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Abstract: Numerous aquaculture ponds are intensively distributed around inland natural lakes and
mixed with cropland, especially in areas with high population density in Asia. Information about the
distribution of aquaculture ponds is essential for monitoring the impact of human activities on inland
lakes. Accurate and efficient mapping of inland aquaculture ponds using high-spatial-resolution
remote-sensing images is a challenging task because aquaculture ponds are mingled with other
land cover types. Considering that aquaculture ponds have intertwining regular embankments
and that these salient features are prominent at different scales, a Row-wise and Column-wise Self-
Attention (RCSA) mechanism that adaptively exploits the identical directional dependency among
pixels is proposed. Then a fully convolutional network (FCN) combined with the RCSA mechanism
(RCSANet) is proposed for large-scale extraction of aquaculture ponds from high-spatial-resolution
remote-sensing imagery. In addition, a fusion strategy is implemented using a water index and the
RCSANet prediction to further improve extraction quality. Experiments on high-spatial-resolution
images using pansharpened multispectral and 2 m panchromatic images show that the proposed
methods gain at least 2–4% overall accuracy over other state-of-the-art methods regardless of regions
and achieve an overall accuracy of 85% at Lake Hong region and 83% at Lake Liangzi region in
aquaculture pond extraction.

Keywords: aquaculture ponds; extraction; inland lake; self-attention

1. Introduction

Aquaculture has become one of the main sources of animal protein and increasingly
contributes to food security for many inland cities with large populations in Asia. Fresh-
water aquaculture products such as fish, crustaceans, and molluscs are supplied from
aquaculture ponds built around natural lakes. Aquaculture in China already accounts for
60% of global production [1]. Aquaculture foods provided by inland aquaculture ponds
have become predominant contributors of aquatic foods in Chinese banquets [2]. Provinces
in the middle and lower reaches of the Yangtze River basin account for more than half
the country’s total freshwater production. In recent years, pond aquaculture has become
predominant and has contributed on average 71 percent to total freshwater production
(China Fishery Statistical Yearbook 2004–2016), maintaining an average growth rate of
5.8 percent per year. The area under pond aquaculture has greatly increased. However,
intensive aquaculture has a severely destructive effect on the environment, including high
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levels of water use, local environmental pollution, and the loss of services provided by the
freshwater ecosystems of natural lakes [3,4].

Remotely sensed imagery has been used as an effective means for global monitoring
of aquaculture ponds in coastal areas [5–7] and nearby inland lakes [8]. An object-based
image analysis (OBIA) method was used on Landsat TM images to extract aquaculture
ponds in coastal areas of south-eastern China [9]. Tran et al. used maximum likelihood
classification on Landsat and SPOT5 images to obtain long-term land-cover and land-use
changes in a delta in Vietnam, where aquaculture ponds were one of the classes [10].
Ottinger et al. used the geometric features of aquaculture ponds for image segmentation
on Sentinel-1 Synthetic Aperture Radar (SAR) images to extract fish ponds in several delta
areas in Asia [5,11]. Zeng et al. used Landsat and Gaofen-1 satellite images to extract
aquaculture ponds around inland lakes using boundary curve features and a Support
Vector Machine (SVM) classifier [8]. In state-of-the-art methods for aquaculture pond
extraction, object-oriented classification is usually integrated with hand-crafted features,
and the spatial resolution of the satellite images commonly used is generally 10 meters or
coarser. However, aquaculture ponds close to inland lakes are mixed with water bodies that
are approximately the same size as these ponds. Accurately mapping aquaculture ponds
using finer spatial resolution (up to a few meters) remote-sensing images and applying a
more generalized approach, rather than manual feature engineering, remains a technical
challenge for inland lake mapping.

Because semantic segmentation can understand images at the pixel level, statistics- and
geometry-based image segmentation methods have been replaced by methods that depend
on Deep Convolutional Neural Networks (DCNNs) [12]. DCNNs have been recognized by
industry and have become widely used, advancing from LeNet-5’s success in zip encod-
ing recognition in the 1980s to AlexNet’s victory in the 2012 ImageNet competition [13].
Subsequently, a deep CNN architecture proposed by Visual Geometry Group of Oxford
University (VGG) [14], a residual network architecture proposed by He (ResNet) [15]
and other DCNN structures have become the basic learning framework for advanced
feature extraction from visual images. The fully convolutional network (FCN) constitutes
a breakthrough in semantic image segmentation by converting the fully connected layer
in traditional DCNNs, such as VGG, into a fully convolutional layer, thereby successfully
achieving end-to-end labelling [16]. Badrinarayanan et al. [17] proposed Segnet to achieve
pixel level classification through a deep convolutional encoder-decoder architecture in
which the decoder upsamples the lower-resolution feature maps. Chen et al. proposed the
Deeplab architecture and its revised versions, which introduced atrous convolution and
atrous spatial pyramid pooling (ASPP) models into the deep encoder-decoder architecture
for semantic segmentation [18–20]. Deep learning techniques for semantic segmentation
have been developed for various computer vision tasks such as autonomous vehicles,
medical research and many other applications in recent years [21]. However, implementing
semantic segmentation of deep neural networks on remote-sensing images must over-
come specific problems, including different data sources and scales [22]. For example,
SegNet and ResNet have been efficiently implemented on multi-modal remote-sensing
data using the FuseNet principle [23]. FCN has been used for slum mapping by transfer
learning [24]. FCN was re-designed and used for automatic raft labelling in offshore waters
by a dual-scale structure [25] or a U-Net [26].

Aquaculture ponds are shallow artificial water bodies that commonly have distinctly
man-made shapes for efficient aquaculture production [10]. The ponds around inland lakes
are formed gradually by embankment, partition, and regularization of other land cover
types, such as cropland or natural lake water bodies. Because the shoreline of a natural lake
winds along the surrounding terrain, its boundary shape is generally extremely irregular.
On the other hand, the borders of aquaculture ponds are constructed on the principle of
cost-saving, and straight lines are often used to delimit the boundary in a local area. Hence,
the boundaries of aquaculture ponds have more regular shapes overall. Furthermore, when
the human eye perceives satellite images where aquaculture ponds are densely distributed,
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the aquaculture ponds with their intertwining regular boundaries will be visual attention
areas because human perception commonly pays attention to parts of visual space where
patterns can be acquired, according to neuroscience and cognitive science literature [27].

Attention mechanisms have been extensively used for various visual tasks. The
recurrent attention model is used for object recognition through a recurrent neural network
(RNN) integrated with reinforcement learning to mimic the process of the human visual
system as it recurrently determines the attention region. The attention mechanism on top of
the RNN proposed by the neural machine translation community [28,29], was also adopted
to perform image captioning by assigning different weights to image representations [30].
The self-attention mechanism without the RNN model is exploited in a super-resolution
image generator [31], which is a variant of the TRANSFORMER [32], a cutting-edge deep
neural network for language translation. Furthermore, self-attention mechanisms have
been introduced into scene segmentation for modelling feature dependencies from spatial
and channel dimensions [33]. In remote sensing, attention models have also been used
for object classification in various satellite images. For instance, attention mechanisms are
integrated into multi-scale and feedback strategies of deep neural networks for pixel-wise
classification of very-high-resolution satellite images [34]. The attention model is combined
with a learning layer to capture class-specific feature dependencies [35].

When human beings visually identify densely distributed aquaculture ponds on
remote-sensing images, the intertwining regular embankments around these ponds are
prominent visual attention features. This paper is inspired by this visual attention mecha-
nism used for human interpretation of satellite images. Moreover, the intertwining regular
embankments are a salient feature that is available at different scales. The two motiva-
tions of this study are first to develop a novel attention mechanism that can mimic the
process of the human visual system to recurrently determine the attention region, which is
the intertwining regular embankments of aquaculture ponds, and to evolve multi-scale
visual attention through the encoder-decoder, fully convolutional network architecture
that integrates the attention mechanism with atrous convolutions to better extract aquacul-
ture ponds.

Therefore, the main contributions of the paper can be summarized as follows:

(1) Propose the Row-wise and Column-wise Self-Attention (RCSA) mechanism, which
can work in parallel to capture visual emphasis on salient pixels in the context of rows
and columns from a remote-sensing image.

(2) Propose an improved fully convolutional network based on the RCSA mechanism
that is combined with an ASPP structure for multi-scale attention.

(3) Evaluate the validity of the proposed method on a developed dataset that contains
abundant aquaculture ponds around inland lakes.

2. Materials
2.1. Study Area

Hubei Province, known as the province of thousands of lakes, lies in the middle
reaches of the Yangtze River and has densely distributed lakes. Hubei has a mature
freshwater aquaculture industry with large numbers of aquaculture ponds developed
surrounding natural lakes. As shown in Figure 1, six regions with densely distributed
aquaculture ponds were selected as study areas from three large lakes (Lake Liangzi,
Lake Futou, and Lake Hong) along the Yangtze River because these are typical inland
aquaculture areas in China. Among them, Lake Hong and Lake Liangzi are the two largest
freshwater lakes in Hubei Province. The population in this part of China is dense, and
aquaculture is very developed. Lake Liangzi, and its surroundings, however, have been
relatively well protected since the 1980s. The six selected regions were divided into two
categories: type I and type II. The type I regions, including regions A and B, are used for
testing, whereas type II regions are used for training. Region A is an area of 73.76 km2

close to eastern Lake Hong which is an artificial lake, and region B is an area of 33.92 km2

close to eastern Lake Liangzi, which has been preserved in a state more like a natural lake.
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Figure 1. Location of the study area. The pseudo-colour images (A,B) are pansharpening images using the near infrared,
the red and the green band as red, green and blue. The corresponding labelling image for each is given below.

2.2. Dataset

The Landsat multispectral images were selected because of their long history. The
bands such as the near infrared can be beneficial for extracting water bodies. However,
the spatial resolution of Landsat multispectral data is only 30 m. Panchromatic images
with 2–2.5 m spatial resolutions from the panchromatic and multispectral (PMS) camera of
the GaoFen-1 (GF-1) satellite [36], the panchromatic remote-sensing instrument for stereo
mapping (PRISM) of the ALOS satellite, and the NAD panchromatic sensor of the ZiYuan-3
(ZY-3) satellite [37] were also used to improve recognition and extraction of aquaculture
ponds and natural water bodies. Table 1 lists the images used for the selected study
regions. The Landsat multi-spectral images used in this study were captured in the winter
of 2010–2011 and 2013–2014 and the spring of 2015. High-resolution panchromatic images
were used for fusion with multi-spectral images. The panchromatic images were mainly
selected from the GF-1 satellite and had acquisition dates close to the corresponding OLI
images from Landsat satellite, whereas panchromatic images from the ALOS satellite were
used instead for 2010 TM images from the Landsat satellite. However, when ALOS or GF-1
panchromatic images with similar acquisition dates were still not found, panchromatic
images from the ZY-3 satellite captured in same season as Landsat images from a nearby
year were selected because the ZY-3 satellite was launched in 2012.

Three classes: aquaculture ponds (artificial water surfaces), natural water surfaces
and background (non-water surfaces) were included in the reference dataset (Figure 1),
which was mainly generated by human visual interpretation. Field investigations were
also conducted on some difficult-to-identify features, in cases where aquaculture ponds
were mixed with small natural water surfaces (Figure 2).
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Table 1. Satellite images information for various regions.

Multispectral Images Panchromatic Images

Regions Sensors Spatial
Resolution (m)

Date Sensors Spatial
Resolution (m)

Date

Lake Hong (west, type I region) TM (Landsa 5) 30 2011.01.15 PAN-NAD(ZY-3) 2.1 2013.01.27
Lake Hong (west, type I region) OLI (Landsat 8) 30 2014.01.23 PMS2(GF-1) 2 2014.01.23

Lake Hong (middle, type I region) TM (Landsat 5) 30 2011.01.15 PAN-NAD(ZY-3) 2.1 2013.01.27
Lake Hong (middle, type I region) OLI (Landsat 8) 30 2014.01.23 PMS2(GF-1) 2 2014.01.23
Lake Futou (south, type I region) OLI (Landsat 8) 30 2015.03.31 PAN-NAD(ZY-3) 2.1 2017.01.22
Lake Liangzi (west, type I region) TM (Landsat 5) 30 2010.11.12 PRISM(ALOS) 2.5 2010.11.06
Lake Liangzi (west, type I region) OLI (Landsat 8) 30 2014.02.01 PMS2(GF-1) 2 2014.01.31
Lake Hong (east, type II region A) TM (Landsat 5) 30 2011.01.15 PAN-NAD(ZY-3) 2.1 2013.01.27
Lake Hong (east, type II region A) OLI (Landsat 8) 30 2014.01.23 PMS2(GF-1) 2 2014.01.23

Lake Liangzi (east, type II region B) TM (Landsat 5) 30 2010.11.12 PRISM(ALOS) 2.5 2010.11.06
Lake Liangzi (east, type II region B) OLI (Landsat 8) 30 2014.02.01 PMS2(GF-1) 2 2014.01.31

A B C

Figure 2. Field photos of inland aquaculture ponds in Hubei Province, China. Aquaculture ponds are usually equipped
with air pumps. (A) A branch of a natural lake. (B) An aquaculture pond equipped with oxygen pumps. (C) Below is a
small river (natural water body) and above are several aquaculture ponds.

3. Methodology

To better understand the effectiveness of the proposed method for aquaculture pond
segmentation, the methodology will be introduced in three parts: data pre-processing,
the basic model, and a fusion strategy designed to further improve accuracy. In the
preprocessing stage, the multi-spectral image and the corresponding 2 m panchromatic
image were pansharpened. The pansharpened image was then fed into the proposed
network, i.e., RCSANet, for semantic segmentation. The result generated from the network
was finally fused with a water surface extraction image using the water index to further
improve segmentation quality.

3.1. Preprocessing

Multi-spectral satellite images contain more spectral information, especially in the
infrared spectral bands, which is beneficial for aquaculture pond identification, whereas
panchromatic satellite images have higher spatial resolution, which helps to better dis-
tinguish the shape of the aquaculture pond. To use both together, the multi-spectral and
high-spatial-resolution panchromatic images must be pansharpened to obtain images with
both spectral information and higher spatial resolution. First, multi-spectral images were
synthesized by selecting the three bands (green, red, NIR) that are useful for water body
identification. The pixel values were normalized and then mapped to the range (0, 255).
Similarly, the gray values of panchromatic images were also normalized and mapped
to the range of (0, 255). The multi-spectral images were re-projected into the coordinate
system of the corresponding panchromatic images to ensure consistent coordinates. The
multi-spectral and panchromatic images were fused by the GRAM-SCHMIDT method [38],
which is a widely used high-quality pansharpening method providing a fusion of panchro-
matic image and multi-spectral images with any number bands through orthogonalization
of different multi-spectral bands [39].
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3.2. Basic Model
3.2.1. Network Architecture

The deep neural network architecture, depicted in Figure 3a, for semantic segmenta-
tion of aquaculture ponds in the proposed method is based on an FCN framework, that
uses ResNet-101 [15] as the encoder to generate multiple semantic features. The encoding
part produces the feature maps through five convolution layers, including the first con-
volution layer (Conv1) followed by a pooling layer, and the other four convolution layers
(Res-1 to Res-4) are all residual subnetworks. The feature maps are abstract representations
of the input image at different levels. Semantic segmentation by the FCN framework
is a dense prediction procedure in that the coarse outputs of the convolution layers are
connected by upsampling to produce pixel-level prediction. In the proposed method, the
RCSA mechanism (introduced in Section 3.2.2) was developed on the coarse outputs at
different levels of abstract representation (detailed in Section 3.2.3). Next, channel attention
blocks (CAB), which were designed to assign different weights to features at different
stages for consistency [40], were used to connect the coarse abstract representations from
the encoder with the upsampling feature at the decoder in the whole dense prediction
procedure. The spatial size of the coarse outputs derived from the different convolution
layers were kept consistent by the upsampling blocks (Figure 3c) to achieve end-to-end
learning through backward propagation. Specifically, to accurately capture aquaculture
ponds and their context information at multiple scales, the ASPP module combined with
the RCSA mechanism (ASPP-RC) forms a branch from Conv1 to the end of the decoder
before a 1 × 1 convolution layer and is integrated with the corresponding feature as a skip
connection. To extract spatial context information at different scales, atrous convolutions
with different rates, followed by the RCSA mechanism, were performed in parallel on the
low-level feature map in the ASPP-RC module. These branches for capturing features at
different scales are connected by weighting each branch in terms of its own importance
(Figure 3b, introduced in Section 3.2.4).

3.2.2. RCSA Mechanism

When human beings use visual perception to understand remote-sensing images con-
taining inland lakes with densely distributed aquaculture ponds, the ponds as a group will
be eye-catching. The attention focuses on the spatial dependencies of aquaculture ponds
and their surroundings. To mimic this human visual mechanism, the proposed model first
establishes inter-pixel contextual dependencies through bidirectional gated recurrent units
(GRUs) [41], which are a powerful variant of RNN, and then the self-attention modules are
used on top of the bidirectional GRUs to establish this visual attention.

The self-attention mechanism is essentially a special case of the attention model. The
unified attention model contains three types of inputs: key, value, and query [42], as
depicted in Figure 4. The key and the value are a pair of data representations. Assume
that there are T pairs < ki, vi > (i ∈ 1, . . . , T). By evaluating the similarity between a
query q and each key, the model essentially captures the weight coefficient of each key and
then weights the corresponding values to derive their final attention values. The attention
mechanism first scores the similarity between a query and a key pair by the f function:

ei = f (ki, q) (1)

Then the original scores ei are normalized by a Softmax function to obtain the weight
coefficients:

ai = g(ei)

= so f tmax(ei)

=
exp(ei)

∑T
j=1 exp(ej)

(2)
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Finally, the context vector ct is evaluated by a weighted sum of the values:

ct = ∑
i

aivi (3)

The attention model can be presented in a unified form

ct = Attention(K, Q, V) = So f tmax( f (K, q))V (4)

The attention model becomes a self-attention mechanism when all inputs, including
the query, the key, and the value, have the same value.
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Figure 3. RCSANet: FCN architecture combined with RCSA mechanism for semantic segmentation of aquaculture ponds:
(a) Network architecture; (b) ASPP-RC module; (c) Upsampling block. The input image of the entire deep neural network is
a 256 × 256 pansharpening patch with three spectral channels. Through encoding and decoding, a three-channel matrix for
classification was output through a 1 × 1 convolution layer at the end, and finally a Softmax layer gave a prediction map
with the same size as the input image.
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The RCSA mechanism takes a feature map, which is the convolutional result from
the previous layer or the input image, as an input x ∈ Rh×w×C, where h, w, and C are the
number of rows, columns, and channels respectively. The feature map can be spatially
divided into h rows ri ∈ R1×w×C(i ∈ 1 . . . h) or w columns cj ∈ Rh×1×C(j ∈ 1 . . . w). RCSA
enables the construction of spatial dependencies between pixels within a row or a column
by the self-attention mechanism. Hence, the RCSA mechanism consists of two parallel
branches, column-wise and row-wise self-attention, which are subsequently concatenated
by summation, as shown in detail in Figure 5. In the upper branch, the row-wise self-
attention mechanism first uses the bidirectional GRU model to depict the dependencies
between the pixels in a row of the feature map

r′i = BiGRU(ri) (5)

Then the outcome from the GRUs r′i is fed into the self-attention model by which the
importance of the dependencies between pixels in the row is evaluated. The self-attention
model is a specific variant of the attention model, in which the input query, key, and value
have the same value, as shown in Figure 4b. The r

′
i are respectively conducted by three

1× 1 convolution kernels, WQ, WK,and WV , so that the query, the key, and the value can be
obtained by Q = WQ ∗ r′i , K = WK ∗ r′i , V = WV ∗ r′i , where “*” is the convolution operation.
Then they are substituted into the following Equation (4):

ct =Attention(WKr′i , WQr′i , WVr′i)

=So f tmax( f (WKr′i , WQr′i))WVr′i (6)

where the similarity function f (K, Q) = QKT√
dk

and dk is the dimension of the key. The

computation for one row can traverse to each row of the feature map. Equivalently, in
the bottom branch, the same operations are performed in parallel on each column of the
feature map. Eventually, the two branches are combined with equal weights.
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Figure 5. Attention layer consisting of column-wise and row-wise self-attention models.
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3.2.3. RCSA for Dense Prediction

In semantic segmentation of remote-sensing images, dense prediction must fuse ab-
stract representations of different levels from the encoder to improve pixel-level prediction.
Visual attention on densely distributed aquaculture ponds could be involved in the dense
prediction procedure. Consequently, the outputs of different convolution blocks in the
encoding part are conducted by RCSA and then participate in dense prediction. These
RCSA modules in the lateral connection enhance the features pixel-wise by assigning
different weights to achieve a reasonable optimization of visual attention. In fact, this
optimization takes place in a two-dimensional space made up of row and column vectors.
However, the importance of different band channels must also be emphasized. The CAB
module is directly used to fuse encoder and decoder features through assigning different
weights to channels.

3.2.4. ASPP-RC Module

Atrous convolutions at different rates can enlarge the field of view so that spatial
information at different scales can be extracted. Aquaculture ponds, which are water
bodies surrounded by dikes with regular shapes, are densely distributed close to inland
lakes. These features show visual salience in remote-sensing images. Hence, the RCSA
block is arranged next to atrous convolution to selectively focus attention. After the first
convolution blocks of the encoder, in the ASPP-RC module, the low-level feature map
is executed in parallel by atrous convolutions with different rates combined with RCSA.
Eventually, the branches are connected by:

I =
5

∑
i=1

wi · bi (7)

where bi is the feature map produced by the ith branch in which the atrous convolution
and RCSA are conducted in sequence and wi is the weight of the ith branch that evaluates
the importance of different scales. This is unlike the original ASPP structure in which each
branch has the same importance. The importance of each branch is adjusted adaptively in
the proposed ASPP-RC module. All weight parameters are initially defined by a random
vector w0

i , which can be optimized during backpropagation when training the whole
network. Finally, these weights are normalized using a Softmax function:

wi = so f tmax(w0
i ) (8)

3.3. Fusion Strategy

To further improve the segmentation quality of aquaculture ponds, the normalized
difference water index (NDWI) maps from pansharpening images are fused with the pre-
diction probability matrices from the proposed network to produce the final classification
result (Figure 6). This implementation is called “RCSANet-NDWI”. The classification
probability matrices are produced from the three classes (aquaculture ponds, natural water
surfaces, and background) probability maps after the Softmax layer. Both aquaculture
ponds and natural water surfaces are water bodies surrounding inland lakes. Hence, the
water extraction index, which is a typical representation of the spectral characteristics of a
water body used to distinguish ground features, has been extensively used. The NDWI
maps were used to provide prior knowledge for aquaculture pond extraction. Through
OTSU threshold binary segmentation [43], NDWI maps were divided into water and
non-water parts. The water parts in the NDWI maps were used to refine the three-class
probability matrix described earlier. Assume that the original probability matrix P0 and
the refined matrix P are both h× w× c in size, whereas the NDWI map S is h× w in size.
c is the channel number, k is the channel ID, and the kth channel represents the kth class.
Hence, k = 1, 2, 3 represent background, water, and aquaculture ponds, respectively. The
fusion operation can be defined as:
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Figure 6. Fusion strategy.

Pijk =

 Pijk
0 ,k 6= 1

yij · Pijk
0 ,k = 1

(9)

where y is the indicator variable

yij =

{
0, Sij = 1

1, Sij = 0
(10)

For the pixel in the i-th row and j-th column of S, if its value is 1 (representing water),
the corresponding background probability (k = 1) in P0 is set to 0, and the fused matrix P
is generated. The final classification maps can be obtained using the maximum probability
judgment. The maximum probability judgment is the usual method for mapping the
probability matrix to the final label image: the classification label of this pixel is determined
with maximum probability: lij = arg max

k
(pk

ij), where probability pk
ij is the probability

of a pixel in the i-th row and j-th column from k different sources. With the NDWI, the
interference from the background of the water body extraction is eliminated because the
probability of the non-water part is set to 0.

4. Experiments

This section describes a series of qualitative and quantitative comprehensive evalu-
ations that were conducted using the proposed methods with the dataset introduced in
Section 2.

4.1. Experimental Set-Up

The inputs of the proposed network were 256× 256 pansharpening patches with three
spectral channels. Table 2 lists the parameters of the convolution kernels, which are basic
operators of different modules in the entire process of the proposed RCSANet. Parameter
rate means that the convolution kernels in different atrous convolution branches of the
ASPP-RC module have different padding and dilation configurations, which are set to 6,
12, and 18, respectively, according to Figure 3b. Validation consisted of two parts:

(1) Evaluating the performance of the proposed methods. The pansharpening images of
the six regions (both type I and type II in Figure 1) were segmented into image patches
256 × 256 pixels in size. These image slices were randomly divided into training and
test sets, of which 80% (4488 images) made up the training set and 20% (1122 images)
made up the test set. The overall accuracy, user’s accuracy, producer’s accuracy, and
kappa coefficients were used as the main evoluation metrics.

(2) To assess the quality of aquaculture pond extraction and evaluate the generalization
and migration capabilities of RCSANet, four regions (type I) were used as training
data, and the other two regions (type II) were used as test areas. The overall accuracy,
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user’s accuracy, producer’s accuracy, and kappa coefficients were calculated to assess
aquaculture pond extraction accuracy on the 2 m spatial resolution pansharpened
images.

Table 2. Parameters used for the convolution kernels in the various modules in RCSANet.

Module Kernel Size Stride Padding Dilation

Conv 1 × 1 1 0 1
RCSA 1 × 1 1 0 1

Upsampling block 1 × 1 1 0 1
ASPP-RC(Conv) 1 × 1 1 0 1

ASPP-RC(Atrous conv) 3 × 3 1 rate rate

In addition, the proposed methods were divided into two versions: RCSANet (without
NDWI fusion) and RCSANet-NDWI (with NDWI fusion) to verify the role of NDWI fusion.
Three state-of-the-art segmentation methods, including DeeplabV3+ [20], Reseg [44], and
Homogeneous Convolutional Neural Network (HCN) [25] were selected for comparison.
In addition, the performance of SVM was also assessed as a representative of traditional
machine learning methods that directly use each pixel as a feature. DeeplabV3+ is an
FCN method for semantic segmentation with the help of an ASPP module. Reseg is a
hybrid deep network for semantic segmentation. Except for CNN, the bidirectional GRU
is also used in Reseg to capture contextual dependencies. HCN was originally proposed
for automatic raft labelling and is now considered to have potential for aquaculture pond
extraction. HCN was implemented following the settings in [25], and Resnet-101 was
simultaneously used as the encoder in DeeplabV3+, Reseg, and the proposed methods.

In the present experiments, the parameters of the proposed methods were optimized
by minibatch stochastic gradient descent using a momentum algorithm with a batch size
of 2. The learning rate was set to 10−2 and decayed with training epoch according to the
“polynomial” strategy. The number of training epochs was configured as 40. The SVM was
implemented with the help of the LIBSVM package[45], and two important factors, C and γ,
were determined through a five-fold cross validation grid search. Except for the HCN,
which was operated using TensorFlow 1.9.0, the other deep learning-based algorithms
were implemented in Pytorch 1.1.0. All deep learning methods were implemented on a
single NVIDIA GeForce GTX 1080 GPU.

4.2. Results

The performance of the various semantic segmentation methods in Part 1 of the
experiments is depicted in Table 3. Clearly, the deep learning-based methods perform better
than the traditional SVM algorithm because the latter cannot perceive spatial semantic
information in the image. DeeplabV3+ is a state-of-the-art FCN method that has been
widely used. Resnet-101 was also chosen as the backbone for DeeplabV3+. HCN is a deep
convolutional neural network for automatic raft labelling, and Reseg is a deep recurrent
neural network for semantic segmentation. The classification accuracy of the proposed
methods for natural water surfaces and aquaculture ponds was consistently better than the
other methods. Meanwhile, compared with DeeplabV3+, the overall accuracy in the two
versions of the proposed methods led to an improvement of more than 7% and the Kappa
coefficients of the proposed methods were greater than 0.72, indicating that the proposed
method is significantly better than DeeplabV3+. Moreover, the results also demonstrated
the effect of the proposed fusion strategy because RCSANet-NDWI further surpassed
RCSANet on most metrics.
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Table 3. Performance comparison of different methods for semantic segmentation of aquaculture ponds in Part 1 of the
experiments (%).

Producer’s Accuracy User’s Accuracy
Methods Overall

Accuracy (%)
Kappa Natural

Water (%)
Aqua-

Culture (%)
Natural

Water (%)
Aqua-

Culture (%)

SVM 26.90 9.71 54.80 15.96 52.43 76.60
Deeplabv3+ 79.16 59.23 90.32 55.26 97.90 93.14

Reseg 84.52 68.23 90.74 71.18 97.44 90.31
HCN 74.53 49.86 86.83 48.21 92.71 85.74

RCSANet 86.95 72.83 92.83 74.36 98.13 93.99
RCSANet-NDWI 89.31 77.28 93.28 80.81 98.07 93.57

Figure 7 gives a detailed display of the classification results in Part 1 of the experiment.
Inland water areas contain various natural water bodies as well as aquaculture ponds.
These natural water bodies greatly interfere with the segmentation result for aquaculture
ponds, making pixel-scale classification intricate. Figure 7 shows that the SVM classification
results misclassified many aquaculture ponds as natural water bodies and many natural
water bodies as aquaculture ponds, indicating that the traditional pixel-based method can-
not efficiently distinguish natural water bodies from aquaculture ponds. The segmentation
maps created by DeeplabV3+ look significantly better than those from SVM, but in some
difficult zones where natural water bodies look similar to aquaculture ponds, they are
also trapped by their own performance limitations and misclassified natural water bodies
as aquaculture ponds (area in the 7th row) or aquaculture ponds as natural water bodies
(districts in the 5th row). HCN, which has good performance for raft-culture extraction in
offshore waters, performed poorly on semantic segmentation of inland aquaculture ponds
and serious misclassifications also happened with HCN. Reseg, which combines CNN and
bidirectional GRU, can perform semantic segmentation for aquaculture ponds. However,
the identification of natural water bodies that closely resemble aquaculture ponds around
inland lakes is not as good as with the proposed methods. In Table 3, the overall accuracy of
the Reseg method can reach greater than 80% but its Kappa coefficient is less than 0.7. This
shows that Reseg has established a spatial relationship through the construction of GRU,
which has a certain effect on the segmentation of aquaculture ponds around inland lakes,
but it is not good enough. In the Reseg segmentation map, many objects are stuck together,
and the edges of aquaculture ponds are not well displayed. Among these result maps,
the two versions of the proposed method separated natural water bodies and aquaculture
ponds more satisfactorily than the other methods. The ASPP-RC module of the proposed
method feeds back the details at different scales into the low-level feature map, which
can draw visual attention to the decoding part. This facilitates identification of the thin
edges surrounding the aquaculture ponds in semantic segmentation. Hence, the edges
of aquaculture ponds were clearly identified in most cases, as shown in the results from
RCSANet and RCSANet-NDWI. Finally, note that RCSANet-NDWI further improved the
quality of aquaculture pond extraction compared with RCSANet.

Table 4 provides assessment results for the various algorithms in Part 2 of the exper-
iment and shows the corresponding extraction accuracies of the aquaculture pond and
natural water surface classes in the two experimental areas (regions A and B in Figure 1) by
different sensors. The overall accuracy and Kappa coefficient show that the two versions
of the proposed method (RCSANet and RCSANet-NDWI) both performed better than
the other methods, regardless of sensor or area. Moreover, compared with RCSANet, the
accuracy of RCSANet-NDWI was further improved with the aid of NDWI fusion. In region
A, their overall accuracies in pansharpening images from different sensors were greater
than 85 percent, and the Kappa coefficients were definitely greater than 0.7. These results
were better than those of other deep learning-based methods, not to mention SVM. In
region B, the proposed methods still performed the best. Unlike region A, where the lake is
greatly influenced by residents living nearby, causing the aquaculture ponds to be neatly
and regularly distributed, the aquaculture ponds in region B have a sparser distribution.
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Region B is relatively well protected, and some small natural water bodies, which are
easily confused with aquaculture ponds and interfere with network identification, were
produced when the lake was split for artificial development. Hence, the situations in the
two regions are completely different, which shows the stability of the proposed methods
under various scenarios. The overall accuracies of the proposed methods in pansharpening
images from different regions were close to or greater than 80 percent. In addition, it should
be noted that user accuracy in identifying natural water bodies in almost all methods is
relatively high. This is because natural water bodies tend to be extensive, homogeneous,
self-contained, and distributed in aggregates, a situation that is easier to recognize for the
classifier. Compared with the proposed methods, Reseg and DeeplabV3+ may also obtain
higher user accuracy in some cases. However, because of their limited recognition ability,
they cannot explicitly judge the difference between aquaculture ponds and natural water
bodies (Figure 8).

TM+ALOS

TM+ZY-3

TM+ZY-3

OLI+GF-1

OLI+GF-1

Pansharpened 

image
Ground truth SVM DeeplabV3+ Reseg HCN RCSANet RCSANet-NDWI

TM+ALOS

OLI+ZY-3

OLI+ZY-3

Figure 7. Semantic segmentation results for 256× 256 pixel image patches from test set in Part 1 of the experiment. The
leftmost column gives the sensors or satellites to which the multispectral and panchromatic data of the pansharpened
images belong, and the bottom row lists the different methods by which the semantic segmentation images in the same
column were obtained.
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Table 4. Accuracy evaluation for the two classes, aquaculture ponds and natural water surfaces, in each experimental
area (%).

Producer’s Accuracy User’s Accuracy
Regions Sensors Methods Overall

Accuracy (%)
Kappa Natural

Water (%)
Aqua-

Culture (%)
Natural

Water (%)
Aqua-

Culture (%)

Lake Hong (East,
type II region A)

TM+ZY-3 SVM 24.44 5.09 27.55 23.80 53.83 86.72
Deeplabv3+ 81.30 60.93 87.87 64.71 98.25 83.30

Reseg 84.74 66.92 88.97 74.06 97.85 82.52
HCN 77.37 52.85 88.83 48.42 96.73 79.79

RCSANet 86.79 70.83 90.79 76.70 98.25 84.47
RCSANet-NDWI 88.77 74.78 91.08 82.94 98.21 84.42

OLI+GF-1 SVM 67.60 25.99 38.82 78.75 47.09 82.16
Deeplabv3+ 84.96 69.73 87.60 79.57 96.82 90.01

Reseg 76.47 55.10 78.30 72.75 92.44 83.38
HCN 73.76 48.23 82.90 55.07 88.02 86.79

RCSANet 85.36 69.14 90.57 74.70 93.59 90.38
RCSANet-NDWI 86.61 71.43 91.07 77.50 93.61 90.14

Lake Liangzi (East,
type II region B)

TM+ALOS SVM 39.26 14.51 67.37 5.32 86.62 19.22
Deeplabv3+ 74.60 53.48 86.73 50.69 99.25 82.83

Reseg 75.27 54.33 84.94 56.20 97.86 83.28
HCN 67.68 40.23 90.05 23.60 92.51 86.44

RCSANet 79.95 62.01 89.31 61.50 99.56 90.03
RCSANet-NDWI 83.85 68.42 89.63 72.45 99.51 89.03

OLI+GF-1 SVM 39.43 3.29 48.19 7.58 94.43 5.90
Deeplabv3+ 82.31 55.98 91.45 49.06 98.91 77.99

Reseg 87.97 67.84 93.74 66.96 97.85 85.59
HCN 77.25 43.83 91.80 24.31 97.19 81.96

RCSANet 90.90 75.86 93.00 83.26 99.21 83.97
RCSANet-NDWI 91.71 77.83 93.19 86.31 99.20 83.69

Figure 8 shows the classification results in the two study regions. Extracting aqua-
culture ponds in region B is more difficult than in region A because region B contains
more natural water bodies that are hard to distinguish from aquaculture ponds. The two
versions of the proposed method performed significantly better than the other methods for
aquaculture pond extraction. The proposed methods were predominantly successful in
predicting aquaculture ponds that are divided into regular shapes by embankments, as
well as the natural water bodies in the two regions. In region A, the proposed methods
generally extracted almost all aquaculture ponds compared with the ground truth, whereas
other methods failed, especially in the upper part of the scene. In region B, compared
with Reseg, the proposed methods had lower misclassification rates, and the natural rivers
located at the bottom, which could not be identified by Reseg, were not misclassified as
aquaculture ponds by the proposed methods. Moreover, the shapes of the ponds are best
retained, as shown in the results of the proposed method. The advantage of the proposed
method is the proposed RCSA mechanism for determining salient pixels in a row or col-
umn, which is essentially a description of the pixel-level context. This enables the proposed
method to identify detailed features of the 2 m spatial resolution image, where the dikes
around aquaculture ponds are such pixel-level details. Hence, the aquaculture ponds in
region B were more fully extracted by the proposed RCSANet than by other state-of-the-art
methods, such as DeeplabV3+ and Reseg. On the other hand, fusion using NDWI can
better distinguish water surfaces, including natural water bodies and aquaculture ponds,
from background. In effect, the proposed method with NDWI re-segments the leaked water
surface from the background, which improves the producer’s accuracy of the aquaculture
pond. However, this also entails a phenomenon whereby a small part of the background is
mistakenly classified as water surface.
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Figure 8. Semantic segmentation results for aquaculture ponds and natural water bodies by various methods: (a) in region
A, using the pansharpened image with the TM multispectral image captured in January 2011 and the ZY-3 panchromatic
image in January 2013; and (b) in region B, using the pansharpened image with the OLI multispectral image captured in
February 2014 and the GF-1 panchromatic image in January 2014.
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5. Discussion

This study has used a fully convolutional network architecture with row- and column-
wise self-attention to semantically segment aquaculture ponds around inland lakes. Artifi-
cial aquaculture ponds around inland lakes are small, and the dikes between these ponds
are only about 2 m wide. On medium-resolution multispectral images, water pixels are
firstly separated from land, and then water objects are formed based on connectivity. After
that, these water objects are classified as natural water bodies and aquaculture ponds using
geometric characteristics [8]. However, for inland lake area where aquaculture ponds are
intensively distributed with narrow dikes (e.g., Lake Hong), the 15–30 m spatial resolution
of the image limits the capability of the object based method to accurately extract aquacul-
ture ponds. Hence, finer-spatial-resolution images are considered for pond extraction. By
fusing multi-spectral information into panchromatic images from the GF-1, ZY-3 or ALOS
satellites, the spatial resolution of the resultant satellite images can achieve up to 2 meters,
enabling the identification of thin narrow dams. Meanwhile, the multi-spectral capability is
utilized to recognize water. From the segmentation results, the proposed network structure
was shown to be capable of extracting these regular pond boundaries, mainly because
semantic segmentation of the aquaculture ponds benefits from establishing a spatial re-
lationship between pixels in the same direction by the self-attention model. Although
HCN was also an FCN-based method used to automatic raft labeling [25], nevertheless, its
performance for extracting aquaculture ponds around inland lakes are not as effective as
that for labeling raft-culture. Because the spatial context of raft-culture in coastal area is
much simple than that of the inland lake area. In general, through high-spatial-resolution
images that incorporate multi-spectral and panchromatic data, the proposed RCSANet
enables the extraction of large-scale aquaculture ponds around inland lakes where complex
spatial contexts of water surfaces exist. However, it is still challenging for the recognition
of small water bodies in such complex spatial context. The experimental region B was in
the process of recovering aquaculture ponds and farmland as lake area from 2011 to 2014.
Therefore, various aquaculture ponds and natural water bodies are spatially mixed on the
images of pansharpening multispectral and panchromatic data from 2011 and 2014, which
poses great challenges for semantic segmentation of aquaculture ponds. For example,
Figure 9c,d are images of the same area, which changed significantly between 2011 and
2014. Several small reservoirs were apparent in Figure 9c, but the profiles of these reservoirs
had changed significantly in Figure 9d, and the left side of this area had been recovered
into a large lake. The segmentation results in Figure 9g,f show that the restored large lake
has been well segmented, but the small reservoirs are easily classified as aquaculture ponds
or missed segmentations.

In the paper, extracting aquaculture ponds is performed on images that pansharpen
multi-spectral data from Landsat satellites and panchromatic data from other satellites in
the same period, and therefore the semantic segmentation might also be affected by the
spectral range of the panchromatic image. Table 5 gives the results of an accuracy analysis
that divided the training data of Part 2 of the experiment into two portions: pansharpened
TM images and pansharpened OLI images. The predicted results of pansharpened TM
images from Region B are based on RSCANet, which was trained by fusing TM images with
panchromatic images from ZY-3 or ALOS satellites. The predicting results of pansharp-
ened OLI images from Region B is based on RSCANet, which was trained by fusing OLI
images with panchromatic images from GF-1 satellites. Table 5 shows that the results of
pansharpened OLI images with panchromatic images from GF-1 satellites are significantly
better than the results of pansharpened TM images with panchromatic images from ZY-3
or ALOS satellites. The spectrum of panchromatic images from GF-1 satellites ranges from
0.45 to 0.90 µm, which can completely cover the three NIR, red, and green bands of Landsat
OLI data. However, the spectrum of panchromatic images from ZY-3 or ALOS satellites can
only partly cover the NIR band of the TM sensor. The acquisition time of the TM images
was earlier than 2012, and therefore it is difficult to use a GF-1 panchromatic image for
pansharpened TM images.
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Figure 9. Influence of multi-year changes on semantic segmentation results for aquaculture ponds. (a,b) are pansharpened
images of the significantly changed area from Region B in 2010 and 2014 respectively. (c,d) are magnified images. (e,f) are
labelling images for (c,d). (g,h) are semantic segmentation results for (c,d) using the proposed method.

The RCSANet can extract aquaculture ponds around inland lakes on 2 m satellite
images more accurately than other methods because the involvement of two connection
groups from the encoder to the decoder. The first connection group is the combination of
the RCSA module and the ASPP-RC module, which links Conv1 of encoder part to decoder
part. The second is the RCSA modules, linking Res-1, Res-2, and Res-3 of encoder part to
decoder part. Table 6 indicates that the first connection group of RCSANet achieves an
additional 2.32% overall accuracy gains over RCSANet1, and the second connection group
brings 3.59% overall accuracy gains over RCSANet2, i.e., a plain FCN architecture based
on ResNet-101 model. Nevertheless, the connections expend more computing resources
because they involve the non-local self-attention mechanism, which contains many inner-
product operations. Moreover, the RCSANet is an encoder-decoder architecture in which
the gradual upsampling are conducted, requiring more memory and calculation time.
Table 7 shows that the RCSANet consumes more memory and training and prediction time
than Deeplabv3+ and Reseg methods. It is feasible to sacrifice some computing resources to
achieve higher accuracy of aquaculture pond extraction, especially the GPU performance
will increase gradually.
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Table 5. Accuracy comparation of semantic segmentation results for region B by dividing the training data of Part 2 of the experiment into pansharpened TM images and pansharpened
OLI images (%).

Producer’s Accuracy User’s Accuracy
Regions Sensors Methods Training Data Overall

Accuracy (%)
Kappa Natural

Water (%)
Aqua-

Culture (%)
Natural

Water (%)
Aqua-

Culture (%)

Lake Liangzi (East,
type II region B)

TM+ALOS

RCSANet All pansharpened images from type I regions 79.95 62.01 89.31 61.50 99.56 90.03

RCSANet-NDWI 83.85 68.42 89.63 72.45 99.51 89.03

RCSANet Pansharpened images of fusing TM images with panchromatic images 77.44 57.54 90.98 50.75 98.71 91.26
RCSANet-NDWI from ZY-3 or ALOS satellites, from type I regions 81.84 64.68 91.23 63.33 98.65 91.00

OLI+GF-1

RCSANet All pansharpened images from type I regions 90.90 75.86 93.00 83.26 99.21 83.97
RCSANet-NDWI 91.71 77.83 93.19 86.31 99.20 83.69

RCSANet Pansharpened images of fusing OLI images with panchromatic images 88.01 68.78 92.92 70.12 98.96 85.70
RCSANet-NDWI from GF-1 satellites, from type I regions 89.41 72.09 93.14 75.85 98.89 85.93
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Table 6. Accuracy evaluation for RCSANet and its two varants RCSANet1 and RCSANet2 in Part 1
of the experiments (%). RCSANet1 is a RCSANet variant ablating the first connection group and
RCSANet2 is the other variant ablating both connection groups.

Methods Overall Accuracy Kappa Coefficient

RCSANet2 81.04 66.15
RCSANet1 84.63 71.59
RCSANet 86.95 72.83

Table 7. Performance evaluation of different deep-learning based methods for semantic segmentation of aquaculture ponds in Part 2 of
the experiments.

Methods Training Time (seconds) Occupied Memory of GPU
for Training (MB)

Prediction Time for Region
B (seconds)

Occupied Memory of GPU
for Prediction (MB)

RCSA 60,280 7563 35 1543
HCN 66,000 7709 64 7843

Deeplabv3+ 16,760 3113 12 1417
Reseg 10,640 2343 16 1083

6. Conclusions

This study has implemented a semantic segmentation network on high-spatial-resolution
satellite images for aquaculture pond extraction. A row- and column-wise self-attention
(RCSA) mechanism has been proposed to capture the intertwining regular embankments
of aquaculture ponds in feature maps, and then a fully convolutional network framework
combined with the RCSA mechanism is proposed for semantic segmentation of aquaculture
ponds. The proposed methods have been evaluated on high-spatial-resolution pansharp-
ened images obtained by fusing multi-spectral and panchromatic images in typical regions
with inland lakes and densely distributed aquaculture ponds. Experiments on satellite
images of both a highly developed lake and a reserved lake show that the overall accuracy
of the proposed method is significantly better than those of other methods (3–8% overall
accuracy gains at Lake Liangzi and 1–2% overall accuracy gains at Lake Hong over the
best of other methods). Specifically, from the experimental semantic segmentation results
for large regions, detailed information, such as the embankments of aquaculture ponds,
can be more accurately identified by the proposed method. It can be concluded that the
proposed method is effective for large-scale extraction of aquaculture ponds. In addition,
RCSANet-NDWI further improves the accuracy of the proposed method compared with
RCSANet, indicating the significance of the proposed NDWI fusion strategy. For future
study, the proposed methods can be extended to raft-culture extraction in offshore waters.
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