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Abstract: Leaf area index (LAI) is a vital parameter for predicting rice yield. Unmanned aerial
vehicle (UAV) surveillance with an RGB camera has been shown to have potential as a low-cost
and efficient tool for monitoring crop growth. Simultaneously, deep learning (DL) algorithms have
attracted attention as a promising tool for the task of image recognition. The principal aim of this
research was to evaluate the feasibility of combining DL and RGB images obtained by a UAV for
rice LAI estimation. In the present study, an LAI estimation model developed by DL with RGB
images was compared to three other practical methods: a plant canopy analyzer (PCA); regression
models based on color indices (CIs) obtained from an RGB camera; and vegetation indices (VIs)
obtained from a multispectral camera. The results showed that the estimation accuracy of the model
developed by DL with RGB images (R2 = 0.963 and RMSE = 0.334) was higher than those of the
PCA (R2 = 0.934 and RMSE = 0.555) and the regression models based on CIs (R2 = 0.802-0.947 and
RMSE = 0.401–1.13), and comparable to that of the regression models based on VIs (R2 = 0.917–0.976
and RMSE = 0.332–0.644). Therefore, our results demonstrated that the estimation model using DL
with an RGB camera on a UAV could be an alternative to the methods using PCA and a multispectral
camera for rice LAI estimation.

Keywords: unmanned aerial vehicle; drone; deep learning; leaf area index; growth estimation; rice;
RGB camera

1. Introduction

Leaf area index (LAI), which represents one half of the total green leaf area (i.e.,
half of the total area of both sides of all green leaves) per unit horizontal ground surface
area [1], is a key vegetation parameter for assessing the mass balance between plants and
the atmosphere [2,3], and plays an important role in crop growth estimation and yield
prediction [4–6]. The efficiency of light capture and utilization are the ultimate factors
limiting crop canopy photosynthesis, and LAI primarily determines the interception rate
of solar radiation by a crop. Hence, accurate LAI estimation is an important to evaluate
crop productivity. Direct LAI measurements have been performed by destructive sampling,
but this approach requires a great deal of labor and time. Moreover, it is often difficult to
obtain a representative value of the plot because only a part of the plot can be surveyed by
direct sampling. Therefore, in recent years, various indirect methods for LAI estimation
have been developed to solve these problems.

One of the widely used estimation methods is an indirect measurement using optical
measuring devices. The plant canopy analyzer (PCA) is a typical optical measuring device
used for this purpose. The PCA can measure LAI in a non-destructive manner by observing
the transmitted light in the plant community with a special lens and measuring the rate
of its attenuation [7]. It has come to be widely used as an efficient measurement method.
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Recently, many studies have used the PCA to obtain the ground-measured LAI as validation
data for remote sensing [8–10].

On the other hand, indirect estimation methods using handheld or fixed-point cameras
have also been studied. Mainly two types of cameras are used in these estimation methods:
an RGB camera of the type used for general photography, which can acquire the brightness
of red, blue, and green, and a multispectral camera that can measure the reflectance of the
light in a wider variety of wavelength ranges. Several methods for estimating LAI using
these cameras have been developed. Among them, a method using regression models
with color indices (CIs) calculated from the digital number (DN) of light in the visible
region (red, blue, and green) obtained from RGB cameras and a similar method using
regression models with vegetation indices (VIs) calculated from the reflectance of light in
a wider variety of wavelength ranges such as near-infrared obtained from multispectral
cameras have been widely studied [11–14]. However, LAI estimation with handheld or
fixed-point cameras can collect data only in a very limited area in a field. Therefore, a
more effective LAI estimation method that enables data acquisition in a wider area using
remote sensing by an unmanned aerial vehicle (UAV) has been proposed [15]. UAV has an
remarkable advantage in that it has a very high temporal and spatial resolution compared
to satellite [16]. As such, it is invaluable for screening of large number of breeding lines and
monitoring within-field variability in precision agriculture. The main traditional estimation
methods used in conjunction with UAVs are a method based on CIs obtained from the RGB
camera and a method based on VIs obtained from the multispectral camera [11,17,18]. It is
known that VIs, which contain the reflectance in the near-infrared (NIR) region, are more
accurate than CIs, which contain only the visible light region [19]. However, multispectral
cameras are more expensive than RGB cameras in general, and low-cost consumer UAVs
equipped with RGB cameras for monitoring crop growth have recently been attracting
attention [20]. Therefore, it is necessary to improve the accuracy of LAI estimation by UAVs
equipped with RGB cameras.

In the last several years, an increasingly broad range of machine-learning algorithms
has been used to in an attempt to improve the accuracy of LAI estimation via remote sensing
technology [21–25]. In these studies, various types of LAI-related data (VIs, CIs, reflectance
and texture index, etc.) extracted from the images were used as input data of several
machine-learning algorithms to develop more accurate LAI estimation models, and their
usefulness was demonstrated. However, deep learning (DL), which is the latest machine-
learning algorithm, achieves much higher recognition accuracy in image recognition tasks
than previous algorithms [26], and has been applied to crop growth estimation during
growth duration in several reports, though its applicability to various other tasks in
agricultural research, such as disease detection [27], land cover classification [28], plant
recognition [29], identification of weeds [30], prediction of soil moisture content [31], and
yield estimation [32], is still under investigation.

DL is a machine-learning algorithm that mimics the learning system of humans. A
mathematical model called a neural network, which imitates a neurotransmission circuit of
the human brain, is multiply incorporated in the algorithm. High accuracy can be achieved
by building a proper network. In particular, it is known that extremely high-precision
image recognition can be performed by incorporating a type of network known as a
convolutional neural network (CNN) [33]. In the conventional machine-learning algorithm,
the limit is that only simple numerical information can be used as input data. By applying
CNN in DL, not only the simple numerical information extracted from the images but also
the images themselves can be utilized as input data, potentially leading to the development
of a more accurate LAI estimation model.

However, the feasibility of combining DL and RGB images obtained by UAV for
LAI estimation in rice has not been adequately investigated, and the accuracy of this
approach must be relativized in order to evaluate its potential applicability. Therefore, in
this research, in order to refine the process of LAI estimation in rice using an RGB camera
mounted on a UAV, we examined whether estimation models developed by DL with the
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RGB images as input data could be an alternative to existing LAI estimation methods using
PCA, regression models based on indices extracted from RGB or multispectral images and
estimation models developed with machine-learning algorithms.

2. Materials and Methods
2.1. Experimental Design and Data Acquisition

The field experiment was conducted at a paddy field in the Field Museum Honmachi,
Tokyo University of Agriculture and Technology, Honmachi, Fuchu-shi, Tokyo (35.41N
and 139.29E) in 2019. Three rice varieties, Akitakomachi (Japonica), Koshihikari (Japonica)
and Takanari (Indica) were used, and two nitrogen fertilization levels including the non-
fertilized area (0N) and the fertilized area (+N: 2 g/m2 was applied as a basal on 23 May,
and 2 g/m2 was applied twice as top dressing on 20 June and 17 July) were set in a split-plot
design with three replications with the fertilizer treatment as the main plot. In addition,
10 g/m2 of P2O5 and K2O were applied as a basal on May 15. Transplanting was carried
out on 22 May with a planting density of 22.2 hills/m2 (30 cm × 15 cm) with 3 plants
per hill.

An Inspire2 (DJI) was used as the UAV, and it was equipped with a multispectral
camera (RedEdge-MX; Micasense) and an RGB camera (Zenmuse X4S; DJI) with reference
points set up at the four corners of the experimental field using a flight planning application
(Atlas Flight, Micasense; Pix4D capture, Pix4D). The wavelength and the resolution of
bands of each camera are shown in Table 1. The aerial images were taken above the rice
canopy at an altitude of 30 m with both of forward and lateral overlap rate of 80% and a
speed of 3 m/s. On the next day, LAI was measured at 10 points under eight hills (60 cm ×
60 cm) per plot with PCA (LAI-2200; LI-COR), and the average of 10 points was used as
the representative value of the plot. The detail of the measurement was shown in Figure 1.
To reduce the influence of direct light and the observer, a view cap with a viewing angle
of 90 degrees was attached to the sensor of the PCA, and the measurements were carried
out during cloudy weather or when the sun’s altitude was low. Then, the eight hills were
harvested from each plot and separated into each organ (leaves, stems, and roots), the leaf
area was measured using an automatic area meter (AAM-9A; Hayashi Denko), and the
ground-measured LAI of each plot was obtained by dividing by the occupied area of the
eight hills (60 cm × 60 cm). The above survey was conducted every two weeks from the
date of transplanting to the date of heading.
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Figure 1. Sampling point of plant canopy analyzer (PCA) for below the canopy. The data of PCA for
below the canopy of eight harvested plants (2 rows by 4 plants) data were collected from 10 points.
The data were taken in the direction of the arrows from the position of the enclosed numbers: 4
points were taken from between the plants in each of the 2 rows at a 45-degree angle to the direction
of the rows towards the inside of the canopy (from No. 1 to 4), and 6 points were taken from between
the rows parallel to the rows (from No. 5 to 10).
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Table 1. Information on the two kinds of cameras on the unmanned aerial vehicle (UAV).

Camera Spectral Band (nm) Resolution (Pixels)

Rededge-MX
(multispectral camera)

475 (Blue), 560 (Green), 668 (Red),
717 (Rededge), 840 (NIR) 1280 × 960

Zenmuse X4S
(RGB camera) R, G, B 5472 × 3648

2.2. Image Processing
2.2.1. Generation of Ortho-Mosaic Images

The coordinates of the reference points installed at the four corners of the test field
were obtained by closed traverse surveying with reference to the Japan Geodetic System
2011 Plane Cartesian Coordinate System 9 as a map projection method, and these four
points were used as ground control points (GCPs) (Figure 2).
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Figure 2. Examples of ortho-mosaic images (9 July). The green triangles in the four corners of the field represent ground
control points (GCPs): (a) a multispectral ortho-mosaic image (near-infrared (NIR)); (b) an RGB ortho-mosaic image.

Each ortho-mosaic image was created from 5-band multispectral images and RGB
images taken with the UAV. Tie points were automatically detected from the overlapping
area between aerial images, and camera calibration (correction of the lens focal length,
principal point position, and radial and tangential distortion) was performed with the tie
points. After that, parameters of external orientation (camera position and tilting angle)
were estimated using the detected tie points and the four installed GCPs, and the 3D model
was developed. This processing was performed so that the accuracy of GCPs was within
1 pixel. Ortho-mosaic images (orthophoto images) of 5-band multispectral cameras and
RGB cameras were generated from each of the 3D models (Figure 2). The resolutions of
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these images were 12 mm and 9 mm, respectively. When generating the multispectral
ortho-mosaic images, the attached light-intensive sensor automatically converts DN into
the reflectance of each band and the reflectance was used for calculation of VIs. As for RGB
ortho-mosaic images, DNs were used for calculation of CIs. Metashape (Agisoft) was used
for the above processing.

2.2.2. Calculation of Vegetation Indices and Color Indices

The average reflectance of the eight hills (60 cm × 60 cm) in each plot, which is
taken for destructive LAI measurements, was extracted from the multispectral ortho-
mosaic images of each band (blue, green, red, rededge and near-infrared) using polygons
(15 cm × 30 cm) including each hill using a geographical information system (ArcMap,
Esri) (Figure 3).
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Figure 3. An example of polygons for extracting reflectance from a multispectral ortho-mosaic image
(NIR, July 9, Koshihikari, +N, R1).

Various VIs for which the relationship with LAI have been reported were calculated
from the multispectral reflectance. In this study, four types of VIs, normalized difference
vegetation index (NDVI), simple ratio (SR), modified simple ratio (MSR), and soil adjusted
vegetation index (SAVI), were calculated with the two bands of reflectance (λ1, λ2) (Table 2).
In general, these VIs are often used with substitution of the reflectance of near-infrared
and red for λ1 and λ2, respectively, but in our present experiments, in addition to these
substitutions, we also substituted the reflectance of near-infrared and rededge, and the
reflectance of rededge and red for λ1 and λ2, respectively. In total, 12 VIs were calculated
from the reflectance obtained from the multispectral ortho-mosaic images in this study
(Table 2).

For the RGB ortho-mosaic images containing the DNs of three colors (red, green, and
blue), small images containing eight hills (60 cm × 60 cm) were cut out at a resolution of
100 × 100 pixels (these cut-out RGB images were also used as input data for DL) (Figure 4)
and the DNs of three colors (red (R), green (G), and blue (B)) were acquired using an image
processing software package (ImageJ; Wayne Rasband). The normalized DNs of the three
colors, r, g, and b, are calculated by dividing the original DNs of red (R), green (G), and
blue (B) by the sum of these three original DNs as follows:

r = R/(R + G + B), (1)

g = G/(R + G + B), (2)

b = B/(R + G + B). (3)
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Table 2. Summary of vegetation indices (VIs) and color indices (CIs) used in this study.

Index Formula Reference

VIs NDVI (λ1, λ2) (Rλ1 − Rλ2)/(Rλ1 + Rλ2) Jordan [34]
SR (λ1, λ2) Rλ1/Rλ2 Jordan [34]

MSR (λ1, λ2) ((Rλ1/Rλ2) − 1)/((Rλ1/Rλ2) + 1)0.5 Chen [35]
SAVI (λ1, λ2) 1.5(Rλ1 − Rλ2)/(Rλ1 + Rλ2 + 0.5) Huete [36]

CIs VARI (g − r)/(g + r − b) Gitelson et al. [37]
E × G 2g − r – b Woebbecke et al. [38]
E × R 1.4r – g Meyer & Neto [39]
E × B 1.4b – g Mao et al. [40]

NGRDI (g − r)/(g + r) Tucker [41]
MGRVI (g2 − r2)/(g2 + r2) Tucker [41]

GLA (2g − r − b)/(2g + r + b) Louhaichi et al. [42]
RGBVI (g2 − b × r)/(g2 + b × r) Bendig et al. [43]

VEG g/(rab(1 − a)), a = 0.667 Hague et al. [44]
The reflectance of NIR and red, NIR and rededge, rededge and red obtained from the multispectral camera were
substituted for λ1 and λ2; the normalized digital numbers (DNs) of red, green, and blue obtained from the RGB
camera were substituted for r, g, and b (Equations (1)–(3)), respectively.
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In this study, nine types of CIs, visible atmospherically resistant index (VARI), excess
green vegetation index (E × G), excess red vegetation index (E × R), excess blue vegetation
index (E × B), normalized green-red difference index (NGRDI), modified green red vegeta-
tion index (MGRVI), green leaf algorithm (GLA), red green blue vegetation index (RGBVI),
and vegetativen (VEG), whose relationship with LAI have been reported were calculated
from the normalized DNs (Equations (1)–(3)) obtained from the RGB camera (Table 2).

2.3. Estimation Model Development and Accuracy Assessment

Replication 1 and 2 were used as training data for model construction (n = 48), and
replication 3 was used as validation data to verify the model accuracy (n = 24). The RGB
images for the training data of DL were inflated 12 times (n = 576) by flipping left and right
and upside down and changing the brightness (0.7, 1.4 times) (Figure 5).

Based on each of the calculated VIs and CIs, regression models of the ground-measured
LAI were developed by the least-square method, and their accuracy was verified.

In a previous study, CIs were applied for the machine-learning algorithm to develop
LAI estimation models [22]. Therefore, in this research, CIs were also used as input data
for machine-learning-algorithms and DL in addition to RGB images for relative evaluation.
In total, three patterns of input datasets (nine types of CIs, RGB images, and nine types of
CIs and RGB images) were prepared for machine-learning algorithms and DL to assess the
potential estimation accuracy of the RGB camera. After that, the LAI estimation models by
machine-learning algorithms and DL using each of the input datasets were constructed,
then their accuracy was assessed.
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As a comparative analysis method for DL, four kinds of machine-learning algorithms,
artificial neural network (ANN), partial least squares regression (PLSR), random forest (RF)
and support vector regression (SVR), other than DL were used in this study. Scikit-learn, an
open source library of Python was used for model development. Main tuning parameters
of each machine-learning algorithms, ANN: the number of hidden layer neurons and max
iterations, PLSR: the number of explanatory variables, RF: the number of tree (ntree) and
the number of features to consider (mtry), SVR: gamma, C and epsilon, were adjusted
using a grid search before development of the estimation models.

The Neural Network Console (SONY), which is an integrated development tool for
the DL program, was used for development of the estimation model. When developing an
estimation model using the nine types of CI data, we designed a simple neural network
with 5 fully connected layers (Figure 6). The CNN, which enables area-based feature
extraction and robust recognition against image movement and deformation, is known
to be an effective layer for the task of image recognition [33]. Deepening the CNN layers
plays an important role for accurate image recognition, because each layer extracts more
sophisticated and complex features from images. ResNet is a network structure that has
been successfully used to layer CNNs up to 152 layers, and it achieved much higher
accuracy than conventional network structures and higher accuracy than humans for
this purpose [45]. However, ResNet has a disadvantage in its complexity of architecture.
ResNeXt achieved better accuracy than ResNet and succeeded in reducing the calculation
cost by introducing the technique of grouped convolution to ResNet [46]. Moreover,
ResNeXt showed its high potential in agricultural researches [47,48]. In this research,
ResNeXt was modified so that our datasets were applicable and used to develop LAI
estimation models from input datasets containing images (RGB images, and nine types of
CIs and RGB images) (Figure 6). Hyper parameters were determined as shown in Table 3.
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Table 3. Hyper parameters of DL.

Input Dataset Epoch Batch Size Optimizer Weight Decay

CIs 100 16 Adam 0
Images 100 16 Adam 0

CIs + Images 100 8 Adam 0.01

3. Results
3.1. Variations of the Ground-Measured Leaf Area Index

Figure 7 shows seasonal variations of the ground-measured LAI under each condition
(three rice varieties and two nitrogen management levels) observed in this study. LAI
gradually increases from the transplanting (Figure 7) and ranged from 0.135 to 6.71 during
growth duration. Significant differences in fertilizer management from the 1st to 3rd
sampling and varieties at the first sampling were observed.
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3.2. Regression Models Using Each of VIs and CIs

Regression equations of the LAI estimation models based on each index are shown
in Table 4. A comparison of the estimation accuracy of each model is shown in Figure 8.
Correlations between the ground-measured LAI and estimated LAI of the regression
models based on each of the VIs and CIs are shown in Figures 9 and 10, respectively.
The estimation accuracy of the LAI of the regression models differed depending on the
indices, and the coefficient of determination ranged from 0.802 to 0.976 and root mean
squared error (RMSE) ranged from 0.332 to 1.13 (Figures 8–10). In the estimation models
based on VIs, the coefficient of determination ranged from 0.906 to 0.976 and RMSE
ranged from 0.332 to 0.644 (Figures 8 and 9). In the estimation models based on CIs, the
coefficient of determination ranged from 0.802 to 0.947 and RMSE ranged from 0.401 to
1.13 (Figures 8 and 10). Generally, the estimation model based on VIs acquired from the
multispectral camera exhibited higher accuracy than the model based on CIs acquired
from the RGB camera (Figure 8). SR (NIR, Red) achieved the highest accuracy of all indices
(R2 = 0.976 and RMSE = 0.332) followed by NDVI (NIR, Red) (R2 = 0.959 and RMSE = 0.475)
and SAVI (NIR, Red) (R2 = 0.959 and RMSE = 0.478) (Figures 8 and 9a,d,j). VEG showed
the highest accuracy of all CIs (R2 = 0.947 and RMSE = 0.401) followed by E × G (R2 = 0.937
and RMSE = 0.440) and GLA (R2 = 0.935 and RMSE = 0.444) (Figures 8 and 10b,g,i).

Table 4. Regression equations of the LAI estimation model based on each of the VIs and CIs.

Index Model Regression Equation

VI NDVI (NIR, Red) Exponential y = 0.0809 × exp(4.41 × x)
NDVI (NIR, Rededge) Linear y = 8.17 × x − 0.363
NDVI (Rededge, Red) Exponential y = 0.112 × exp(5.09 × x)

SR (NIR, Red) Logarithmic y = 1.58 × In(x) − 0.707
SR (NIR, Rededge) Logarithmic y = 3.10 × In(x) + 0.0131
SR (Rededge, Red) Linear y = 0.794 × x − 0.781

MSR (NIR, Red) Linear y = 0.859 × x − 0.154
MSR (NIR, Rededge) Linear y = 2.77 × x − 0.644
MSR (Rededge, Red) Linear y = 2.54 × x − 1.61

SAVI (NIR, Red) Exponential y = 0.0810 × exp(2.94 × x)
SAVI (NIR, Rededge) Linear y = 5.45 × x − 0.363
SAVI (Rededge, Red) Exponential y = 0.113 × exp(3.39 × x)
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Table 4. Cont.

Index Model Regression Equation

CI VARI Exponential y = 0.252 × exp(5.74 × x)
E × G Linear y = 12.3 × x − 0.175
E × R Exponential y = 1.36 × exp(−11.7 × x)
E×B Linear y = -24.7 × x + 3.25

NGRDI Exponential y = 0.275 × exp(9.72 × x)
MGRVI Exponential y = 0.258 × exp(5.40 × x)

GLA Linear y = 18.1 × x − 0.238
RGBVI Exponential y = 0.261 × exp(6.13 × x)

VEG Linear y = 5.99 × x − 6.01
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Figure 8. Comparison of the estimation accuracy of each regression model with each of the VIs and
CIs. The black bars indicate the coefficient of determination (R2), and the white bars indicate the
root mean squared error (RMSE) between the ground-measured LAI and estimated LAI from the
regression models based on each of the VIs and CIs.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 21 
 

 

 SAVI (NIR, Red) Exponential y = 0.0810 × exp(2.94 × x) 
 SAVI (NIR, Rededge) Linear y = 5.45 × x − 0.363 
 SAVI (Rededge, Red) Exponential y = 0.113 × exp(3.39 × x) 

CI VARI Exponential y = 0.252 × exp(5.74 × x) 
 E × G Linear y = 12.3 × x − 0.175 
 E × R Exponential y = 1.36 × exp(−11.7 × x) 
 E×B Linear y = -24.7 × x + 3.25 
 NGRDI Exponential y = 0.275 × exp(9.72 × x) 
 MGRVI Exponential y = 0.258 × exp(5.40 × x) 
 GLA Linear y = 18.1 × x − 0.238 
 RGBVI Exponential y = 0.261 × exp(6.13 × x) 
 VEG Linear y = 5.99 × x − 6.01 

 

Figure 8. Comparison of the estimation accuracy of each regression model with each of the VIs and 
CIs. The black bars indicate the coefficient of determination (R2), and the white bars indicate the root 
mean squared error (RMSE) between the ground-measured LAI and estimated LAI from the regres-
sion models based on each of the VIs and CIs. 

   

(a) (b) (c) 

y = 1.09x
R² = 0.959

RMSE = 0.475
0

2

4

6

8

0 2 4 6 8

Es
tim

at
ed

 L
A

I

Ground-measured LAI

Akitakomachi
Koshihikari
Takanari

y = 1.05x
R² = 0.929

RMSE = 0.514
0

2

4

6

8

0 2 4 6 8

Es
tim

at
ed

 L
A

I

Ground-measured LAI

Akitakomachi
Koshihikari
Takanari

y = 1.10x
R² = 0.917

RMSE = 0.644
0

2

4

6

8

0 2 4 6 8

Es
tim

at
ed

 L
A

I

Ground-measured LAI

Akitakomachi
Koshihikari
Takanari

Figure 9. Cont.
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Figure 9. Correlations between ground-measured LAI and estimated LAI from the regression models based on each VI: (a) NDVI (NIR,
Red); (b) NDVI (NIR, Rededge); (c) NDVI (Rededge, Red); (d) SR (NIR, Red); (e) SR (NIR, Rededge); (f) SR (Rededge, Red); (g) MSR
(NIR, Red); (h) MSR (NIR, Rededge); (i) MSR (Rededge, Red); (j) SAVI (NIR, Red); (k) SAVI (NIR, Rededge); (l) SAVI (Rededge, Red).
The equation of each regression model is shown in Table 2.
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Figure 10. Correlations between ground-measured LAI and estimated LAI from the regression models based on each CI: (a)
VARI; (b) E × G; (c) E × R; (d) E × B; (e) NGRDI; (f) MGRVI; (g) GLA; (h) RGBVI; (i) VEG. The equation of each regression
model is shown in Table 2.

3.3. Estimation Models by Machine-Learning Algorithms Other Than Deep Learning

Table 5 shows the accuracy of the LAI estimation model developed by four kinds
of machine-learning algorithms using three patterns of input datasets, nine types of CIs,
RGB images, and nine types of CIs and RGB images obtained from the RGB camera. As
for ANN, PLSR and SVR, the highest accuracy was achieved when the input data was
CIs (R2 = 0.940 and RMSE = 0.401, R2 = 0.939 and RMSE = 0.422 and R2 = 0.945 and
RMSE = 0.399, respectively). RF achieved the highest accuracy when the input data was
nine types of CIs and RGB images, which was the highest accuracy in all combinations
(R2 = 0.957 and RMSE = 0.342).
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Table 5. Estimation accuracy of validation data with models developed by four kinds of machine-
learning algorithms with three patterns of input datasets.

Algorithm Input Dataset Equation R2 RMSE

ANN CIs y = 1.00x 0.940 0.401
Images y = 1.02x 0.906 0.568

CIs + Images y = 1.01x 0.828 0.659
PLSR CIs y = 1.01x 0.939 0.422

Images y = 0.957x 0.252 1.697
CIs + Images y = 0.982x 0.715 0.940

RF CIs y = 1.02x 0.939 0.436
Images y = 0.996x 0.851 0.585

CIs + Images y = 0.993x 0.957 0.342
SVR CIs y = 0.932x 0.945 0.399

Images y = 0.967x 0.882 0.549
CIs + Images y = 0.967x 0.883 0.549

3.4. Estimation Models by Deep Learning

Table 6 and Figure 11 shows the accuracy of training and validation data with the
LAI estimation model constructed by DL using three patterns of input datasets: nine
types of CIs, RGB images, and nine types of CIs and RGB images obtained from the RGB
camera, respectively. Training data was fitted with R2 = 0.900 and RMSE = 0.605 for CIs,
R2 = 0.979 and RMSE = 0.280 for images and R2 = 0.989 and RMSE = 0.203 for CIs + images,
respectively (Table 6). The coefficient of determination ranged from 0.946 to 0.964, and
RMSE ranged from 0.322 to 0.434. The estimation model using nine types of CIs as input
data underestimated the ground-measured LAI; the estimation accuracy of this model was
lower than those of the other two estimation models and there was no improvement from
the regression model of VEG, which achieved the highest accuracy in all CIs (R2 = 0.946
and RMSE = 0.434) (Figure 11a). Higher accuracy was achieved in the estimation model
using RGB images as input data (R2 = 0.963 and RMSE = 0.334) (Figure 11b), and little
improvement was observed in the estimation model using nine types of CIs and RGB
images as input data, with values of R2 = 0.964 and RMSE = 0.322 (Figure 11c). These two
models containing RGB images as input data achieved almost the same accuracy as the
regression model of SR (NIR, Red), which achieved the highest accuracy in VIs (Figure 9d).

Table 6. Estimation accuracy of training data with models developed by DL with three patterns of
input datasets.

Input Dataset Equation R2 RMSE

CIs y = 0.994x 0.900 0.605
Images y = 0.991x 0.979 0.280

CIs + Images y = 1.01x 0.989 0.203

3.5. Plant Canopy Analyzer

Figure 12 shows the relationship between the measured LAI values and the measured
values by PCA under each of the variety and fertilization conditions. The measured values
with PCA could explain the measured LAI with an accuracy of R2 = 0.934 and RMSE = 0.308
without significant difference in variety and fertilization level (Figure 12). However, PCA
underestimated the ground-measured LAI by 12% (Figure 12).
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Figure 11. Correlations between ground-measured LAI and estimated LAI of validation data with models developed by DL
with three patterns of input datasets: (a) nine types of CIs, (b) RGB images, (c) nine types of CIs and RGB images.
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4. Discussion

In this study, we attempted to improve the accuracy of LAI estimation in rice using
an RGB camera mounted on a UAV by developing an estimation model using DL with
the images as input data, and then compared the estimation accuracies of the resulting
model and other hands-on approaches. The model using DL with RGB images could
explain the large variation of LAI of different rice varieties grown under different fertilizer
conditions with high accuracy. The range of LAI in the present study (from 0.135 to 6.71)
was sufficiently large to cover the variations of rice leaf area grown under irrigated fields
of various environments [49]. Our results thus demonstrated that the model using DL with
RGB images could provide an alternative to the methods using a multispectral camera
and PCA for the estimation of rice LAI. Figure 13 summarizes the LAI estimation accuracy
of five methods: regression models based on SR (NIR, Red) and VEG, which showed the
highest accuracy among all indices and all CIs, respectively; estimation models developed
by RF using nine types of CIs and RGB images, which showed the highest accuracy in all
machine-learning algorithms; estimation models developed by DL using RGB images; PCA
(LAI-2200). We will discuss these results in detail.
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Figure 13. Summary of LAI estimation accuracy of 5 methods: the regression model based on SR (NIR, Red), the regression
model based on VEG, the estimation model developed by RF using nine types of CIs and RGB images, the estimation model
developed by DL using RGB images and PCA (LAI-2200).

First, we examined the accuracy of LAI estimation by the regression models based
on each index. Since spectral information is affected by various factors, including plant
morphology, soil background, and the shooting environment [14,50,51], the optimal in-
dex for LAI estimation depends on prior information [52–54]. Under the condition in
this experiment, SR (NIR, Red) was the most favorable of the indices (R2 = 0.976 and
RMSE = 0.332), and VEG was the most accurate of the CIs (R2 = 0.947 and RMSE = 0.401)
(Table 4, Figures 8 and 13). Although the estimation accuracy varied depending on the
index, the VIs obtained from the multispectral camera generally performed better than the
CIs obtained from the RGB camera (Table 4, Figure 8), which agreed with the results of
Gupta et al. [19]. The reflectance of near-infrared light is more responsive to an increase
in leaf area than the reflectance of visible light, because the former is more easily affected
by changes in the vegetation structure [37]. Therefore, it is considered that the VIs includ-
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ing the reflectance of near-infrared light acquired from a multispectral camera showed
relatively high estimation accuracy.

Then, we assessed the estimation accuracy of four kinds of machine-learning algo-
rithms using three patterns of input datasets, nine types of CIs, RGB images, and nine
types of CIs and RGB images. Compared to VEG, which showed the highest estimation
accuracy among the CIs acquired from the RGB camera (R2 = 0.947 and RMSE = 0.401),
the estimation model developed by RF using nine types of CIs and images as input data
showed an improvement (R2 = 0.957 and RMSE = 0.342) (Figures 10 and 13, Table 5).
Several existing researches have indicated that RF is an ideal algorithm to improve the
estimation accuracy of LAI [21,22,25], and the results of this study was consistent with
these reports.

Next, we tried to improve the accuracy of LAI estimation using an RGB camera on a
UAV by means of a DL technique. Compared to RF, further improvement was observed
in the estimation model by DL using RGB images (R2 = 0.963 and RMSE = 0.334), and its
accuracy was comparable to that of SR (NIR, Red) (R2 = 0.976 and RMSE = 0.332), which
showed the highest estimation accuracy among the VIs acquired from the multispectral
camera (Figures 9d, 11b and 13). The results suggested that although the RGB camera is
inferior when using only CIs, it can be made to achieve high performance equivalent to
that of the multispectral camera simply by constructing an estimation model by DL with
the images incorporated as input data. In the conventional machine-learning algorithms,
the features must be specified in advance. In contrast, DL has the major advantage of
being able to identify the characteristics of the images automatically [55]. In this research,
since the training data in DL included images with a resolution of 100 × 100 pixels, which
contained much more information than the CIs, the characteristics of plant morphology
were recognized in greater detail. These factors were considered to be the reason for the
achievement of a high estimation accuracy by DL with images.

Additionally, DL is known to be a promising algorithm to develop a robust model
which could be applicable to the various conditions [56]. Therefore, there would still be
room for improvement in terms of the robustness under various agricultural conditions,
since the cultivars and management used in this study are limited. As training data for
DL, the number of RGB images were enhanced by 12 times using flipping and changing
brightness. Increasing the number of images with more diverse methods would be able to
also contribute to further improvement in estimation accuracy. In addition, it is necessary
to consider how much the resolution can be reduced while maintaining the explanatory
accuracy of the model although we performed DL using 9 mm/pixels images in this study.
Lastly, we can expect a further improvement by using multispectral images in addition to
RGB images since the estimation accuracy was made better by applying RGB images to DL
than the conventional method. By combining these findings with, for example, fixed-wing
UAVs and high-resolution satellite sensors, this model could be applied to a wider area.

Finally, we examined the estimation accuracy of PCA, which has been widely used to
obtain ground-truth data of LAI in the field of remote sensing. Although the measured
value with PCA could explain the ground-measured LAI with an accuracy of R2 = 0.934 and
RMSE = 0.555, this was lower than the accuracies by a multispectral camera (the regression
model based on SR (NIR, Red): R2 = 0.976 and RMSE = 0.332) and an RGB camera (the
estimation model developed by DL using RGB images: R2 = 0.963 and RMSE = 0.334)
(Figures 9d, 11b, 12 and 13). This is because plants other than the sampled eight hills got
into the view of the PCA sensor, even though a view cap was installed. In addition, PCA
led to 12% underestimation of the ground-measured values (Figure 12). This result was
consistent with the previous studies by Maruyama et al. [57] and Fang et al. [58], which
reported that PCA underestimates the LAI measurements of rice canopy throughout the
growth stage. LAI estimation with PCA is based on the assumption that the leaves are
randomly distributed in space. For this reason, two factors have been reported to affect
PCA-based measurement of LAI: the first is clamping, which means that parts of a plant
are concentrated in one place, thereby undermining the random distribution and causing



Remote Sens. 2021, 13, 84 17 of 19

underestimation of LAI; and the second is the entry of plant components other than leaves
into the field of the sensor, which causes LAI overestimation [59]. Especially in the case of
rice canopies, leaf overlap [57] and the presence of stems, which were originally spatially
aggregated [58], have been reported as the factors leading to clamping, and these factors are
considered to be the main cause of the underestimation in this study. This underestimation
could be mitigated by using four-ring data instead of five-ring data of PCA [58]. In any
case, PCA can measure the canopy LAI non-destructively and rapidly, and will certainly
be a useful ground-truth acquisition tool. In order to use the PCA effectively, sufficient
attention should be paid to the correspondence of PCA with measured values.

5. Conclusions

In the present research, we examined whether models developed by DL using RGB
images as input data could be an alternative to existing approaches for the estimation of
LAI in rice using a UAV equipped with an RGB camera. Our results demonstrated that
the model using DL with RGB images could estimate rice LAI as accurately as regression
models based on VIs obtained from the multispectral camera and more accurately than
PCA. However, the model was developed in limited cultivation conditions, varieties and
area. DL has the potential to adapt to various circumstances using big data. Therefore, it
would be possible to build a more robust model for wider area by accumulating data under
more diverse agricultural and shooting conditions in the future.
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