
 

 

 

 
Remote Sens. 2021, 13, 1868. https://doi.org/10.3390/rs13101868 www.mdpi.com/journal/remotesensing 

Article 

An Evaluation of Pixel- and Object-Based Tree Species  

Classification in Mixed Deciduous Forests Using Pansharpened 

Very High Spatial Resolution Satellite Imagery 

Martina Deur 1, Mateo Gašparović 2,* and Ivan Balenović 3 

1 Institute for Spatial Planning of Šibenik-Knin County, Vladimira Nazora 1/IV, 22000 Šibenik, Croatia;  

martina.deur@zpu-skz.hr 
2 Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb,  

10000 Zagreb, Croatia 
3 Division for Forest Management and Forestry Economics, Croatian Forest Research Institute, Trnjanska 

Cesta 35, 10000 Zagreb, Croatia; ivanb@sumins.hr 

* Correspondence: mgasparovic@geof.unizg.hr; Tel.: +38-51-463-9223 

Abstract: Quality tree species information gathering is the basis for making proper decisions in for-

est management. By applying new technologies and remote sensing methods, very high resolution 

(VHR) satellite imagery can give sufficient spatial detail to achieve accurate species-level classifica-

tion. In this study, the influence of pansharpening of the WorldView-3 (WV-3) satellite imagery on 

classification results of three main tree species (Quercus robur L., Carpinus betulus L., and Alnus glu-

tinosa (L.) Geartn.) has been evaluated. In order to increase tree species classification accuracy, three 

different pansharpening algorithms (Bayes, RCS, and LMVM) have been conducted. The LMVM 

algorithm proved the most effective pansharpening technique. The pixel- and object-based classifi-

cation were applied to three pansharpened imageries using a random forest (RF) algorithm. The 

results showed a very high overall accuracy (OA) for LMVM pansharpened imagery: 92% and 96% 

for tree species classification based on pixel- and object-based approach, respectively. As expected, 

the object-based exceeded the pixel-based approach (OA increased by 4%). The influence of fusion 

on classification results was analyzed as well. Overall classification accuracy was improved by the 

spatial resolution of pansharpened images (OA increased by 7% for pixel-based approach). Also, 

regardless of pixel- or object-based classification approaches, the influence of the use of pansharp-

ening is highly beneficial to classifying complex, natural, and mixed deciduous forest areas. 

Keywords: pansharpening; random forest; object-based classification (OBIA); pixel-based  

classification; WorldView-3 

 

1. Introduction 

Over the last few decades, significant technological development of optical sensors 

has increased the possibility of remote sensing applications in many disciplines, including 

forestry. The application of remote sensing in forestry on both local and regional scales 

decreases the need for difficult, expensive, and slow field surveys and at the same time 

increases the quantitative and qualitative value of the information obtained [1]. Optical 

sensors (multispectral or hyperspectral) are the most commonly used in remote sensing, 

mainly due to an increase in availability [2,3]. Various sensors have provided various data 

sets of different spatial, spectral, radiometric, and temporal resolutions. 

Moderate (e.g., Landsat) [4–6] and high spatial (e.g., RapidEye) [7–10] resolution sat-

ellite imagery have been shown to be very useful for land-use and land-cover classifica-

tion [3]. On the other hand, very high resolution (VHR) satellite imagery (e.g., Plan-

etScope, SkySat, WorldView) provides a large number of more detailed information and 
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presents an effective tool for individual tree species classification [11,12]. Most of these 

VHR sensors produce lower spatial resolution for multispectral (MS) bands and higher 

spatial resolution for panchromatic (PAN) that can be useful for further studies.  

According to Fassnacht et al. [2], spatially explicit information of tree species plays 

an important role in a wide variety of applications in forestry, regardless of the forest or 

vegetation type. In order to get improved, spatially explicit information, the spatial reso-

lution of MS data can be upgraded by data fusion or pansharpening. 

Fusion methods, also known as pansharpening, essentially are based on the combi-

nation of higher spatial resolution of PAN band and the spectral information of the lower 

resolution MS bands [13]. The higher spatial resolution of PAN band is not very often 

used in forest applications since (most applications remain in urban environments) it is 

required for accurate description of texture and shapes, while lower resolution MS bands 

are required for accurate discrimination of classes. Fusion methods can be divided into 

two categories: the component substitution methods and the multi-resolution analysis 

methods [14]. Applying a color decorrelation transform, component substitution methods 

(e.g., Brovey’s band-dependent spatial detail, principal component analysis transform, in-

tensity-hue-saturation transform, Gram–Schmidt orthonormalization, and partial replace-

ment adaptive component substitution) convert unsampled lower-resolution multispec-

tral bands into a new color system that differentiates the spatial and spectral details [15]. 

Multiresolution analysis-based methods (e.g., Laplacian pyramid, high-pass modulation, 

contourlet, and discrete wavelet transform), through a multi-resolution decomposition, 

combine the high frequencies inherent in the PAN band and unsampled multispectral 

components [15]. Most of the new pansharpening techniques are generally grouped as 

Bayesian, sparse reconstruction, variational optimization-based methods, model-based 

optimization, multi-resolution analysis, and component substitution [16]. Some 

pansharpening algorithms have been proven to be suitable not only for visual enhance-

ments of imagery [17] but also for quantitative analyses in forested areas [18,19]. Although 

many different pansharpening algorithms exist, not all are suitable for quantitative anal-

yses [20]. Due to the loss of some of the spectral properties of original bands during the 

pansharpening process, some algorithms are designed to maximize spectral preservation 

(e.g., principal component analysis, wavelet transform) [20,21]. Also, a pansharpened 

product which proved to be the best in terms of visual inspection and quality indexes may 

be suitable for applications such as image interpretation while at the same time not suita-

ble for applications related to classification and object identification [14]. According to 

Ghosh et al. [22], the selection of an appropriate fusion method depends on various fac-

tors, such as algorithms, scene, choice of tuning parameters, and user experience. The 

spectral, spatial, and radiometric integrity of pansharpened imagery is important for tree 

species classification because the process of pansharpening increases the spatial resolution 

of the imagery and consequently improves tree species classification. Several studies an-

alyzed the influence of fusion on classification accuracy and indicated an increased clas-

sification accuracy when using the fused imagery [23,24]. 

Tree species classification can be done using individual pixels (pixel-based approach) 

or tree crown objects (object-based approach). The object-based approach, in the last dec-

ade, has made significant advances and has been proven as superior to pixel-based ap-

proaches [25,26], producing higher classification accuracy, especially in the classification 

of VHR satellite imagery when the pixel size is significantly smaller than the average size 

of the objects of interest. Also, the object-based approach eliminates the salt and pepper 

or noise effect by considering mean pixel values within objects instead of individual pixel 

values [27]. 

The accuracy of object-based classification mainly depends on the quality of image 

segmentation [28]. Segmentation algorithms, based on discontinuity and similarity of ob-

ject areas, can be grouped as boundary- and region-based [29]. Various researchers at-

tempted to improve segmentation and the region-based Mask RCNN (region-based con-

volutional neural networks) deep learning technique [30–33] with increasing application 
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in tree detection [34,35] has recently been established. Also, an open tool for the large-

scale segmentation LargeScaleMeanShift application has been specially developed to be 

applied in large VHR imagery processing [36].  

Many authors have directly compared the pixel-based approach to the object-based 

approach [37,38]. Myint et al. [37] concluded that the object-based approach is signifi-

cantly better than the classical pixel-based approach, while Immitzer et al. [38] could not 

find distinct advantages using an object-based compared to a pixel-based approach. Ob-

ject-based approaches achieve superior results in complex forest structures [39,40]. 

Immitzer et al. [26] used WorldView-2 satellite imagery for tree species classification 

in temperate Austrian forests dominated by Scots pine, Norway spruce, pedunculate oak, 

and European beech. The random forest (RF) classifier is used to compare pixel- and ob-

ject-based tree species classification. Over 1450 reference polygons were manually deter-

mined for ten tree species. The authors found that object-based classification accuracy out-

performed pixel-based classification. Object-based classification, with the highest classifi-

cation accuracy at 82%, gave about 10% better results compared to the pixel-based classi-

fication. Cho et al. [41] used WorldView-2 satellite imagery for tree species classification 

in protected South African subtropical coastal forests. Support vector machine (SVM) al-

gorithm was used, and its achieved results show higher overall accuracy of the object-

based (89%) approach compared accordingly to the pixel-based (85%). Also, the spectral 

confusion between individual classes was considerably worse in the pixel-based ap-

proach. Ghosh et al. [42] and Shojanoori et al. [43] also confirmed the higher accuracy 

achieved by the object-based approach. 

In opposite to most previous studies which were conducted in simpler forest condi-

tions and predominantly based on WV-2 or WV-3 satellite imagery [11,44,45], this re-

search was conducted in an area of complex lowland and mixed deciduous forest. To the 

best of our knowledge, no similar studies have been conducted in this or similar forest 

conditions. Built on our previous research [46], which confirmed the great potential of 

VHR satellite imagery (WV-3) for pixel-based tree species mapping in the area of mixed 

deciduous forest stands, current research has moved forward by utilizing pansharpened 

WV-3 imagery in two different classification approaches (pixel- and object-based). The 

main goal of this research was the evaluation of the applicability of the pixel- and object-

based tree species classification of fused WV-3 satellite imagery in areas of mixed decidu-

ous forest. The influence of fusion on classification accuracy was also analyzed. 

2. Materials 

Study Area and Data 

The study was performed in an area of 2128.77 ha of lowland deciduous forests in 

the Jastrebarski lugovi management unit (105–118 m above sea level), 35 km southwest of 

Zagreb, near the city of Jastrebarsko, in central Croatia, (Figure 1). Even-aged pedunculate 

oak (Quercus robur L.) of different age classes is the main forest type (management class) 

and covers 77% of the study area. The oak stands are commonly mixed with other tree 

species, such as narrow-leaved ash (Fraxinus angustifolia Vahl.), black alder (Alnus gluti-

nosa (L.) Geartn.), and common hornbeam (Carpinus betulus L.), whereas silver birch (Bet-

ula pendula Roth.), European white elm (Ulmus laevis Pall.), poplars (Populus sp.), and lime 

(Tilia sp.) occur sporadically. Except for the oak management class, there are two other 

forest types in the study area: even-aged common hornbeam and even-aged narrow-

leaved ash management classes, covering 6% and 17% of the study area, respectively. The 

ash and hornbeam stands are mostly homogeneous and less mixed with other tree species.  
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Figure 1. The study area (a) the location of the study area in Croatia. (b) The location of three example subsets (blue 

squares). (Basemap: False-color composite B7-B5-B3 of WV-3). 

Field data, i.e., locations and species of the trees, were collected between March and 

June 2017. A total of 4953 trees were measured within the 164 systematically distributed 

sample plots with a radius of 8, 15, or 20 m. A more detailed description of the study area, 

field survey, and summary statistics on field data can be found in Deur et al. [46]. 

Very high spatial resolution WV-3 satellite imagery, used in this research, was ac-

quired on 12 June 2017, at: 

 cross-track view angles of –0.5 

 mean sun azimuth of 158.6 

 sun elevation angle of 66.6 

 mean in-track of −29.2 

 mean off-nadir view angle of 29.2. 

WV-3 imagery provides panchromatic band (0.45–0.80 µm) with 0.31 m spatial reso-

lution and eight 1.24 m multispectral bands: B1 (0.40–0.45 µm), B2 (0.45–0.51 µm), B3 

(0.51–0.58 µm), B4 (0.585–0.625 µm), B5 (0.63–0.69 µm), B6 (0.705–0.745 µm), B7 (0.77–

0.895 µm), and B8 (0.86–1.04 µm). 

3. Methods 

The research workflow in this study can be divided into four main steps: prepro-

cessing, pansharpening, segmentation, classification and accuracy assessment (Figure 2). 
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The research was done by using open-source software, e.g., Quantum GIS (3.10.1), Grass 

GIS (7.8.1), Orfeo ToolBox (6.6.1), and SAGA GIS (7.0.0). 

 

Figure 2. Research workflow of tree species classification using pansharpened very high spatial resolution satellite im-

agery. 

3.1. WorldView-3 Satellite Imagery Preprocessing 

Before processing and classification, the WV-3 imagery was subjected to atmospheric 

and geometric corrections. Atmospheric corrections were provided via i.atcorr module in 

GRASS GIS. The geometric correction was performed by a two-step procedure: (1) sensor 

orientation and (2) orthorectification [47]. For sensor orientation, the rational polynomial 

coefficients with a shift or zero-order bias correction using seven ground control points 

(GCPs) were used. Orthorectification was done in Orfeo ToolBox based on a global digital 

elevation model (DEM) obtained by Shuttle Radar Topography Mission (SRTM). More 

detailed descriptions of conducted atmospheric and geometric corrections can be found 

in Deur et al. [46]. 

3.2. Pansharpening 

To increase the spatial resolution of WV-3 imagery, the PAN band was merged with 

the MS bands through a process of pansharpening (in literature, also known as fusion). In 

the pansharpening process, the spatial information of a high-resolution PAN band is 

fused with the spectral information of low-resolution MS bands to produce a high-resolu-

tion MS image [48]. Numerous authors have dealt with the process of pansharpening [49–

52]. 

In this study, we evaluated three pansharpening algorithms implemented in OTB 

software: the Local Mean and Variance Matching (LMVM), Ratio Component Substitution 

(RCS), and Bayesian algorithm. 

The LMVM pansharpening algorithm uses a normalization function with the goal of 

matching the local mean and variance values of the high-resolution PAN band with those 

of the original low-resolution MS channels [53]. According to Karathanassi et al. [53], this 

type of algorithm drastically increases the correlation between the pansharpened band 

and the original MS imagery. The LMVM matching algorithm was performed according 

to the following equation [53]: 

��,� =
����,� − ������

�,�(�,�) ∗ ���(��)�,�(�,�)�

���(��)�,�(�,�)

+ ������
�,�(�,�) (1)

where 

 i,j—pixel coordinates 

 w,h—window size 

 ��,�—pansharpened imagery 

 ���,�—high-resolution imagery 

 ���,�—low-resolution imagery 

 ������
�,�(�,�)—local mean of LR imagery 

 ������
�,�(�,�)—local mean of HR imagery 
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 ���(��)�,�(�,�)—local standard deviation (SD) of LR imagery 

 ���(��)�,�(�,�)—local SD of HR imagery 

The Bayesian pansharpening algorithm (Bayes) is based on statistical relationships 

between the various MS bands and the PAN band without modeling hypotheses. The user 

is allowed to weight the spectral and panchromatic information enabling adaptable re-

sults obtained according to the users’ needs. The Bayesian pansharpening algorithm is 

dependent on the notion that vector Z (the variables of interest) cannot be directly deter-

mined. Observable variable Y was performed according to an error-like equation [54]: 

Y = g(Z)  +  E (2)

where  

 g(Z)–set of functionals  

 E–a random errors vector (considered to be independent of Z). 

A comprehensive overview of Bayesian data fusion can be found in Fasbender study 

[54]. 

The ratio component substitution (RCS) pansharpening algorithm fuses orthorecti-

fied PAN and MS imageries based on a low-pass sharpening filter. The original PAN im-

age was used for multiplication and filtered PAN image for normalization of the MS im-

age. RCS algorithm was performed according to the following equation [16]: 

Y =  
MS 

Filtered (PAN)
PAN E  (3)

where E is a vector of random errors. Low-pass filter radius is the only parameter of RCS 

algorithm. 

In this study, the pansharpened WV-3 imagery were used as a basis for all investigations. 

3.3. Segmentation  

Object-based classification starts with segmentation, which represents the process of 

partitioning an image into meaningful parts. Real objects should be represented by objects 

(or segments) in the image. Segmentation considers the radiometric information of the 

pixels, the semantic properties of each segment, and other background information that 

describes the connection of adjacent pixels (intensity, color, texture, shape, weft, context, 

position, and dimensional relations) [55]. Image segmentation was performed on the 

pansharpened imagery. The LargeScaleMeanShift (LSMS) algorithm was used for the seg-

mentation process in this research. 

The LSMS segmentation algorithm was first developed in 1975 [56]. It is an iterative 

and non-parametric clustering method that enables the performance of tile-wise segmen-

tation of satellite imagery [57]. This method is suitable for large-sized VHR imageries [36]. 

The segmentation procedure was performed by LargeScaleMeanShift application imple-

mented in OTB software, which is composed of four steps [57]: mean-shift smoothing, 

segmentation, merging small regions, and vectorization. 

Mean-shift smoothing as a first step of the segmentation procedure smooths large 

images by streaming them [57]. The segmentation will group neighboring pixels whose 

range distance is below the range radius parameter and (optionally) spatial distance is 

below the spatial radius parameter. The small regions of the segmented image are merged 

according to the minimum segment size parameter. In the last step, the segmented image 

is converted into a vector file. A comprehensive overview of each individual step can be 

found in the Orfeo ToolBox Documentation [57]. 

Several tests were carried out to estimate range radius values (i.e., all values between 

5 and 30 with steps of 5 unit) and spatial radius (i.e., all values between 1 and 30 with 

steps of 3 unit). Finally, the best results for the LSMS segmentation were achieved when 
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the range radius and spatial radius were set to 30 and 10, respectively. The minimum seg-

ment size was set to 40. 

3.4. Image Classification and Accuracy Assessment  

In this study, two approaches of image classification were applied and tested: 

1. Pixel-based classification using pansharpened WV-3 imagery (Bayes, RCS, LMVM) 

and RF algorithm and 

2. Object-based classification using pansharpened WV-3 imagery (Bayes, RCS, LMVM) 

and RF algorithm. 

RF as an automatic learning algorithm is described in detail by Breiman [58] and by 

Adele Cutler [59]. A detailed review of the RF algorithm can be found in studies [58–62]. 

Open-source software’s SAGA GIS and OTB for pixel- and object-based classification, re-

spectively, were used to run an RF classifier. As in a previous study [46] and according to 

[38,63], default OTB parameters were set to run an RF algorithm. The maximum depth of 

the tree was set to 10, while the minimum sample count was set to 2. Regression accuracy 

was set to 0.01. 

Image classification and detailed statistical accuracy assessment were conducted us-

ing training and validation polygons that were randomly split from reference polygons. 

Reference polygons of pixel-based classification were identical to those in the previous 

study [46]. In order to define reference segments for object-based tree species classifica-

tion, these manually selected training and validation datasets were overlapped with three 

segmented imageries. Overlapped image objects were selected by referencing pansharp-

ened imagery and field data. Selection was conducted using true and false color compo-

sitions. Only image segments that had coincident boundaries with real ground objects as 

seen in pansharpened imagery were selected as training and validation segments. Due to 

the use of three different pansharpening algorithms (Bayes, RCS, and LMVM), this proce-

dure was repeated three times, and therefore a total of three different reference polygons 

for object-based classification were produced (Table 1). 

Table 1. Number of reference polygons for object-based classification. 

Class Bayes  RCS  LMVM  

Alnus glutinosa 209 242 226 

Carpinus betulus 806 1046 935 

Quercus robur 955 1217 1234 

Bare land 185 202 182 

Low vegetation 406 518 425 

Shadow 72 79 62 

Total 2633 3304 3064 

For classification accuracy assessment, user’s accuracies (UAs) and producer’s accu-

racies (PAs) were computed from the confusion matrix as well as the overall accuracy 

(OA) and Kappa coefficient (k) [64]. Extended accuracy assessment was made with the 

figure of merit (FoM) [65], weighted Kappa (Weighted k) [64] with linear weights, and 

weighted overall accuracy (Weighted OA) [66]. Weight matrix for overall accuracy was 

defined with the similarity for A. glutinosa and C. betulus as 0.6, Q. robur and A. glutinosa/C. 

betulus as 0.3, low vegetation and A. glutinosa/C. betulus/Q. robur as 0.1, and 0 for all classes 

versus bare land and shadow. 

Also, to compare the performance of the pixel- and object-based classification, the 

statistical significance between the two classification approaches was evaluated using the 

McNemar’s test [67]. The test assumes that the reference polygons are independent for 

each approach. Based on a binary 2 × 2 contingency matrix, McNemar’s test closely related 

to the chi-squared statistic and was performed according to the following equation [68]:  



Remote Sens. 2021, 13, 1868 8 of 20 
 

 

�� =
(��� − ���)

��� + ���

�

 (4)

where ��� and ��� indicate the number of correctly classified reference polygons in clas-

sification approach 1 but incorrectly in classification approach 2 and vice versa.  

If a �� value exceeds 3.84 (confidence level of 95%), the null hypothesis can be re-

jected. McNemar’s test was conducted using the R programming language, version 3.5.3, 

through RStudio version 1.1.463 (R Foundation for Statistical Computing, Auckland, New 

Zealand). 

4. Results 

WV-3 imageries were fused using three different pansharpening algorithms: Bayes, 

RCS, and LMVM. A visual and a quantitative assessment of the pansharpened imageries 

were conducted. The visual interpretation of pansharpened imageries indicates that each 

algorithm preserved the spectral information while the differences are noticeable on a 

spatial level. 

The classification of the pansharpened WV-3 imagery (Bayes, RCS, LMVM) was per-

formed using two different approaches: pixel-based and object-based. Based on previous 

research [46], the same parameters for the RF algorithm were kept and applied to the clas-

sification of three pansharpened WV-3 imageries. 

4.1. Pixel-Based Classification of Pansharpened Imagery 

The results of the pixel-based classification of the pansharpened WV-3 imageries 

(Bayes, RCS, LMVM) are shown in Figure 3 with detailed classification results for three 

example subsets. 
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Figure 3. Three example subsets: (1st row) false-color composite of WV-3; (2nd row) pixel-based classification using Bayes 

pansharpened imagery; (3rd row) pixel-based classification using RCS pansharpened imagery; (4th row) pixel-based clas-

sification using LMVM pansharpened imagery. 
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A visual assessment of the performed pixel-based classification showed similar re-

sults using RCS and LMVM pansharpened imagery. Slightly worse results were obtained 

using Bayes pansharpened imagery. Besides the visual analysis, detailed statistical accu-

racy assessment was conducted as well. Using three different pansharpened imageries 

(Bayes, RCS, and LMVM), the highest pixel-based classification accuracy was obtained for 

LMVM with OA = 92%, and k=0.89 (Table 2). Observed by tree species, Alnus glutinosa had 

the lowest classification accuracy (UA ranging from 57% to 70%). High accuracy was ob-

tained for Carpinus betulus (UA = 86–90%) and Quercus robur (UA = 75–91%). The obtained 

results showed that pixel-based classification for the same study area was improved when 

the LMVM pansharpened imagery was considered. Compared to pixel-based classifica-

tion of only multispectral bands from a preview study [46], the OA and k value for pixel-

based classification of the LMVM pansharpened imagery increased by 7% and 0.1, respec-

tively. 

Table 2. Accuracy assessment of pixel-based classification of the pansharpened imageries (Bayes, RCS, LMVM) performed 

on 136 validation polygons. 

Bayes 

Class (Latin 

name) 
A. glutinosa C. betulus Q. robur Bare land Low vegetation Shadow Total UA 

A. glutinosa 400 281 3 0 15 0 699 57% 

C. betulus 685 6821 41 0 199 0 7746 88% 

Q. robur 9 4 16126 0 5296 0 21435 75% 

         

Bare land 0 0 1 3233 201 0 3435 94% 

Low vegetation 128 36 374 0 3545 0 4083 87% 

Shadow 0 0 1 0 0 582 583 100% 

Total 1222 7142 16546 3233 9256 582 OA = 81% 
PA 33% 96% 97% 100% 38% 100% k = 0.72 

RCS 

Class (Latin 

name) 
A. glutinosa C. betulus Q. robur Bare land Low vegetation Shadow Total UA 

A. glutinosa 232 117 4 0 8 1 362 64% 

C. betulus 851 7009 66 0 257 1 8184 86% 

Q. robur 12 3 16135 0 3892 1 20043 81% 

         

Bare land 0 0 0 3233 159 0 3392 95% 

Low vegetation 127 13 336 0 4940 0 5416 91% 

Shadow 0 0 5 0 0 579 584 99% 

Total 1222 7142 16546 3233 9256 582 OA = 85% 

PA 19% 98% 98% 100% 53% 99% k = 0.78 

LMVM 

Class (Latin 

name) 
A. glutinosa C. betulus Q. robur Bare land Low vegetation Shadow Total UA 

A. glutinosa 481 160 11 0 35 0 687 70% 
C. betulus 640 6964 19 0 142 3 7768 90% 
Q. robur 16 1 16423 0 1517 8 17965 91% 

Bare land 0 0 9 3233 217 0 3459 93% 
Low vegetation 85 17 84 0 7345 0 7531 98% 

Shadow 0 0 0 0 0 571 571 100% 
Total 1222 7142 16546 3233 9256 582 OA = 92% 

PA 39% 98% 99% 100% 79% 98% k = 0.89 

The extended accuracy assessment was made with the figure of merit, weighted 

kappa, and weighted overall accuracy (Table 3). FoM, weighed k, and weighted OA, as 

well as OA and k value, indicate that pixel-based classification using pansharpened WV-

3 imagery derived by the LMVM approach shows the highest classification accuracy. Sta-

tistics measure omission (O), commission (C), and overall agreement (A) have been meas-

ured too. 
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Table 3. Extended accuracy assessment of pixel-based classification of the pansharpened imageries (Bayes, RCS, LMVM). 

Class (Latin name) 

Bayes RCS LMVM 

FoM (%) 
O  

(%) 

C 

(%) 

FoM 

(%) 

O 

(%) 

C 

(%) 

FoM 

(%) 

O 

(%) 

C 

(%) 

A. glutinosa 26.30 2.16 0.79 17.16 2.61 0.34 33.68 1.95 0.54 

C. betulus 84.55 0.85 2.44 84.27 0.35 3.09 87.64 0.47 2.12 

Q. robur 73.79 1.11 13.98 78.88 1.08 10.29 90.80 0.32 4.06 

Bare land 94.12 0.00 0.53 95.31 0.00 0.42 93.47 0.00 0.60 

Low vegetation 36.20 15.04 1.42 50.76 11.36 1.25 77.79 5.03 0.49 

Shadow 99.83 0.00 0.00 98.64 0.01 0.01 98.11 0.03 0.00 

A 81 85 92 

Weighted OA 84 87 94 

Weighted k  0.68 0.75 0.89 

4.2. Object-Based Classification of Pansharpened Imagery 

As in the case of pixel-based classification, visual assessment of object-based classifi-

cation showed that worst results were obtained using Bayes pansharpened imagery. Clas-

sification of RCS and LMVM pansharpened imagery showed a better distribution of tree 

species classes. 

The results of object-based classification of the pansharpened WV-3 imagery (Bayes, 

RCS, LMVM) with detailed classification results for three example subsets are shown in 

Figure 4. 
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Figure 4. Three example subsets: (1st row) false-color composite of WV-3; (2nd row) object-based classification using Bayes 

pansharpened imagery; (3rd row) object-based classification using RCS pansharpened imagery; (4th row) object-based 

classification using LMVM pansharpened imagery. 
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Detailed statistical analysis for object-based classification approaches was performed 

on validation segments (Table 1). Object-based classification of three different pansharp-

ened imageries (Bayes, RCS, and LMVM) produced the highest classification accuracy for 

LMVM with OA= 96% and k=0.94 (Table 4). Observed by tree species, Alnus glutinosa had 

the lowest classification accuracy (UA ranging from 64% to 87%). Quercus robur had a 

slightly higher accuracy (UA = 79–94%), while the highest classification accuracy was for 

Carpinus betulus (UA = 89–98%). Comparing results (Table 4) with the corresponding re-

sults of pixel-based classification (Table 2), it is visible that the accuracy of the object-based 

approach was significantly better than the accuracy of pixel-based approach. 

The classification accuracy for A. glutinosa was noticeably improved using object-

based classification in comparison to the pixel-based approach; the UA values for the 

Bayes and LMVM approaches increased by 9% and 17%, respectively. The RCS approach 

gave the same classification accuracy for both classification approaches. Slight improve-

ments in classification accuracy were also observed for C. betulus, where UA increased by 

5% for Bayes pansharpened imagery, by 3% for the RCS pansharpened imagery, and by 

8% for the LMVM pansharpened imagery compared to pixel-based classification. Similar 

improvements in classification accuracy were also achieved for Q. robur compared to 

pixel-based classification where UA increased by and 3%, 4%, and 9% for the LMVM, 

Bayes, and RCS approaches, respectively. 

Table 4. Accuracy assessment of object-based classification of the pansharpened imageries (Bayes, RCS, LMVM) per-

formed on validation segments. 

Bayes 

Class (Latin 

name) 
A. glutinosa C. betulus Q. robur Bare land Low vegetation Shadow Total UA 

A. glutinosa 2111 1105 0 0 0 0 3216 66% 

C. betulus 1017 13,457 0 0 0 0 14,474 93% 

Q. robur 0 48 32,803 53 8622 0 41,526 79% 

Bare land 0 0 0 7797 0 0 7797 100% 

Low vegetation 80 0 165 0 7455 0 7700 97% 

Shadow 0 0 0 0 0 3019 3019 100% 

Total 3208 14,610 32,968 7850 16,077 3019 OA = 86% 

PA 66% 92% 99% 99% 46% 100% k = 0.80 

RCS 

Class (Latin 

name) 
A. glutinosa C. betulus Q. robur Bare land Low vegetation Shadow Total UA 

A. glutinosa 611 347 0 0 0 0 958 64% 

C. betulus 1532 15,710 119 0 255 0 17,616 89% 

Q. robur 0 22 38,199 0 4146 0 42,367 90% 

Bare land 0 0 0 7409 0 0 7409 100% 

Low vegetation 135 0 262 0 12,897 0 13,294 97% 

Shadow 0 0 0 0 0 2778 2778 100% 

Total 2278 16,079 38,580 7409 17,298 2778 OA = 92% 

PA 27% 98% 99% 100% 75% 100% k = 0.88 

LMVM 

Class (Latin 

name) 
A. glutinosa C. betulus Q. robur Bare land Low vegetation Shadow Total UA 

A. glutinosa 2097 225 82 0 0 0 2404 87% 

C. betulus 427 17,253 0 0 0 0 17,680 98% 

Q. robur 0 0 41,735 0 2520 0 44,255 94% 

Bare land 0 0 0 8313 0 0 8313 100% 

Low vegetation 170 90 0 0 14,816 0 15,076 98% 

Shadow 0 0 0 0 0 2931 2931 100% 

Total 2694 17,568 41,817 8313 17,336 2931 OA = 96% 

PA 78% 98% 100% 100% 85% 100% k = 0.94 

As in the case of pixel-based classification, an extended accuracy assessment  

(Table 5) was made. As well as OA and k value, weighted OA, weighted k, and figure of 
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merit (FoM) accuracy metrics indicate that object-based classification, in comparison to 

pixel-based approach, improved classification accuracy. 

Table 5. Extended accuracy assessment of object-based classification of the pansharpened image-

ries (Bayes, RCS, LMVM). 

Class (Latin 

Name) 

Bayes RCS LMVM 

FoM 

(%) 

O  

(%) 

C 

(%) 

FoM 

(%) 

O 

(%) 

C 

(%) 

FoM 

(%) 

O 

(%) 

C 

(%) 

A. glutinosa 48.95 1.41 1.42 23.28 1.97 0.41 69.88 0.66 0.34 

C. betulus 86.11 1.48 1.31 87.35 0.44 2.26 95.88 0.35 0.47 

Q. robur 78.68 0.21 11.22 89.36 0.45 4.94 94.13 0.09 2.78 

Bare land 99.32 0.07 0.00 100.00 0.00 0.00 100.00 0.00 0.00 

Low vegetation 45.67 11.09 0.32 72.88 5.21 0.47 84.20 2.78 0.29 

Shadow 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 

A 86 92 96 

Weighted OA 89 94 97 

Weighted k  0.79 0.88 0.94 

An initial visual analysis of both pixel- and object-based classification approaches 

showed outperformed pixel-based approach with the noisy distribution of tree species 

classes. The proportion of tree species classes for the study area can be seen in Figure 5. 

 

Figure 5. The share of the tree species classes for pixel- and object-based classification of three 

pansharpened imagery (Bayes, RCS, LMVM). 

Additionally, to take a closer look at the scattering of surfaces (ha) of pixel- and ob-

ject-based classification of LMVM pansharpened imagery, a sankey diagram was made 

(Figure 6). It is clearly visible that Carpinus betulus was overemphasized in relation to Al-

nus glutinosa in the pixel-based approach. Because of mixing contributions from other tree 

species, the pixel-based approach produced a noisy distribution of Alnus glutinosa  

(Figure 3), which was considerably improved using the object-based approach (Figure 4). 

Also, the object-based approach solved the problem with shadows, since the pixel-based 

compared to the object-based approach produced a significantly higher quantity of 

shadow pixels. Statistical comparison of the pixel- and object-based classification of 

LMVM pansharpened imagery was performed with McNemar’s test. �� value is 40.106, 

which also indicates that the two classification results were significantly different. 
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Figure 6. The scattering of six land-cover classes (Alnus glutinosa, Carpinus betulus, Quercus robur, 

bare land, low vegetation, and shadow) for the entire study area obtained with pixel- and object-

based classification of LMVM pansharpened imagery. 

5. Discussion 

This research assessed the influence of pansharpened WV-3 imagery on pixel- and 

object-based classification of tree species using RF machine-learning algorithms. The 

pixel- and object-based classification approaches were evaluated on pansharpened im-

agery. 

Compared to previous studies that were conducted in urban forests [44,69,70], park-

lands [12], or temperate mixed forests [26,71–73], this research was conducted in a mixed 

deciduous forest with large shares of deciduous species. 

Because of the complex forest structure in the study area, the generation of reference 

polygons represented a time-intensive and complex task. According to Belgiu and Drăguţ 

[62], training polygons, among others, needs to fulfill size requirement to accommodate 

the increased number of data dimensions. Because of spectral similarity and mixing con-

tributions from other tree species in some pixels, it is important to highlight the difficulty 

in generating Alnus glutinosa reference polygons. The problem was solved by using dif-

ferent color compositions of which true and false color compositions were the most com-

monly used. In this research, Alnus glutinosa had the lowest number of reference polygons 

(Table 1) and the lowest classification accuracy (Table 2 and Table 4). The importance of 

generating reference polygons was also pointed out by Sabat-Tpomala et al. [74], who 

indicated a direct correlation between the quality of the reference polygons and machine-

learning algorithms. A similar conclusion was reached by Kupidura et al. [75], who con-

sidered that adequate data preprocessing is often more important than the choice of the 

classification algorithm. According to Lu and Weng [76], classification accuracy can de-

pend on many different factors in conjunction with the selection of an appropriate algo-

rithm. Different studies used different algorithms in accordance with certain forest areas. 

Therefore, partial least squares discriminant analysis (PLS-DA) was used to discriminate 

forest species in South Africa [77]. Support vector machine (SVM) and artificial neural 

network (ANN) algorithms are used for pixel-based classification in mixed indigenous 

coastal forests of South Africa [78]. Varin et al. [79] compared five different algorithms: 

RF, SVM, k-nearest neighbors, linear discriminant analysis, and classification and regres-

sion tree to classify tree species in a broadleaf forest in Canada, where the RF algorithm 

produced higher precision. Compared to traditional classifiers (e.g., decision tree classifi-

ers, maximum likelihood classifier), RF as a non-parametric classifier has wide application 

in tree species classifications [39,79–81]. Also, in this research, the RF algorithm is used for 

both pixel- and object-based approaches. 
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In order to improve tree species classification, pansharpening was used. Three fusion 

methods for improving spatial resolution were evaluated: Bayes, RCS, and LMVM. Ac-

cording to the visual and quantitative quality assessment, LMVM and RCS showed better 

results as compared with Bayes. The results of this research correspond to previous stud-

ies that showed increased classification accuracy when pansharpened satellite imagery 

was used [20,82]. Ibarola et al. [82] applied pixel- and object-based classification to differ-

ent pansharpened imagery. Using the SVM algorithm that obtained the highest classifica-

tion accuracies for individual classes, OA increased by 3% and 8% for the pixel-based and 

the object-based approach, respectively. In this research, OA increased by 7% and 11% for 

the pixel-based and object-based approaches, respectively.  

According to Ghosh et al. [22], the selection of fusion method mostly depends on user 

experience, satellite scene, and type of used fusion algorithms and parameters of the tun-

ing process. In this case, the LMVM method proved the most effective fusion technique. 

In both classification approaches, LMVM pansharpened imagery achieved the high-

est overall classification accuracy. The object-based classification outperformed the pixel-

based in terms of overall accuracy by 4%; OA was 92% and 96% for pixel- and object-based 

approaches, respectively. McNemar’s �� test was statistically used to compare the classi-

fication results achieved by pixel- and object-based classification approaches. ��  value is 

40.106 (greater than 3.84), which indicates that the two classification results were signifi-

cantly different. All accuracy parameters, including FoM, weighted k, and weighted OA, 

showed improvements in object-based classification for all tree species. Also, the shadow 

problem in the pixel-based approach was solved in the object-based approach as well as 

the salt and pepper or noise effect, which was eliminated. 

Previous research suggests that object-based classification is more suitable to handle 

high spatial resolution remote sensing data [25,83], and it has produced higher tree species 

classification accuracies [26,39]. There are also some limitations for both studied ap-

proaches [82]. The main limitations of the pixel-based approach are mixed pixels located 

in boundaries between classes and higher quantity of data that should be processed. On 

the other hand, object-based classification considerably depends on the segmentation pro-

cess. 

According to previous studies [84–86], the visual analysis of segments remains the 

recommended method for quality assessment of the segmentation process. Even today, 

there is no global protocol for setting the segmentation parameters and, depending on the 

image, the user estimates the appropriate segmentation parameters based on visual inter-

pretation. Except for segmentation quality, the accuracy of tree species classification using 

VHR imagery is highly dependent on the reference polygons size, sampling method, clas-

sification approach, and vegetation mixture and distribution [87]. This is especially evi-

dent in the Alnus glutinosa class. Because of mixed distribution, the low number of refer-

ence polygons of Alnus glutinosa (Table 1) did not fulfill the size requirement, which re-

sulted in the lowest classification accuracy (Tables 2 and 4). The SVM algorithm reported 

in previous research [46], proved more resistant to smaller numbers of training polygons 

(evident for Alnus glutinosa class) compared to the RF algorithm. Mixed distribution with 

other tree species resulted in lower PA for low vegetation class (Tables 2 and 4) as well as 

noise effect for the pixel-based approach. 

In continuation of the previous research [46], the principal finding of this study is 

that pansharpening led to improvements (~10%) in accuracies in both the pixel- and ob-

ject-based approaches. The RF classifier applied to LMVM pansharpened imagery pro-

duced improvements in overall accuracy for 7% and 11% for pixel- and object-based ap-

proaches, respectively. 

In the purpose of simple use of the presented method, in this paper, the entire re-

search was conducted using open-source software that ensures the basis of effective and 

sustainable forest management for other areas, either on local or global scales. 
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6. Conclusions 

By using open-source software, we confirmed the significant potential of pansharp-

ened VHR WV-3 imagery for tree species classification in areas of mixed deciduous forest 

stands. Three different pansharpening algorithms (Bayes, RCS, and LMVM) were con-

ducted for improving tree species classification. 

Reference polygons were generated for three tree species classes: Alnus glutinosa, 

Carpinus betulus, and Quercus robur as well as bare land, low vegetation, and shadow. The 

pixel- and object-based classification of pansharpened imagery were based on training 

polygons using random forest (RF) machine-learning algorithms. The LMVM pansharp-

ening algorithm proved the most effective fusion technique. Accuracy assessment results 

showed its high overall accuracy: 92% and 96 % for tree species classification using LMVM 

pansharpened imagery based on pixel- and object-based approach, respectively. As ex-

pected, the object-based classification achieved higher accuracy compared to the pixel-

based classification results. 

Our research showed that the overall classification accuracy of tree species classifica-

tion was significantly influenced by the spatial resolution of images. Also, regardless of 

using a pixel- or object-based classification approach, the influence of the use of pansharp-

ening is highly beneficial for classifying complex, natural, and mixed deciduous forest 

areas. 

The findings and results of this research can be used in future studies, like research-

ing the influence of the usage of additional data (e.g., point clouds, canopy height models, 

or digital surface models) in combination with the WV-3 imagery to increase the accuracy 

of the classification. 
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