the EASE 9-km scale for ERA5 Land, GloboLakes, and C-GLOPS, respectively. In light
of these, the transfer of spatial resolution from their native scales to the 9-km EASE grids
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has not largely affected the assessment results. Moreover, the effects of temperatures on
biases between lake temperature data sets and in-situ measurements are limited. Further-
more, median bias and RSD could be more appropriate to represent the quality of lake
temperature products compared to the conventional metrics.

Evidently, the ERA5 Land product has advantages in both spatial coverage and
temporal resolution for satisfying the requirements for soil moisture retrievals in which
lake water temperatures (for example) at 6 a.m. and 6 p.m. are needed (to coincide with
the SMAP overpassing time). In terms of 5-year averages over the studying period, LMLT
values are overall higher than LSWT data while the estimations of LSWT of GloboLakes
and C-GLOPS are closer to each other, partially because of the utilization of observations
from the same satellite sensor. Furthermore, the temporal variations of LMLT and LSWT
products are highly correlated while their absolute values are closer over pixels with small
water fractions in a range of 0.05 to 0.5.

Although different water depths are considered in LMLT and LSWT products as well
as in-situ measurements, they exhibit similar patterns in illustrating the seasonal patterns
and close values within 1.6 K to demonstrate the consistency of various considered data
sets. Given those, the extensive spatial coverage, hourly updated lake temperature, and
long-term availability, ERA5 Land based on the ECMWF H-TESSEL model is expected to
be the best candidate for water correction in soil moisture retrievals. Additionally, this
study could provide useful information related to lake temperature products for data users
who are interested in the investigations of the thermal conditions of inland water bodies in
the context of climate change.
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Appendix A

Table A1. Summary of in-situ measurements used in this study.

Index Name/Country Latitude Longitude Start Year Buoy
Senor Depth
(Meter Below
Water Line)

Organization *

1 Superior/Canada-USA 48.06 −89.79 1979 45001 1.1 NDBC
2 Superior/Canada-USA 47.59 −86.59 1980 45004 1.3 NDBC
3 Superior/Canada-USA 47.34 −89.79 1981 45006 1.3 NDBC
4 Superior/Canada-USA 48.54 −86.95 1989 45136 MTU
5 Superior/Canada-USA 47.27 −88.61 2010 45023 3.0 MTU

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://catalogue.ceda.ac.uk/uuid/76a29c5b55204b66a40308fc2ba9cdb3
https://land.copernicus.eu/global/products/lswt
https://www.ndbc.noaa.gov/
https://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/data-donnees/index-eng.asp
https://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/data-donnees/index-eng.asp
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Table A1. Cont.

Index Name/Country Latitude Longitude Start Year Buoy
Senor Depth
(Meter Below
Water Line)

Organization *

6 Superior/Canada-USA 46.97 −88.40 2011 45025 3.0 UMD
7 Superior/Canada-USA 46.86 −91.93 2011 45027 1.0 UMD
8 Superior/Canada-USA 46.81 −91.83 2011 45028 1.0 NDBC
9 Huron/Canada-USA 45.53 −82.84 1980 45003 0.4 NDBC
10 Huron/Canada-USA 44.28 −82.42 1981 45008 1.3 ECCC
11 Huron/Canada-USA 45.54 −81.02 1989 45137 ECCC
12 Huron/Canada-USA 44.94 −80.63 1997 45143 ECCC
13 Huron/Canada-USA 43.54 −82.08 2000 45149 ECCC
14 Huron/Canada-USA 46.05 −82.64 1999 45154 NDBC
15 Michigan/USA 45.34 −86.41 1979 45002 NDBC
16 Michigan/USA 42.67 −87.03 1981 45007 1.3 UMC
17 Michigan/USA 45.41 −85.09 2010 45022 1.0 LT
18 Michigan/USA 41.98 −86.62 2011 45026 1.0 ECCC
19 Great Slave/Canada 61.18 −115.31 1992 45141 ECCC
20 Great Slave/Canada 61.98 −144.13 2004 45150 NDBC
21 Erie/Canada 41.68 −82.40 1980 45005 1.6 ECCC
22 Erie/Canada 42.74 −79.29 1994 45142 ECCC
23 Erie/Canada 42.46 −81.22 1989 45132 ECCC
24 Winnipeg/Canada 50.80 −96.73 1999 45140 ECCC
25 Winnipeg/Canada 53.23 −98.29 2004 45144 ECCC
26 Winnipeg/Canada 51.87 −96.97 2001 45145 NDBC
27 Ontario/Canada 43.62 −77.40 2002 45012 1.3 ECCC
28 Ontario/Canada 43.78 −76.87 1989 45135 ECCC
29 Ontario/Canada 43.23 −79.53 1991 45139 ECCC
30 Ontario/Canada 43.77 −78.98 2009 45159 ECCC
31 Woods/Canada 49.64 −94.50 2000 45148 ECCC
32 Saint Clair/Canada 42.43 −82.68 2000 45147 ECCC
33 Nipissing/Canada 46.23 −79.72 1999 45152 ECCC
34 Simcoe/Canada 44.50 −79.37 1999 45151 ECCC

* Organization represents those institution to install and maintain the corresponding buoys. NDBC: National Data Buoy Center; ECCC:
Environmental and Climate Change Canada; MTU: Michigan Technological University; UMD: University of Minnesota, Duluth; UMC:
University of Michigan CILER; LT: Limon Tech.
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