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Abstract: Due to the increasing demand for the monitoring of crop conditions and food production,
it is a challenging and meaningful task to identify crops from remote sensing images. The state-
of the-art crop classification models are mostly built on supervised classification models such as
support vector machines (SVM), convolutional neural networks (CNN), and long- and short-term
memory neural networks (LSTM). Meanwhile, as an unsupervised generative model, the adversarial
generative network (GAN) is rarely used to complete classification tasks for agricultural applications.
In this work, we propose a new method that combines GAN, CNN, and LSTM models to classify
crops of corn and soybeans from remote sensing time-series images, in which GAN’s discriminator
was used as the final classifier. The method is feasible on the condition that the training samples are
small, and it fully takes advantage of spectral, spatial, and phenology features of crops from satellite
data. The classification experiments were conducted on crops of corn, soybeans, and others. To verify
the effectiveness of the proposed method, comparisons with models of SVM, SegNet, CNN, LSTM,
and different combinations were also conducted. The results show that our method achieved the best
classification results, with the Kappa coefficient of 0.7933 and overall accuracy of 0.86. Experiments
in other study areas also demonstrate the extensibility of the proposed method.

Keywords: adversarial generative network; crop classification; deep learning; multispectral re-
mote sensing

1. Introduction

An in-depth understanding of crop types and its corresponding cultivated areas in
national agricultural zones is necessary for agricultural monitoring and food security as-
sessment [1], and contributes to the formulation and implementation of relevant policies.
Modern earth observation (EO) programs can generate a large amount of remote sensing
data, recording the characteristics of electromagnetic waves reflected by ground objects [2],
and satellite remote sensing is widely used to obtain vegetation phenological character-
istics [3]. Each feature has a unique spectral characteristic, which varies slightly with
environmental factors, the accuracy of the sensing device, etc. The effective combination
of different sensor sources [4,5], wavebands, and time-stamped remote sensing images
provides more comprehensive feature information about crops. Therefore, it is a feasible
and meaningful study to explore the classification of crops based on remote sensing images.

Traditional remote sensing-based image classification algorithms of machine learning
are gradually being used in the classification [6] and recognition of remote sensing images.
These algorithms can be divided into unsupervised and supervised categories [7]. The
former contains algorithms such as K-means and ISODATA clustering. However, with
the demand for agriculture classification based on complex terrain increasing gradually,
those algorithms can no longer meet the accuracy of remote sensing image classification [2].
The latter contains maximum likelihood, minimum distance, and support vector machine
(SVM). At this stage, SVM [8] has been widely used in remote sensing image classification,
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while some problems also appeared. For example, SVM has a greater probability of leakage
and misallocation when the sample size is large [9].

Deep learning, referring to deep neural networks, is a kind of machine learning
algorithm and has been widely used due to its powerful feature extraction and data
expression ability [10]. In recent years, the recognition rate of deep learning on most
traditional recognition tasks has increased significantly [11]. A large number of studies have
shown that deep learning can extract features from remote sensing images, and improve
the classification accuracy [12]. The mainstream deep learning models, including deep
belief network (DBN) [13], convolutional neural network (CNN) [14], stack autoencoders
(SAE) [15], and recurrent neural network (RNN) [16], have been successfully used in
applications of remote sensing-based classification in most cases. In particular, aiming at
the phenomenon of “same matter and different spectrum” in remote sensing images, Wu
and Yang [17] proposed recording spatial information combined with spectral information
and used DBN to complete high-precision classification. Cao et al. [18] proposed an active
deep learning method combining active learning and deep learning to train the CNN to
classify on the hyperspectral image, which achieves better performance with fewer marker
samples than traditional hyperspectral imagery (HSI) classification algorithms. Hsieh and
Kiang [19] compared and validated the ability of CNN to complete crop classification on
the HSI data in the Salinas Valley and mixed vegetation agriculture of Indian pine. Liang
et al. [20] proposed a remote sensing image classification method based on a stacked noise
reduction automatic encoder, which has a total classification accuracy of 95.7% on the
remote sensing data of the Gaofen 1 (GF-1) satellite. From the previous studies, it can
be found that CNN can handle the spatial autocorrelation problem well, but it cannot
effectively deal with the long-term and complex time dependence [21]. Meanwhile, in the
crop classification, phenology is very important in the accuracy improvement. RNN [2] is a
neural network model specially used to deal with time correlation [22] and has been proven
to be effective in many fields, such as speech recognition [23], natural speech processing [24],
etc., especially the Long-Short Term Memory RNN (LSTM) [25]. Ndikumana et al. [26] used
RNN to classify Sentinel-1 radar images for agricultural mapping, and the classification
accuracy on rice reaches 96%. Sun et al. [27] built an end-to-end framework for crop
mapping based on LSTM and achieved high accuracy, which promoted the classification
of time series remote sensing images. However, LSTM is limited in dealing with spatially
correlated data [28]. Goodfellow’s adversarial generation network (GAN) also shows
amazing results when completing classification tasks [29]. Its training process combines
inference and generative learning [30] to promote the model to better learn the potential
probability distribution of given data. As far as we know, there are rare studies to combine
the above three models to deal with the crop classification from multi-band and multi-
temporal images.

In this study, we propose a model embedding LSTM and CNN into GAN to perform
crop classification tasks. We conducted experiments on three classes (corn, soybeans, and
other crops), and made comparisons with models of SVM, SegNet, CNN, LSTM, and
different combinations to verify the effectiveness of the proposed method. Experiments
in other study areas were also conducted to validate the extensibility. We expect that this
method can provide technical support for agricultural monitoring and management.

2. Materials and Methods
2.1. Study Area and Datasets

We selected multiple study areas in the United States, as Figure 1 shows, these ares
located in Iowa, Ohio, and Pennsylvania, with a total area of 437.88 km2. The main crops in
these areas are corn and soybeans. We categorized a few other crops and non-agricultural
areas into a third category. When doing long-term exploratory experiments, taking into
account the imaging time of Landsat8 and the crop growth period (US soybeans are sown in
May–June, and harvested in October, and US corn is sown in March–April, and harvested
in October), we choose the sequence time as July 22nd, August 7th, and September 24th.
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The proportions of the three categories were 39.93%, 29.95%, and 30.12% in the three
time-nodes, respectively.
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Figure 1. Study areas concentrated in Iowa, Ohio, and Pennsylvania States.

In these regions, the quantity of various categories is balanced, which is conducive to
classification training. That is, when it comes to the classification task, the classification
ability of the model can only be demonstrated on the premise that the sample size of
each category is similar. Otherwise, it would be unfair for categories with small sample
sizes, because the larger the sample size of a category, the more likely it is to influence the
outcome of the final assessment.

In the experimental part, we used Tier 1 Landsat8 images in Iowa to train our model,
and validated our model’s generalization capability in Fayette County, Pennsylvania state
and Pickaway County, Ohio state. The proportions of the three categories in the selected
areas of Fayette County were 31.07%, 40.54%, and 28.39%, and the proportions of Pickaway
County were 19.30%, 27.81%, 52.89% in three time-terms. All the image data were from
the EarthExplorer website and processed by ArcGIS software with geometric, atmospheric,
and radiation correction.

The label data were derived from Cropland Data Layer (CDL) data [31–33], high
quality and robust crop type information at field scales from the U.S. Department of
Agriculture (USDA) since 2008. The spatial resolution of CDL data is 30 m, the same as the
Landsat8 images. In 2019, the Kappa coefficient of CDL data on corn and soybean was 0.889
and 0.835, respectively. Figure 2 shows part of the training data produced. Co-registration
was done between the input and the label image.

We further split images into a series patches for the model training process. A fixed-
size window (3× 3) was used to cut the Landsat data produced to obtain a large number
of remote sensing images with a size of 3× 3. The label for each remote sensing image was
determined by the crop type represented by its center pixel at the corresponding location
of the CDL image (corn is 0, soybeans are 1, and the rest is 2). Figure 3 visually shows the
process of making the sample pair. We assign training and test sets at a 6:4 scale, resulting
in a training set with 12,636 pairs of data and a test set containing 8424 pairs of data.
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Figure 3. Example of making a training sample pair. The fixed-size window is slidingly cut on the
input remote sensing image, and the crop type label corresponding to each remote sensing image is
the crop with the center point at the corresponding position of the CDL image.

Figure 4 shows part of the training data produced from the combined data of bands 4,
3, and 2 on August 7. Our task was to classify the central pixels, and the remaining pixels
in the image served as auxiliary information to help complete the classification task.
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2.2. GAN Embedded CNN and LSTM

Based on the GAN model, we combined LSTM and CNN to build the final classifica-
tion model to process multi-temporal and multi-band fusion data. The model performs
inference and generative training at the same time during training, and only uses the
discriminator during testing. This section first reviews the basic principles and model
architecture of LSTM and GAN, and finally gives our method.

The RNN takes sequence data as input, recursively in the direction of the sequence,
and all nodes are connected in a chain [13]. That is, the output of the neuron at time t-1 will
be the input of the neuron at time t together with the next input. Unlike traditional neural
network models, RNN can take advantage of the time dependence of data. As a variant of
RNN, LSTM solves the problem of gradient disappearance and gradient explosion when
using RNN to build a deeper network. Equations (1)–(7) and Figure 5 show the internal
computation of the LSTM unit. � stands for the Hadamard product, which multiplies
the elements in two homotype matrices correspondingly. The input of LSTM is sequence
variables {x1, . . . , xN}, where xt is the feature vector and t is the corresponding timestamp.
The γt in the formula represents the result of the splicing between the input at time t and
the ht−1 passed from the previous state.

z = tan h
(
ωγt) (1)

zi = sigmoid
(

ωiγt
)

(2)

z f = sigmoid
(

ω f γt
)

(3)

zo = sigmoid
(
ωoγt) (4)

ct = z f � ct−1 + zi � z (5)

ht = zo � tan h
(
ct) (6)

Qt = sigmoid
(
w′ht) (7)

The LSTM unit consists of two transfer states (memory state ct and hidden state ht) and
three different gates (input gate zi, forget gate z f and output gate zo). zi determines how
much input in the current state is retained, z f determines how much information passed
from the previous state needs to be forgotten, ct−1. zo determines how much information
about the current state is passed to the next state. The three gated states not only determine
the information flow inside the unit but also effectively prevent the problem of gradient
disappearance and explosion. z as a temporary transfer state, and the hyperbolic tangent
function is used to scale the input of the current state. ht is calculated based on the newly
obtained ct, and yt acts on the newly obtained ht to determine the output of the current
state. The sigmoid and hyperbolic tangent functions used in the calculation process are
calculated elementwise.

The adversarial generation network consists of two parts: generator G and discrimina-
tor D. The purpose of G is to learn the probability distribution of given data, and the input
z is mapped to the data space G

(
z; θg

)
through a differentiable network. The essence of D

is a classifier and the purpose is to correctly distinguish the data from G or the training
set. G and D realize joint optimization in mutual games. Goodfellow et al. [29] proved that
when the model reaches the global optimal value, the spatial distribution of G output data
is equivalent to the real data distribution.

Our core idea to implement the method is to embed CNN and LSTM on the GAN
model. Specifically, the discriminator is the classifier that finally completes the classi-
fication task, and CNN and LSTM are the feature extractors to extract the spatial and
temporal features of the remote sensing image as the auxiliary input of the discrimina-
tor. Salimans et al. [34] once applied GAN to semi-supervised classification problems and
achieved good results. Different from the general GAN, D not only needs to judge the
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authenticity of the image but also needs to judge the category. If the classification task
requires distinguishing category k, then the output layer of D will have k + 1 neurons. Roy
et al. [35] argued that it is precisely because D needs to further extract the characteristics of
the generated data when making true and false judgments, leading that GAN can achieve
better results than Inception Net when completing the classification task.
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Figure 5. The internal structure of the long- and short-term memory neural network (LSTM) unit.

Salimans et al. [34] introduced a feature loss item and compares the features extracted
from the real and fake images in the middle layer of the discriminator. This idea was extended
by Johnson et al. [36] (perceptual loss term), which uses a certain layer of feature space of an
external pre-trained network to construct the loss term. Inspired by this, we also used two pre-
trained networks composed of CNN and LSTM to participate in the model construction. The
difference is that the purpose of using external networks is to provide semantic information
to help the discriminator judge rather than construct auxiliary loss items [37]. Specifically,
we chose Inception Net [38] as the external network formed by CNN. When the input is a
remote sensing image x, the extracted feature vector s(x) is composed of the activation value
extracted by the Inception Net. We built a simple network composed of three-layer LSTM
units same as Lenco et al. [39] to extract time series features t(x). Remote sensing images at
different times constitute different states and are input into the network in time series. The
input of the discriminator is a combination of x, s(x), and t(x).

The overall model architecture is shown in Figure 6. The LSTM part contains two cells
used to extract the temporal characteristics of the images. The input data are divided into
three sequences according to time and each sequence has a dimension of 49. We set the
dimension of the output feature matrix as 3× 3, which is convenient to be spliced with the
original image as the input of the generator. It should be noted that the Inception Net model
corresponding to the CNN part was trained not only on the ImageNet dataset but also
on 900 agricultural images (300 each for corn, soybean, and others) by simply modifying
the input layer. During the training process, we also add the reshape and convolution
operation for converting the feature matrix dimension of Mixed_7c layer to 2× 3× 3 to
concatenate with the original image. There is only one generator in our model and GAN
chooses the similar generator architecture as MapGAN [40], which is mainly composed
of the down-sampling layer, residual block, and up-sampling layer as shown in Figure 7.
Each residual block contains two convolutional layers that do not change the dimensions
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of the input data. We chose patchGAN as the discriminator, and the remote sensing image
is judged in patches.
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The output of the discriminator is a prediction of a multi-probability distribution
represented by a K + 1 dimensional logit output which comprises of K real classes and the
(K + 1) class representing the fake images. We use y to represent the correct category of
the discriminator corresponding to the image x. PD(y|D(x, s(x), t(x)), y < k + 1) means
the probability that the image x belongs to the y category output by the discriminator. The
least square loss function constructed by Mao et al. [41] is used to replace the original loss
function of GAN to avoid the problem of gradient disappearance and further improve the
performance of the model. The loss function of the generator is:

minL(G) =
1
2

Ez∼pz(z)

[
(PD(y|D(G(z), s(G(z)), t(G(z))), y < k + 1)− 1)2

]
(8)

The loss function of the discriminator consists of a supervised loss item and an
unsupervised loss item, namely min L(D) = Lsup + Lunsup, where:

Lsup = −Ex,y∼pdata(x,y)[log(PD(y|D(x, s(x), t(x)), y < k + 1))] (9)

Lunsup = − 1
2 Ez∼pz(z)[log(PD(y = k + 1|D(G(z), s(G(z)), t(G(z)))))]−

1
2 Ex,y∼Pdata(x,y)[log(1− PD(y = k + 1|D(x, s(x), t(x))))]

(10)

For the meaning of each symbol, please refer to the previous part of this paper.

3. Results and Discussion

In this study, we used Landsat8 satellite imagery and CDL data to conduct experiments
to explore the performance of the model in three different categories (corn, soybeans, and
others). Three experiments were conducted. The first experiment explored the best multi-
band combination for crop classification when the input images are in a single time term.
The second experiment applied the band combination method obtained in the first group
to explore the classification capability of our model when the input images are in multi
time-terms. We carried out a comparison among multiple sets of models (e.g., CNN, CNN
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+ LSTM, LSTM, GAN + CNN, SVM, SegNet, GAN + CNN + LSTM). The third experiment
tested our model to perform prediction classifications in the Fayette and Pickaway County
and visualize the results.

3.1. Experiment Settings

We used the Inception Net model on behalf of the CNN model, and the three LSTM
units are fully connected to the SoftMax layer to represent the LSTM as the baseline model.
At the same time, we combined LSTM and CNN to get a new benchmark model, in which
the combination method used the feature vector extracted from the pre-trained Inception Net
network Mixed_7c layer as the auxiliary input of the LSTM unit. It is worth mentioning that
we set the discriminator of GAN as CNN to implement the GAN+CNN model. The initial
learning rate is set to 5× 10−4, and the linear decay rate is 5× 10−5. We used the RMSProp
optimizer which the square root of the sum of historical gradient controlled by the attenuation
coefficient, making the learning rate of each parameter different in the training process. The
proportion of the three categories in the training set and test set is approximately 1.3:1:1. The
model trained a total of 200 epochs, with a batch size of 32 and a training time of about 3 min
per epoch. The experiment was carried out on the workstation with one GPU of NVIDIA
M40, four CPUs of Inter Xeon Platinum 8163@2.5ghz, and RAM: 30GiB.

3.2. Band Combination Selection

To test which band combinations can provide the most abundant and useful information
of crops in multi-temporal data classification, we investigated the degree of separation of
three classes in different band combinations using ENVI software [42] before conducting
classification experiments. The separability is represented by the Jeffries–Matusita distance.
The larger the distance value is, the better the separability is, which is more beneficial for
crop classification. Based on this idea, we explored the category separability of eight different
band combinations at three different dates of 2019 (July 22, August 7, and September 24). It is
worth noting that we explored the combination of the three bands to balance the relationship
between speed and data volume. The experimental results are shown in Table 1.

Table 1. Jeffries–Matusita distance of the three categories in different band combinations at different times.

NO. Band Com-
bination

Crop 22 July 2019 7 August 2019 24 September 2019
Type Corn Soybeans Others Corn Soybeans Others Corn Soybeans Others

1 5, 6, 4
Corn 1.00 1.86 1.93 1.00 1.73 1.87 1.00 1.79 1.82

Soybeans 1.86 1.00 1.76 1.73 1.00 1.74 1.79 1.00 1.85
Others 1.93 1.76 1.00 1.87 1.74 1.00 1.82 1.85 1.00

2 5, 6, 2
Corn 1.00 1.61 1.79 1.00 1.77 1.83 1.00 1.62 1.84

Soybeans 1.61 1.00 1.68 1.77 1.00 1.81 1.62 1.00 1.59
Others 1.79 1.68 1.00 1.83 1.81 1.00 1.84 1.59 1.00

3 4, 3, 2
Corn 1.00 1.50 1.62 1.00 1.66 1.72 1.00 1.57 1.54

Soybeans 1.50 1.00 1.57 1.66 1.00 1.68 1.57 1.00 1.71
Others 1.62 1.57 1.00 1.72 1.68 1.00 1.54 1.71 1.00

4. 5, 4, 3
Corn 1.00 1.76 1.68 1.00 1.67 1.83 1.00 1.55 1.62

Soybeans 1.76 1.00 1.53 1.67 1.00 1.57 1.55 1.00 1.64
Others 1.68 1.53 1.00 1.83 1.57 1.00 1.62 1.64 1.00

5 1, 2, 3
Corn 1.00 1.58 1.65 1.00 1.75 1.49 1.00 1.60 1.67

Soybeans 1.58 1.00 1.47 1.75 1.00 1.56 1.60 1.00 1.53
Others 1.65 1.47 1.00 1.49 1.56 1.00 1.67 1.53 1.00

6 5, 4, 1
Corn 1.00 1.21 1.83 1.00 1.42 1.56 1.00 1.51 1.68

Soybeans 1.21 1.00 1.47 1.42 1.00 1.63 1.51 1.00 1.61
Others 1.83 1.47 1.00 1.56 1.63 1.00 1.68 1.61 1.00

7 7, 4, 3
Corn 1.00 1.60 1.82 1.00 1.47 1.66 1.00 1.46 1.73

Soybeans 1.60 1.00 1.39 1.47 1.00 1.28 1.46 1.00 1.51
Others 1.82 1.39 1.00 1.66 1.28 1.00 1.73 1.51 1.00

8 7, 5, 4
Corn 1.00 1.25 1.56 1.00 1.59 1.57 1.00 1.37 1.64

Soybeans 1.25 1.00 1.77 1.59 1.00 1.68 1.37 1.00 1.72
Others 1.56 1.77 1.00 1.57 1.68 1.00 1.64 1.72 1.00
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As can be seen from the table, the combination of 743, 753, and 541 has multiple
Jeffries–Matusita distance values below 1.5 under three time-terms and has the worst
comprehensive performance. The combination of 432 and 543 obtained a separation degree
between 1.5 and 1.7, with moderate overall performance, and the 123 combination falls
in between. The best-performing combinations are 564 and 562, with multiple Jeffries-
Matusita distance values greater than 1.7. Among them, the separation degree of the
564 combination contains many values more than 1.8, which is the best in all the eight
combinations. Interestingly, band 564 happens to be a classic combination for vegetation
analysis. Therefore, the 564 band combination is more conducive to crop classification, and
we will use this combination for subsequent experiments.

3.3. Acurracy Assessment of Crop Classification

To verify the ability of our method in dealing with the classification problem when
the input data are time-series remote sensing images, we use Landsat8′s 564 combination
band images with three time-terms on July 22, August 7, and September 24 of 2019 to form
series data. To maintain the consistency, the data generated by the GAN model are also in
series in this experiment. In addition, we put together seven different models for comparison.
The experimental results are shown in Table 2. The order of these models in performance
effects is: LSTM < CNN < CNN + LSTM < GAN + CNN < SVM < SegNet < GAN + CNN
+ LSTM. The experiment testing the first four models can be regarded as ablation analysis.
SVM and SegNet are two state of the art models at present. Our method (GAN+CNN+LSTM)
achieves the highest Kappa coefficient (0.7933) and OA accuracy (0.86). It is worth noting
that all models can achieve more than 85% accuracy in the classification of corn, but this is
difficult for soybeans and other categories, which range mainly from 60% to 80%. The results
of the first two models show that it is not enough to use only spatial features or temporal
features when completing this classification task. The result of the model CNN+LSTM proves
the effectiveness of combining the spatial and temporal features. Interestingly, the result of
model GAN+CNN reflects the excellent ability of GAN in completing classification tasks.
We consider that this is not only due to the fact that the discriminator itself is a CNN model,
but the generation training process helps the model to use more false samples in the training
process. The Kappa coefficient of both SVM and SegNet is above 0.7, showing the strong
competitiveness. Compared to SegNet, our model improved by 3 percentage points.

Table 2. Classification accuracy of seven different models on multi-temporal and multi-band data sets.

NO. Model
Crop Confusion Matrix (%) Kappa

Coefficient OAType Corn Soybeans Others

1 LSTM
Corn 92.36 0.63 7.01

0.3369 0.54Soybeans 62.67 32.53 4.80
Others 20.18 44.12 35.70

2 CNN
Corn 89.54 2.51 7.94

0.4634 0.64Soybeans 26.21 68.19 5.60
Others 43.46 20.1 36.44

3 CNN+LSTM
Corn 86.94 11.41 1.65

0.5140 0.68Soybeans 4.01 87.39 8.60
Others 4.68 78.04 17.28

4 GAN+CNN
Corn 97.28 0.38 2.34

0.6498 0.77Soybeans 38.72 53.71 7.57
Others 12.23 7.63 80.14

5 SVM
Corn 92.65 7.13 0.22

0.7222 0.81Soybeans 7.27 87.89 4.84
Others 4.65 30.41 64.94

6 SegNet
Corn 96.21 1.46 2.33

0.7578 0.83Soybeans 12.59 70.02 8.39
Others 12.82 6.96 80.22

7 GAN+CNN+LSTM
Corn 97.55 1.13 1.32

0.7933 0.86Soybeans 12.84 80.21 6.95
Others 10.33 11.24 78.43
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3.4. Mapping Classification Result

In order to visualize the model prediction effect more intuitively, we assigned the
model prediction result to the corresponding color of the CDL image and then visualize
it. Specifically, yellow represents corn, green represents soybeans, and black represents
other categories. We used the seven models trained in Section 3.3 to make predictions and
observations on the original images that include the training set and the test set. The results
are shown in Figure 8, in which region 1 and region 2 are parts of region 3.
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As we can see, the prediction results of LSTM are more confusing and the misclassifi-
cation is serious, but the basic outline is shown. With the improvement of the performance
of the model, the phenomena of misclassification and omission in a large area were signifi-
cantly reduced, and the predict image gradually approached the ground truth image. It is
worth noting that visually, our model has a visible improvement over the SVM and SegNet
in the middle black area.

3.5. Model Extensibility Verification

In order to verify the generalization ability of the model, we selected new test areas
from Fayette and Pickaway County. The classification category remains the same, and
the time-series data are still the 564 band fusion images of Landsat8 satellite of the three
months of July, August, and September. In addition, we used the SVM and SegNet model
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for comparison considering their great performance in Section 3.4. The visualization results
are shown in Figure 9. Compared with the experiment in Section 3.4, the difference between
the models is more obvious in this section. The result obtained by our method has fewer
noise points, more symmetrical color regions, and less misclassification. It can be seen that
even for new regions, the model also has good classification capabilities. The quantitative
evaluation results are shown in Tables 3 and 4. We can see that the three models performed
better in Fayette County than Pickaway County, and the relative merits were the same
as the results in Section 3.3. The OA accuracy obtained by our method is 0.85 and 0.88,
respectively, which does not fluctuate greatly from the 0.86 obtained in Section 3.3.
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Table 3. Quantitative evaluation of the model’s prediction results in Fayette County.

NO. Model
Crop Confusion Matrix (%) Kappa

Coefficient OAType Corn Soybeans Others

1 SVM
Corn 88.53 7.14 4.33

0.6541 0.75Soybeans 17.3 71.83 10.87
Others 14.51 12.29 73.2

2 SegNet
Corn 92.17 4.25 3.58

0.7186 0.81Soybeans 16.5 72.14 11.36
Others 10.39 19.27 70.34

3 GAN+CNN+LSTM
Corn 90.31 6.72 2.97

0.7635 0.85Soybeans 5.37 81.42 13.21
Others 9.34 13.8 76.86

Table 4. Quantitative evaluation of the model’s prediction results in Pickaway County.

NO. Model
Crop Confusion Matrix (%) Kappa

Coefficient OAType Corn Soybeans Others

1 SVM
Corn 91.47 5.12 3.41

0.7426 0.83Soybeans 13.87 74.66 11.47
Others 7.91 21.72 71.37

2 SegNet
Corn 93.95 3.08 2.97

0.7651 0.87Soybeans 15.91 77.82 6.27
Others 11.90 10.89 77.21

3 GAN+CNN+LSTM
Corn 90.93 7.62 1.45

0.7701 0.88Soybeans 3.60 87.21 9.19
Others 3.04 23.52 73.44

4. Conclusions

In this study, we proposed a new method that combines GAN, CNN, and LSTM
models to classify crops of corn and soybeans from Landsat8 time-series images. The
method is feasible on the condition that the training samples are small, and it takes
advantage of spectral, spatial, and phenology features from satellite data. Experiments
including band combination selection, accuracy assessment of crop classification, and
model extensibility verification showed that: (1) bands of 564 of Landsat 8 are effective for
crop classification; (2) our model in the study area has the highest Kappa coefficient (0.7933)
and OA (86%); (3) the trained model derived from training areas in Iowa can be effectively
applied to Fayette and Pickaway County, and the OA is greater than 83%. The results
demonstrate that the proposed method can realize crop classification well and provide
decision support for agricultural management.
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15. Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In

International Conference on Artificial Neural Networks, Proceedings of the 21st International Conference on Artificial Neural Networks,
Espoo, Finland, 14–17 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–59.

16. Zhang, D.; Wang, D. Relation classification via recurrent neural network. arXiv 2015, arXiv:1508.01006.
17. Kaiyu, W.; Huihua, Y. Hyperspectral remote sensing image classification based on landmark spatial information. Vedio Eng. 2017,

41, 69–73.
18. Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral Image Classification With Convolutional Neural Network and Active Learning.

IEEE T. Geosci. Remote 2020, 58, 4604–4616. [CrossRef]
19. Hsieh, T.-H.; Kiang, J.-F. Comparison of CNN algorithms on hyperspectral image classification in agricultural lands. Sensors 2020,

20, 1734. [CrossRef]
20. Liang, P.; Shi, W.; Zhang, X. Remote sensing image classification based on stacked denoising autoencoder. Remote Sens. 2018, 10,

16. [CrossRef]
21. Baatz, M.; Schäpe, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmenta-

tion. Available online: http://www.agit.at/papers/2000/baatz_FP_12.Pdf (accessed on 25 December 2020).
22. Ebrahimi, J.; Dou, D. Chain based RNN for relation classification. In Proceedings of the 2015 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, CO, USA, 31 May–5 June
2015; pp. 1244–1249.

23. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the Advances
in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–30 May 2013; pp.
6645–6649.

24. Linzen, T.; Dupoux, E.; Goldberg, Y. Assessing the ability of LSTMs to learn syntax-sensitive dependencies. Trans. ACL 2016, 4,
521–535. [CrossRef]

25. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. arXiv 2015,
arXiv:1502.04390. Available online: https://arxiv.org/abs/1502.04390v1 (accessed on 12 February 2015). [CrossRef] [PubMed]

26. Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep recurrent neural network for agricultural
classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [CrossRef]

27. Sun, Z.H.; Di, L.P.; Fang, H. Using long short-term memory recurrent neural network in land cover classification on Landsat and
Cropland data layer time series. Int. J. Remote Sens. 2019, 40, 593–614. [CrossRef]

28. Zhang, G.; Rui, X.; Poslad, S.; Song, X.; Fan, Y.; Ma, Z. Large-Scale, Fine-Grained, Spatial, and Temporal. Sensors 2019, 19, 2156.
[CrossRef]

http://dx.doi.org/10.3390/rs12172726
http://dx.doi.org/10.2307/3235884
http://dx.doi.org/10.1080/19479830903561035
http://dx.doi.org/10.1016/j.rse.2019.02.015
http://dx.doi.org/10.1109/TGRS.2006.880628
http://dx.doi.org/10.3390/rs12183007
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.015
http://dx.doi.org/10.1109/JSTARS.2015.2388577
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TGRS.2020.2964627
http://dx.doi.org/10.3390/s20061734
http://dx.doi.org/10.3390/rs10010016
http://www.agit.at/papers/2000/baatz_FP_12.Pdf
http://dx.doi.org/10.1162/tacl_a_00115
https://arxiv.org/abs/1502.04390v1
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.3390/rs10081217
http://dx.doi.org/10.1080/01431161.2018.1516313
http://dx.doi.org/10.3390/s19092156


Remote Sens. 2021, 13, 65 15 of 15

29. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December
2014; pp. 2672–2680.

30. Zeng, J.; Wu, Y.; Liu, J.G.; Wang, L.; Hu, J. Learning and inference on generative adversarial quantum circuits. Phys. Rev. A 2019,
99, 052306. [CrossRef]

31. USDA National Agricultural Statistics Service Cropland Data Layer. Published Crop-Specific Data Layer. Verified USDA-NASS,
Washington, DC. 2019. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 10 May 2020).

32. Johnson, D.M. Using the Landsat archive to map crop cover history across the United States. Remote Sens. Environ. 2019, 232,
111286. [CrossRef]

33. Gao, F.; Anderson, M.C.; Zhang, X. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery.
Remote Sens. Environ. 2017, 188, 9–25. [CrossRef]

34. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. In
Proceedings of the Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain, 4–9 December 2016; pp.
2234–2242.

35. Roy, S.; Sangineto, E.; Sebe, N.; Demir, B. Semantic-fusion gans for semi-supervised satellite image classification. In Proceedings
of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 684–688.

36. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the European
Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 694–711.

37. Bazi, Y.; Al Rahhal, M.M.; Alhichri, H.; Alajlan, N. Simple yet effective fine-tuning of deep CNNs using an auxiliary classification
loss for remote sensing scene classification. Remote Sens. 2019, 11, 2908. [CrossRef]

38. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826.

39. Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land cover classification via multitemporal spatial data by deep recurrent neural
networks. IEEE Geosci Remote Sens. Lett. 2017, 1685–1689. [CrossRef]

40. Li, J.; Chen, Z.; Zhao, X.; Shao, L. MapGAN: An intelligent generation model for network tile maps. Sensors 2020, 20, 3119.
[CrossRef]

41. Mao, X.D.; Li, Q.; Xie, H.R.; Raymond, Y.K.; Wang, Z.; Smalley, S.P. Least Squares Generative Adversarial Networks. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2794–2802.

42. Liu, X.K.; Zhai, H.; Shen, Y.L.; Lou, B.K.; Jiang, C.M.; Li, T.Q.; Hussain, S.; Shen, G.L. Large-scale crop mapping from multisource
remote sensing images in google earth engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 414–427. [CrossRef]

http://dx.doi.org/10.1103/PhysRevA.99.052306
https://nassgeodata.gmu.edu/CropScape/
http://dx.doi.org/10.1016/j.rse.2019.111286
http://dx.doi.org/10.1016/j.rse.2016.11.004
http://dx.doi.org/10.3390/rs11242908
http://dx.doi.org/10.1109/LGRS.2017.2728698
http://dx.doi.org/10.3390/s20113119
http://dx.doi.org/10.1109/JSTARS.2019.2963539

	Introduction 
	Materials and Methods 
	Study Area and Datasets 
	GAN Embedded CNN and LSTM 

	Results and Discussion 
	Experiment Settings 
	Band Combination Selection 
	Acurracy Assessment of Crop Classification 
	Mapping Classification Result 
	Model Extensibility Verification 

	Conclusions 
	References

