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Abstract: Ephemeral rivers in arid regions act as linear oases, where corridors of vegetation supported
by accessible groundwater and intermittent surface flows provide biological refugia in water-limited
landscapes. The ecological and hydrological dynamics of these systems are poorly understood
compared to perennial systems and subject to wide variation over space and time. This study used
imagery obtained from an unmanned aerial vehicle (UAV) to enhance satellite data, which were
then used to quantify change in woody vegetation cover along the ephemeral Kuiseb River in the
Namib Desert over a 35-year period. Ultra-high resolution UAV imagery collected in 2016 was used
to derive a model of fractional vegetation cover from five spectral vegetation indices, calculated from
a contemporaneous Landsat 8 Operational Land Imager (OLI) image. The Normalized Difference
Vegetation Index (NDVI) provided the linear best-fit relationship for calculating fractional cover;
the model derived from the two 2016 datasets was subsequently applied to 24 intercalibrated
Landsat images to calculate fractional vegetation cover for the Kuiseb extending back to 1984.
Overall vegetation cover increased by 33% between 1984 and 2019, with the most highly vegetated
reach of the river exhibiting the greatest positive change. This reach corresponds with the terminal
alluvial zone, where most flood deposition occurs. The spatial and temporal trends discovered
highlight the need for long-term monitoring of ephemeral ecosystems and demonstrate the efficacy
of a multi-sensor approach to time series analysis using a UAV platform.

Keywords: desert hydrology; riparian forest; unmanned aerial vehicles; multi-sensor fusion; frac-
tional vegetation cover; Kuiseb; spatiotemporal patterns

1. Introduction

Rivers and their adjacent riparian forests are dynamic environments where hydrological,
geomorphological, and ecological processes interact [1,2]. In arid landscapes, ephemeral rivers
act as linear oases, providing access to otherwise scarce water resources for vegetation, wildlife,
and human settlements [3–5]. Dryland riparian ecosystems are increasingly under pressure
from anthropogenic disturbances [6–9], climate change [10–13], livestock grazing [2,14–17],
and invasive species [18–20]. Amongst other impacts, these pressures can alter the hydrologic
regime [6,8], the key control on vegetation growth and distribution in the riparian zone [4,21].
Changing flood patterns can lead to a shift from perennial to annual communities [9], decreas-
ing species richness [22], changes in plant functional type [23], and decreases in woody cover
coupled with increases in herbaceous species [21]. Such changes in forest composition can
further alter the ecohydrological and geomorphological structure of the riparian landscape
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through attenuation of flow velocity through increased resistance [24–26], concentration of
soil moisture and nutrient content via increasing sediment deposition [24,27], and control
of groundwater fluctuations through evapotranspiration [6]. In Southern Africa, projected
increases in the frequency and severity of droughts across the region’s major river basins due
to climate change may be exacerbated by rising evaporative losses resulting from changes in
riparian forest cover [28].

Riparian corridors are spatially and temporally complex, with variation in water
availability driving changes in vegetation in the lateral (perpendicular) and longitudinal
(parallel to the river course) dimensions. While soil properties and water availability in
mesic systems vary primarily along the lateral dimension, ephemeral systems exhibit
strong longitudinal patterns of soil nutrients and moisture due to their characteristic inter-
mittent flood pulses, many of which do not reach the river mouth [4,29]. Desert rivers are
characterized by transmission losses, leading to decreasing discharge downstream [30–32];
though highly variable, long-term averages of the magnitudes and rates of transmission
losses can designate the reach of the river where floods typically end and the majority
of the sediment load is dropped [33]. With more frequent surface flow and greater de-
position rates than other reaches, soils in this stretch where the river runs dry, known as
the terminal alluvial zone [34], can contain higher levels of moisture and greater nutri-
ent content [27,30,32]. These properties may have important consequences for biological
production along the river course, particularly in light of potential changes to the global
hydrologic regime. Despite this significance, however, the distribution of vegetation in
ephemeral systems remains largely understudied [2,21,26].

Because of the multifaceted dynamics influencing riparian vegetation distribution [2]
and the wide variability in geomorphic response to change [35], historical research is
essential to provide insights into the impacts of anticipated changes to the climate on
dryland riparian ecosystems. Remotely sensed datasets offer a convenient way to study
environmental change at landscape scales as they offer a historical record of physical char-
acteristics. Analysis of vegetation using remotely sensed data commonly involves the use
of vegetation indices, which employ two or more spectral bands to characterize vegetation
in a single variable. Numerous indices have been developed to examine biophysical, bio-
chemical, and physiological characteristics of vegetation. Among the most common is the
Normalized Difference Vegetation Index (NDVI), which utilizes the red and near-infrared
(NIR) bands [36]. Numerous other indices, such as the Green-Red Vegetation Index (GRVI),
the Soil-Adjusted Vegetation Index (SAVI), and the Visible Atmospherically Resistant Index
(VARI), have been proposed as alternatives to NDVI for various environmental conditions
where NDVI is less effective. Despite their widespread use, however, spectral vegetation
indices, while convenient metrics for quantifying vegetation health and activity, do not
directly measure physical characteristics [37]. Fractional vegetation cover (FVC) is a more
useful indicator of vegetation abundance and exhibits a linear dependence on common
vegetation indices, such as NDVI, VARI, and GRVI [38].

Satellite datasets, such as the Landsat archive, extend decades back in time, allowing
for assessment of change over multidecadal time scales [39–41], including broad-scale
changes in the vegetation and hydrology of large dryland river systems [42–46]. However,
the spatial resolution of readily available historic satellite images is often insufficient for
characterization of linear features, such as riparian environments. Recent improvements in
remote sensing technologies allow for sub-pixel analysis of satellite images using aerial
imagery [47]. While a single satellite pixel often comprises a mixture of plant types and
bare soil, the meter to centimeter-scale resolution of aerial imagery can be used to enhance
the quality of fractional cover modeling using satellite imagery. Aerial photography has
been used extensively for riparian monitoring in both perennial (e.g., Reference [48,49])
and ephemeral (e.g., Reference [2,11,50,51]) systems. The proliferation of low-cost un-
manned aerial vehicles (UAVs), along with technological developments in UAV-mounted
sensors [52,53], mission planning and operations [54], georeferencing [55], and algorithms
and software for rapid production of digital orthoimage mosaics via Structure-from-Motion
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(SfM) photogrammetry [49,56,57], has led to their increased use in environmental research
and monitoring [58–62]. Compared to commercial satellites and traditional airborne sen-
sors, UAVs provide a quick, efficient, and relatively inexpensive way to obtain aerial
imagery at high spatial resolutions.

Several recent studies have used UAVs to estimate FVC, either on their own or in
conjunction with coarser-resolution satellite images, in environments ranging from the
northern Fennoscandian Arctic [63] to the Qinghai-Tibetan Plateau [64,65] to Australian
rangelands [66]. Approaches have included random forest regression and object-based im-
age analysis [66], spectral unmixing [66,67], and upscaling of binary vegetated-unvegetated
classifications from UAV imagery to satellite imagery using vegetation indices [63], an ap-
proach similar to the one used in this study. Several of these studies show that FVC
estimates are more accurate when upscaled to 30-m resolution or coarser, with lower FVC
accuracy at finer spatial resolution [63,64,66].

While most prior studies have used UAVs to estimate FVC in grasslands, shrublands,
or agricultural environments (e.g., Reference [63,64,66,67]), this study uses UAV imagery
to quantify woody vegetation cover in a desert riparian forest. Such research contributes to
the growing understanding of the extent of dryland woody cover, which recent studies
have shown to be much higher than previously estimated by using very high-resolution
remotely sensed imagery [68,69].

The goal of this study was to quantify change in vegetation cover along a large
ephemeral river in the Namib Desert using high-resolution UAV imagery to derive frac-
tional vegetation cover from a time series of Landsat images. Such enhancement of satellite
datasets with UAV-derived products, combined with empirical intercalibration of histor-
ical and current satellite imagery, provides a novel approach to temporal analysis using
multi-resolution remote sensing techniques, adding to the emerging field of UAV-based
remote sensing for environmental research, monitoring, and conservation.

2. Methods
2.1. Study Area

One of the Namib’s twelve major ephemeral rivers, the 560-km-long Kuiseb, drains
a predominantly arid watershed covering 14,700 km2 as it flows from its headwaters in
the Khomas Hochland westward to its outlet to the South Atlantic Ocean near Walvis
Bay. The river has several tributaries as it cuts through rock sediments to form the
Kuiseb Canyon, before becoming a sandy channel approximately 150 km from the coast
and eventually widening to a delta at Rooibank, approximately 31 km from the coast
(Figure 1; Reference [3]). Rainfall in the lower Kuiseb basin, ranging from 15 to 50 mm per
annum, is too little to contribute to river flow; floods are largely caused by precipitation
upstream in the Khomas Hochland (approx. 350 mm per annum) and occur sporadically
between December and April [3,5]. In its middle reaches, the vegetation and intermittent
flood pulses of the river form a boundary between two distinct and unique ecosystems of
the Central Namib Desert, the gravel plains to the north and the Namib Sand Sea to the
south. The riparian corridor is home to most of the vegetation in this desert region, and the
riparian forest is primarily comprised of five woody species: Acacia (Vachellia) erioloba,
Faidherbia albida, Euclea pseudebenus, Tamarix usneoides, and Salvadora persica. Both A. erioloba
and F. albida have been proposed as conservation priorities in Southern Africa [19,70]
and produce pods that serve as the primary source of fodder for the livestock of the in-
digenous Topnaar ( 6=Aonin) people who live along the banks of the river [16]. Detailed
information on the past floristic composition of the Kuiseb’s riparian forest are provided by
Seely et al. [5] and Theron et al. [51], while the lateral and longitudinal patterns in present
tree species distribution within the riparian corridor are analyzed by Morgan et al. [34].

Our study area (Figure 1) covered a 112-km section of the lower Kuiseb, extend-
ing from the lower end of the Kuiseb Canyon (approximately 168 km from the coast) to just
beyond the Swartbank settlement (approximately 56 km from the coast). UAV data were
collected at twelve 500-m-wide sites spaced every five kilometers within the middle reaches
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of the study area, which was subsequently divided into contiguous 500-m segments for
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Figure 1. Map of the Kuiseb River catchment in the Central Namib Desert. The black box designates the study
area of the lower Kuiseb River. The image of the study area is Landsat 8 OLI Surface Reflectance natural-color
composite obtained 31 July 2016.
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Figure 1. Map of the Kuiseb River catchment in the Central Namib Desert. The black box designates
the study area of the lower Kuiseb River. The image of the study area is Landsat 8 Operational Land
Imager (OLI) Surface Reflectance natural-color composite obtained 31 July 2016.

2.2. Intercalibration of Landsat Data

The Landsat archive provides global imagery from 1982 to the present at 30 m spatial
resolution and is freely available [71], making it well-suited for quantifying vegetation
change in regions with historically sparse in-situ monitoring programs, such as the Namib
Desert. To extend the record as far back as possible, we used imagery obtained with the
Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+;
Scan Line Corrector-on), and Landsat 8 Operational Land Imager (OLI) sensors. Atmo-
spherically corrected Landsat images (surface reflectance products) obtained between late
May and early September that were unobstructed by clouds were downloaded from the
USGS Earth Explorer website. In total, we analyzed 24 images collected between 1984 and
2019 (Table 1). The study area comprised a subset of a single Landsat scene (WRS Path 179,
Row 76).

Although all of the images were downloaded as atmospherically corrected products,
direct comparison between images from different dates and sensors required additional
intercalibration to account for variations in incident and reflected energy, atmospheric
effects, sensor response, and band designations, which vary slightly between the Landsat
sensors [72]. We performed relative radiometric calibration (or radiometric normalization;
Reference [73,74]) to standardize reflectance values according to the procedure proposed
by Furby and Campbell [72], involving: (1) selection of a reference image; (2) identification
of at least 20–25 invariant targets spanning a range of brightness values; (3) calculation of
calibration coefficients for each individual band; (4) evaluation of calibration curves and
refinement of targets as necessary; and (5) application of the calculated coefficients for each
band to each image.
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Table 1. Landsat image years, acquisition dates, and sensors.

Year Acquisition Date Sensor

1984 09 September Landsat 5 TM
1990 24 July Landsat 5 TM
1991 27 July Landsat 5 TM
1992 11 June Landsat 5 TM
1993 17 August Landsat 5 TM
1995 06 July Landsat 5 TM
1997 12 August Landsat 5 TM
1998 15 August Landsat 5 TM
1999 26 August Landsat 7 ETM+
2000 12 August Landsat 7 ETM+
2002 18 August Landsat 7 ETM+
2004 30 July Landsat 5 TM
2005 15 June Landsat 5 TM
2007 08 August Landsat 5 TM
2008 26 August Landsat 5 TM
2009 25 May Landsat 5 TM
2010 28 May Landsat 5 TM
2013 08 August Landsat 8 OLI
2014 11 August Landsat 8 OLI
2015 14 August Landsat 8 OLI
2016 31 July Landsat 8 OLI
2017 18 July Landsat 8 OLI
2018 22 August Landsat 8 OLI
2019 09 August Landsat 8 OLI

The 2016 Landsat 8 OLI image, contemporaneous with the UAV data, was used as
the reference image, and reflectance values for 217 invariant pixels from 25 locations
distributed across the study area were extracted and used to generate unique regression
equations for the blue, green, red, and NIR bands of each image. The spectral shapes of the
calibration coefficients (slope and intercept) and coefficient of determination (r2) values
were examined to compare the success of calibration across the four bands and detect
differences between the sensors.

The resulting calibration equations were applied to each image by band to generate
reflectance values standardized to the 2016 image.

2.3. Aerial Imagery Collection and Processing

The primary function of the UAV imagery in this study was to quantify fractional
vegetation cover using natural color (RGB) and near-infrared (NIR) imagery collected
between 15 July and 30 August 2016. The imagery was collected at twelve 500-m-long sites
along the river, each spanning the width of the riparian zone. We used a Canon Powershot
D30 digital camera with an internal GPS mounted in a nadir position on a 3D-Robotics
IRIS+ quadcopter UAV to collect natural color imagery and a modified Canon Powershot
A4000IS digital camera to collect NIR imagery. The modified Canon A4000IS used to collect
the infrared imagery had its internal IR-blocking filter removed and a red filter placed
over the lens, allowing red and NIR light to the sensor. To achieve stereoscopic images
with at least 65 percent endlap and sidelap [75] and maximize both spatial resolution and
total coverage area, the UAV was flown at an altitude of 70 m and a speed of 5 m s−1.
Both cameras were equipped with a Canon Hack Development Kit (CHDK) intervalometer
script programmed to capture images every four (NIR) or five (RGB) seconds. The flight
paths were planned in advance using ArduPilot Mission Planner software; the UAV was
operated manually during takeoff and landing and autonomously during the collection
phase. Based on the area of each site, between one and four missions were required to
cover the entire riparian zone at each site. On average, each flight lasted approximately ten
minutes and covered an area of approximately 5.1 hectares.
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We processed the JPEG images from each mission in Agisoft PhotoScan Professional
1.3.0 using “high” quality settings (see Supplementary Materials for details). The process-
ing steps included sparse point cloud reconstruction, dense reconstruction, production
of a digital elevation model (DEM), and generation of an orthoimage mosaic. At each
site, we identified eight to twelve ground control points (GCPs) on the RGB imagery
(directly georeferenced using the camera’s internal GPS) for each mission and used these
GCPs to align and georeference the NIR orthoimages. All orthoimages were subsequently
re-georeferenced to a 2010 WorldView-2 satellite image to correct for systematic errors
and slight discrepancies between images from successive missions. A total of 32 RGB
orthoimages with a ground sampling distance of 1.8 cm per pixel and 30 NIR orthoimages
with a ground sampling distance of 1.5 cm per pixel were generated at 12 sites within the
study area.

2.4. Calculation of Fractional Vegetation Cover from UAV Imagery

The UAV orthoimages were used to produce fractional cover raster datasets based
on classification of vegetated and non-vegetated pixels. Initial attempts to separate the
two classes based on spectral indices including NDVI and GRVI were unsuccessful. We de-
veloped an alternative false-red vegetation index (FRVI; Equation (1)) to create vegetation
masks from each image based on two bands from the NIR camera.

Most consumer-grade digital cameras use silicon-diode charge coupled detectors
(CCDs) that are sensitive to light wavelengths from about 350 to 1100 nm [76]. A Bayer
pattern filter and an internal IR-blocking filter are used to obtain blue, green, and red
bands for a normal image. The blue and red pixels of the sensor under the Bayer array are
the most sensitive to NIR light; by removing the internal IR-blocking filter and adding a
red-pass filter to the lens of the modified camera, the sensor’s blue channel was able to
collect only NIR reflectance, while the red channel recorded light over a range of red and
NIR wavelengths, as the red-pass filter blocks green and blue light and transmits red and
NIR light. With calibration and extensive post-processing, the NIR contributions on the red
channel can be separated, allowing solely red-band reflectance to be resolved [76]. In this
case, because RGB imagery was collected by a different sensor on separate flights, we were
unable to isolate the red band of the modified camera’s imagery. Incorporation of the
broad red-IR band into our modified normalized difference index, however, proved more
successful in isolating vegetation than the traditional indices. FRVI employs the broad
red-IR band and the NIR band of this modified camera:

FRVI =
ρNIR − ρREDIR

ρNIR + ρREDIR
. (1)

Like other spectral indices, FRVI values range from −1.0 to +1.0, with high values for
green vegetation and low values for sand and bedrock.

We calculated FRVI for all 30 NIR orthoimages. To reduce the memory usage and
processing times, the pixel depth of the resulting FRVI images was rescaled from 32-bit
(floating point) to 8-bit (integer). The rescaled FRVI was used to generate a mask of
vegetation cover, with pixels classified as vegetation when they met both of the following
two criteria: (a) having FRVI values greater than 136 (0.00667 non-rescaled) and (b) having
NIR values above an adaptive threshold determined by the orthoimage’s mean NIR value.
Pixels with values equal to or below either threshold were classified as non-vegetation.

2.5. Calibration of the FVC Model for the Landsat Time Series

The high-resolution (cm-scale) masks of vegetation cover generated from the UAV
orthoimages were aggregated to 30 × 30 m, producing a grid of fractional cover aligned
with Landsat pixels (Figure 2). These FVC estimates were then used to model FVC from
the Landsat imagery based on a spectral index. We evaluated five spectral indices for use
as the predictor variable in this FVC model.
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and the Landsat workflow is described in Sections 2.2, 2.5, and 2.6.
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Figure 2. Unmanned aerial vehicle (UAV) and Landsat imagery workflow diagram. The UAV
workflow is described in Sections 2.3 and 2.4, and the Landsat workflow is described in Sections 2.2,
2.5, and 2.6.

Perhaps the most widely used spectral index is the Normalized Difference Vegetation
Index (NDVI), defined as follows [36]:

NDVI =
ρNIR − ρRED

ρNIR + ρRED

, (2)

where ρNIR and ρRED are the reflectance of the NIR and red bands, respectively. NDVI effec-
tively measures greenness; it depends on the near-infrared (NIR) and red spectral bands,
based on the principle that photosynthetic vegetation has high reflectance in the NIR
portion of the electromagnetic spectrum and absorbs red light. NDVI ranges from –1.0 to
+1.0, with high values resulting from high NIR and low red reflectance of healthy green veg-
etation, and negative values produced by surfaces with low NIR and high red reflectance,
such as water or snow.

Among NDVI’s shortcomings, however, are its sensitivity to atmospheric effects, soil
brightness, and lighting geometry [77]. A number of indices have been proposed to account
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for these sensitivities including the Modified Soil-Adjusted Vegetation Index (MSAVI),
given as:

MSAVI =
2(ρNIR + 1)−

√
(2ρNIR + 1)2 − 8(ρNIR − ρRED)

2
(3)

developed by Qi et al. [78] as an improved version of the SAVI, which was designed to mit-
igate soil brightness effects, specifically in arid and semi-arid environments; the Enhanced
Vegetation Index (EVI), proposed by Huete et al. [77] as

EVI = G
ρNIR − ρRED

ρNIR + C1 ρRED − C2 ρBLUE + L
, (4)

where G = 2.5, C1 = 6, C2 = 7.5, and L = 1, which incorporates the blue band to minimize
scattering due to atmospheric effects and soil brightness; the Visible Atmospherically
Resistant Index (VARI) [79], given as

VARI =
ρGREEN − ρRED

ρGREEN + ρRED + ρBLUE

, (5)

which exhibits a strong correlation with fractional vegetation cover and incorporates only
the three visible bands; and the Green-Red Vegetation Index (GRVI; also known as the
Visible-Green Index or VIG), given as

GRVI =
ρGREEN − ρRED

ρGREEN + ρRED

, (6)

which also displays a linear relationship with green vegetation cover [80].
To generate FVC models over the entire Landsat time series, we used the UAV-derived

FVC data to perform pairwise linear regressions against each of these five spectral indices
calculated from the contemporaneous 2016 Landsat 8 OLI image (Figure 2).

Initial preprocessing of the satellite imagery involved cropping the reference image to
the extent of each of the 30 NIR orthoimages and manual geo-rectification of these subsets
to optimize the alignment between the Landsat data and the high-resolution UAV imagery.

FVC values were calculated from the UAV orthoimages for each corresponding
30 × 30 m Landsat pixel and regressed on spectral index values extracted from the 2016
Landsat image. Based on the expected linear relationships between the vegetation indices
and FVC [38,80], linear regression analysis was performed on the entire dataset (1724 cells)
to generate a model for calculation of FVC from each spectral index. Residual plots were
examined to assess the fit of each model, and the optimal model was selected based on the
index yielding the strongest correlation with FVC. The accuracy of the Landsat FVC model
was assessed by comparing the high-resolution vegetation cover observations from each
UAV mission to modeled FVC from the 2016 Landsat image for the corresponding area.

We calculated the selected spectral index for the entire study area for all 24 standard-
ized Landsat images, including the 2016 reference image and applied the FVC model to
these datasets, yielding fractional cover images of the entire study area dating back to
1984. All pixels with negative fractional cover values were set to 0, and those with values
greater than 1.0 to 1.0 to constrain modeled FVC values to a physically realistic range.
The riparian zone, clearly distinguishable from the surrounding landscape in this desert
environment, was manually delineated on the natural-color 2016 Landsat image. Using this
hand-digitized polygon, we then extracted FVC values from the Landsat datasets for each
of the 215 contiguous 500-m segments.

2.6. Analysis of Vegetation Cover Change

We averaged the FVC values for all segments by year to provide an estimate of overall
riparian vegetation cover for each year studied. We conducted a regression analysis to
determine how the mean total cover of the Kuiseb River varied from 1984 to 2019. A more
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detailed spatiotemporal analysis was also undertaken using the data from individual seg-
ments. Bivariate regressions of arcsine-transformed FVC [81,82] over time were performed
for all 215 riparian segments. The slopes of the regression equations were plotted against
distance upstream using a LOWESS regression curve to examine the relationship between
FVC change and longitudinal position.

3. Results
3.1. Intercalibration of Landsat Data

Figures 3 and 4 show the calibration curves for the blue and NIR bands, respec-
tively. All bands fit the calibration curves well, with the NIR bands showing the strongest
correlation to the 2016 reference data and the blue bands exhibiting the most deviation.

The spectral shapes of the calibration coefficients and r2 values are shown in Figure 5.
There were no overall systematic differences detected between the sensors, though Landsat
8 OLI images typically had slopes closer to 1.0 and intercepts closer to 0 than Landsat
7 ETM+ images. Landsat 8 OLI images also had the highest r2 values, as would be
expected given that they were collected from the same sensor as the 2016 reference image.
Regressions of 2016 reference values on Landsat 5 TM reflectance values yielded a wide
range of slope and intercept values. The 1998 image had the lowest r2 values for all bands,
which we suspect was due to an error in its georeferencing.

3.2. Modeling of Fractional Vegetation Cover

The FVC regressions for the four spectral vegetation indices with the weakest rela-
tionships to FVC are shown in Figure 6. VARI and GRVI showed the poorest relationships
to FVC with the lowest r2 values and highest root-mean-square error (RMSE), and FVC
appears to become saturated at low index values.

NDVI proved to be the best indicator of FVC (r2 = 0.83, F1,1723 = 8140.38, p < 0.001),
with NDVI predicting cover according to the equation:

FVC = 1.7162 · NDVI− 0.1276. (7)

The residuals appear to be normally distributed (Figure 7; RMSE = 0.12).
As shown in Figure 8, the modeled 2016 Landsat FVC closely matches the observed

UAV FVC (RMSE = 0.037, n = 30). Though this does not represent an independent
estimate of the model’s accuracy, it does illustrate the performance of the model in recon-
structing the aggregate area of vegetation cover at the scale of analysis. Note that the 0.037
RMSE at this scale is substantially lower than the 0.12 RMSE at the scale of individual
Landsat grid cells (900 m2; Figure 7).

Figure 9 shows a comparison of UAV-derived FVC and Landsat-derived FVC for 2016
at one site. As shown in this example, there was good agreement between the modeled
and observed FVC across the full range of cover values.
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Figure 3. Intercalibration of the blue bands of the Landsat images by year. All images were calibrated to the 2016 reference image. The solid black lines designate the line of equal reflectance.
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Figure 4. Intercalibration of the near-infrared (NIR) bands of the Landsat images by year. All images were calibrated to the 2016 reference image. The solid black lines designate the line of
equal reflectance.
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Figure 5. Spectral shapes of the calibration coefficients—(a) slopes and (b) intercepts—and (c) r2 values for all
images colored by sensor. Note: units are in 10,000 = 100% reflectance.
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Figure 5. Spectral shapes of the calibration coefficients—(a) slopes and (b) intercepts—and (c) r2 values for all images
colored by sensor. Note: units are in 10,000 = 100% reflectance.
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Figure 6. Linear least-squares regression models of UAV-derived fractional vegetation cover and (a)
MSAVI; (b) EVI; (c) VARI; and (d) GRVI derived from 2016 Landsat imagery.
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their shortcomings, however, the flight plans and UAV-based collection methods employed herein did342

not impede the intended analysis.343

The introduction of the false-red vegetation index, necessitated by the lack of success using344

standard indices to separate vegetated and non-vegetated pixels of the UAV imagery, raises an345

important point about the weaknesses of very high-resolution aerial imagery. Spectral indices such as346
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NDVI may be less useful for higher spatial resolution datasets, such as those obtained via a UAV348

platform. In this case, NDVI was particularly problematic in the classification of F. albida crowns, which349

generally appear gray or brown on the natural color UAV imagery and lack the brighter green color of350

other species such as A. erioloba and S. persica. As a result, NDVI values for pixels of F. albida crowns351

were often low, sometimes even lower than sand. A related consequence of the lack of green leaves352

on F. albida trees is that the canopy is discontinuous at this scale; the sparse, divergent branches make353

the sand below the canopy visible from the sky. With a ground sampling distance of less than 2 cm354

per pixel, a single crown contains a range of NDVI values that make classification of the entire crown355

difficult, even with object-based approaches. This issue was exacerbated by the fact that the NIR and356

red bands were obtained from two different sensors with different resolutions; even downsampling of357

the higher resolution NIR image from 1.5 cm to the 1.8 cm per pixel ground sampling distance of the358

RGB imagery yielded imperfect alignment of pixel edges.359

Figure 6. Linear least-squares regression models of UAV-derived fractional vegetation cover and (a) Modified Soil-Adjusted
Vegetation Index (MSAVI); (b) Enhanced Vegetation Index (EVI); (c) Visible Atmospherically Resistant Index (VARI); and (d)
Green-Red Vegetation Index (GRVI) derived from 2016 Landsat imagery.
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Figure 7. (a) Linear least-squares regression relationship between 2016 Landsat-derived NDVI and
UAV-derived fractional vegetation cover; and (b) a plot of the residuals.

Figure 8. Comparison of modeled (Landsat) and
observed (UAV) fractional vegetation cover for
2016. Each point represents one UAV mission.
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Figure 8. Comparison of modeled (Landsat) and observed (UAV) fractional vegetation cover for 2016.
Each point represents one UAV mission.
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Figure 9. Comparison of modeled and observed FVC. (a) UAV orthoimages for Site #1,
located 136 km upstream, overlaid with 30-m Landsat cells; (b) Fractional vegetation
cover from the UAV data aggregated to 30 m; (c) 2016 Landsat 8 OLI true-color composite
clipped to Site #1 orthoimages; and (d) FVC derived from 2016 Landsat NDVI using Eq. 7.

Figure 10. Mean fractional vegetation cover of the lower Kuiseb, 1984-2019. The
regression line is shown with a 95-percent confidence interval (shaded).

Figure 9. Comparison of modeled and observed fractional vegetation cover (FVC). (a) UAV orthoim-
ages for Site #1, located 136 km upstream, overlaid with 30-m Landsat cells; (b) Fractional vegetation
cover from the UAV data aggregated to 30 m; (c) 2016 Landsat 8 OLI true-color composite clipped to
Site #1 orthoimages; and (d) FVC derived from 2016 Landsat NDVI using Equation (7).

This equation was applied to NDVI images calculated from the calibrated Landsat
bands to model FVC over the entire study period. Over all years, 9.3% of Landsat pixels
had NDVI values that translated to FVC values outside the 0 to 1 range, with considerably
more low NDVI values (7.2%) than high (2.1%).

3.3. Change in Fractional Vegetation Cover

FVC within the entire 107-km length of the riparian corridor under study increased
by 33% from 0.2298 (σ = 0.1557, n = 215) in 1984 to 0.3056 (σ = 0.1915, n = 215) in 2019.
This trend was significant across the entire 35-year period examined (p < 0.001, n = 24;
Figure 10) with moderate interannual variation (r2 = 0.5195). Figure 11a shows FVC of
the riparian zone in 500-m segments for each year. These data indicate that the portion
of the river located roughly between 95 and 145 km from the coast was consistently the
most highly vegetated. This reach also appears to be the most dynamic, undergoing the
greatest change in FVC during the 35-year period studied. This observation is consistent
with the quantitative analysis of FVC change by 500-m segment. The greatest rates of
change were seen between 95 and 145 km upstream, with FVC increasing over time in
these areas (Figure 11b). On the other hand, the stretch of the river between 75 and 95 km
upstream from the coast was significantly less vegetated, and FVC values appeared to have
remained fairly constant. In some areas, particularly upstream, the vegetation cover of the
river decreased, as shown in Figure 11.
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Figure 9. Comparison of modeled and observed FVC. (a) UAV orthoimages for Site #1,
located 136 km upstream, overlaid with 30-m Landsat cells; (b) Fractional vegetation
cover from the UAV data aggregated to 30 m; (c) 2016 Landsat 8 OLI true-color composite
clipped to Site #1 orthoimages; and (d) FVC derived from 2016 Landsat NDVI using Eq. 7.

Figure 10. Mean fractional vegetation cover of the lower Kuiseb, 1984-2019. The
regression line is shown with a 95-percent confidence interval (shaded).

Figure 10. Mean fractional vegetation cover of the lower Kuiseb, 1984–2019. The regression line is
shown with a 95-percent confidence interval (shaded).
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Figure 11. Illustrating patterns through time and space. (a) Fractional vegetation cover of 500-m segments of
the lower Kuiseb, 1984-2019. (b) Bivariate scatter plot showing the relationship between longitudinal position
and fractional cover change between 1984 and 2019. The solid line represents a LOWESS model with α = 0.3.
Gobabeb is located approximately 100 kilometers from the coast.
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Figure 11. Illustrating patterns through time and space. (a) Fractional vegetation cover of 500-m
segments of the lower Kuiseb, 1984–2019. (b) Bivariate scatter plot showing the relationship between
longitudinal position and fractional cover change between 1984 and 2019. The solid line represents
a locally weighted scatterplot smoothing (LOWESS) model with α = 0.3. Gobabeb is located
approximately 100 kilometers from the coast.
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4. Discussion

Moderate-resolution optical satellite imagery from systems such as Landsat is freely
available worldwide and provides a historical archive extending back to the 1980s, but its
30-meter spatial resolution is too coarse to directly resolve small shrub and tree crowns
typical of riparian corridors. The centimeter-scale resolution of imagery from UAVs can
provide precise estimates of fractional vegetation cover, but the extent of such imagery is
constrained by limitations on UAV range and flying time, and historical data are generally
not available at this scale. In this study, broader spatial and temporal coverage was obtained
by modeling FVC in a Landsat 8 OLI image using spatially detailed vegetation cover
data acquired from high-resolution UAV imagery, radiometrically normalizing archival
Landsat imagery to match the base image, and extrapolating the FVC model over space
(upstream and downstream from the UAV sites) and time (to prior and subsequent years).
The result is a spatiotemporal dataset of sub-pixel FVC estimates for the continuous study
area length of the river over a 35-year period. This approach takes advantage of the
complementary strengths of both the satellite and UAV data sources, yielding a spatially
and temporally extensive dataset with limited in-situ UAV imagery.

Though the Landsat imagery used were atmospherically corrected surface reflectance
products, biases in each band’s spectral reflectance estimates for individual images re-
mained due to limitations of the atmospheric correction algorithms and the atmospheric
optical properties data on which they are based. Figures 3–5 show that these effects can
be modeled and the images radiometrically normalized using invariant targets, a process
that is optimal in a landscape with flat, bright, spectrally stable targets, like the Namib.
As sensors and correction algorithms continue to improve and more spatially explicit data
on the optical properties of the atmosphere become available, the biases in standard sur-
face reflectance products should diminish, making this normalization process less critical,
except in the case of comparisons with lower-quality historical imagery.

There are a number of limitations to the UAV imagery obtained and analyzed in this
study. The collection of images in the nadir position along parallel flight lines does not
yield very accurate SfM reconstructions, which leads to geometric errors in the resulting
orthoimages [55,83]. In order to produce orthoimages and DEMs with highly accurate three-
dimensional coordinates, images should be collected at off-nadir positions with overlapping
flight lines for repeated coverage at different angles. Collection of ground control points in
the field and/or successive flights flown at different altitudes and perpendicular flight lines
between missions would also improve the distortion issues. Despite their shortcomings,
however, the flight plans and UAV-based collection methods employed herein did not
impede the intended analysis.

The introduction of the false-red vegetation index, necessitated by the lack of success
using standard indices to separate vegetated and non-vegetated pixels of the UAV imagery,
raises an important point about the weaknesses of very high-resolution aerial imagery.
Spectral indices such as NDVI were developed for satellite and aerial images with coarser
spatial resolution [36]. Therefore, NDVI may be less useful for higher spatial resolution
datasets, such as those obtained via a UAV platform. In this case, NDVI was particularly
problematic in the classification of F. albida crowns, which generally appear gray or brown
on the natural color UAV imagery and lack the brighter green color of other species, such as
A. erioloba and S. persica. As a result, NDVI values for pixels of F. albida crowns were often
low, sometimes even lower than sand. A related consequence of the lack of green leaves on
F. albida trees is that the canopy is discontinuous at this scale; the sparse, divergent branches
make the sand below the canopy visible from the sky. With a ground sampling distance
of less than 2 cm per pixel, a single crown contains a range of NDVI values that make
classification of the entire crown difficult, even with object-based approaches. This issue
was exacerbated by the fact that the NIR and red bands were obtained from two different
sensors with different resolutions; even downsampling of the higher resolution NIR image
from 1.5 cm to the 1.8 cm per pixel ground sampling distance of the RGB imagery yielded
imperfect alignment of pixel edges.
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FRVI outperformed the other vegetation indices in this study for use with the high-
resolution UAV imagery, resulting in more accurate separation of vegetated and non-
vegetated pixels. This index requires additional exploration to explain its success, however,
and is specific to modified color-infrared digital cameras. The broad red-IR band used
in FRVI covers a wider range of wavelengths than the two distinct red and NIR bands
on Landsat and other multispectral sensors; it includes the red-edge and adjacent wave-
length ranges that fall between the narrower red and NIR bands. FRVI may be a useful
replacement for NDVI for images of other areas obtained from a similarly modified camera,
circumventing the need to calibrate the red and/or green bands of the resulting image,
but it would have to be examined in other locations and with different sensors. The su-
perior performance of FRVI over NDVI in the UAV images may be largely attributable to
the fact that both component bands were obtained from the same sensor, eliminating the
need for realignment or resampling and minimizing the influence of co-registration errors.
The success of FRVI in this study, however, indicates that the additional bands of such im-
agery may actually provide useful information, despite the fact that they are not collecting
light over traditionally defined ranges of wavelength.

Our approach differs from that used by Yan et al. [67], who used color mixture analysis
(CMA; similar to spectral mixture analysis) to estimate vegetation cover from the Hue-
Saturation-Value (HSV) data derived from the raw RGB spectral bands of UAV-obtained
imagery. This methodology produced highly accurate estimates of FVC (mean absolute
error < 0.01) for two agricultural sites in Hebei, China [67]. This approach may be
worth exploring in natural environments as an alternative to the FRVI method presented
here, when traditional multispectral data are not available, though the aforementioned
complexity of naturally occurring woody vegetation, such as F. albida crowns, and the
bright, variable-color desert soils may render CMA-based methods less effective in this
region than in an intensively managed agricultural setting. In dryland environments,
with extensive portions of the landscape covered by bare soil or non-photosynthetic or
sparsely green vegetation, FVC can be difficult to estimate, with best results obtained when
up-scaling ultra-high resolution UAV data to coarser resolutions [66], similar to the 30-m
scale used in this study.

While it proved ineffective for vegetation classification in the ultra-high resolution
UAV imagery, NDVI prevailed as the optimal index for modeling FVC from the satellite
imagery, highlighting the scale-dependence of spectral vegetation indices—the most favor-
able index at one scale is not necessarily the most favorable index at another. Perhaps more
surprisingly, NDVI outperformed the four other indices, many of which were designed to
compensate for NDVI’s shortcomings, particularly in arid environments. A possible expla-
nation for this could be the unique nature of the study area, with virtually no green cover
except in the riparian forest. Furthermore, canopy background in the Kuiseb is dominated
by bright riparian sands and, on the fringes of the riparian zone, underlying gravel plains
and the red dune sand. Thus, EVI, which is highly sensitive to albedo, and visible indices,
like VARI and GRVI, may lack the ability to effectively separate vegetation from sand using
band differences. Furthermore, FVC became saturated at very low values of both VARI and
GRVI, suggesting that a logarithmic model may be more suitable. Nonetheless, NDVI was
strongly linearly correlated with FVC and therefore provided an effective mechanism for
calculation of fractional cover for the Landsat time series.

As a point of comparison, Riihimäki et al. [63] likewise assessed multiple vegetation
indices for modeling FVC from satellite imagery in an Arctic tundra ecosystem, using
binary classification of high-resolution UAV data into vegetated and non-vegetated classes
followed by aggregation to the satellite-pixel scale. While they did not compare VARI, GRVI,
or MSAVI, they similarly found NDVI to perform better than EVI, though alternatives using
a shortwave infrared (SWIR) or red-edge band were superior overall, suggesting potential
consideration for future application in the Namib region. Chen et al. [64] compared NDVI,
EVI, and MSAVI for use in modeling FVC in an alpine grassland site using UAV data
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and 30-m-resolution imagery from the HJ-1A satellite, though they found no significant
differences between the vegetation indices.

Our analysis revealed a 33% increase in fractional vegetation cover in the middle
reaches of the Kuiseb since 1984. In principle, this increase could be due to either a change
in land cover, such as the expansion of the riparian forest into previously unvegetated areas,
an intensification of vegetation cover within existing land cover classes, or a combination of
the two. Riparian forest cover in this region consists of a heterogeneous mix of trees, shrubs,
and graminoids intermingled with extensive areas of sand. There are no existing land-cover
change datasets for the Kuiseb region at scales allowing for resolution of the riparian zone;
the best available is the Moderate Resolution Imaging Spectroradiometer (MODIS) Land
Cover Type (MCD12Q1; Reference [84]) data product, which provides global land cover
data at fairly coarse 500-m resolution yearly, beginning in 2000. More importantly, however,
land cover change processes that are common in other parts of the world (e.g., urbanization,
agricultural development, deforestation, etc.) are minimal in the middle reaches of the
Kuiseb under study. Furthermore, in this region, the Kuiseb riparian zone is constrained
by large sand dunes on the left bank and rocky outcrops, particularly on the right bank,
which are geographically consistent at decadal time scales. Thus, the increase in FVC can
be attributed to an increase in riparian forest cover.

Our findings in the Kuiseb are consistent with the trend of increasing vegetation green-
ness across the globe over the last four decades. Many recent studies have demonstrated
a “greening” trend in vegetation cover both globally [85–87] and regionally, from the
Arctic [88] to the tropics [85]. While obvious increases in vegetation greenness are asso-
ciated with anthropogenic land use and land cover change (LULCC), such as expansion
of irrigated agriculture and afforestation, greening is also occurring in regions with less
direct human influence [85,88]. Potential causes of such increases involve nitrogen de-
position [87], CO2 fertilization, and climate change [85]. In some regions, short-term
“browning” episodes have intermittently reversed the longer-term trend [86]. In Southern
Africa, precipitation and water availability may be a controlling factor in regional greening
and browning trends [85,89], which in turn have critical implications for the water cycle
through changes in evapotranspiration [28,90].

In the Kuiseb, the observed increase in FVC is likely due to changes in cover of
the three dominant woody species—A. erioloba, F. albida, and T. usneoides—as cover of
other woody and herbaceous species is low [34]. Furthermore, while the neighboring
Swakop River has seen significant dieback of F. albida attributable to increasing arid-
ity due to water extraction and expansion of the invasive Prosopis glandulosa [18], few
P. glandulosa individuals have been observed in the Kuiseb, and the current abundance
of both F. albida and A. erioloba remain comparable to those in documented in the 1970s
and 1980s [5,34,51]. The smaller T. usneoides was substantially more abundant in 2016 than
four decades prior [5,34], though its overall cover is low compared to the larger A. erioloba
and F. albida, so an increase in abundance of this species is unlikely to explain much of the
increase in overall vegetation cover.

Given the hydrological controls on riparian vegetation in ephemeral systems, a change
in flow and precipitation patterns would be the most obvious explanation for the increase
in vegetation cover. All of the Kuiseb species rely on consistent surface flow and associ-
ated aquifer recharge for survival, as groundwater is their dominant water source [91].
While regular flooding is critical for the sustaining the riparian forest, strong floods can
increase mortality via uprooting or waterlogging vegetation [92], and decreases in woody
biomass have been observed following large flood events [93]. The increase in vegetation
cover in the Kuiseb is consistent with a recent analysis of repeat photography across the
Namib Desert that showed an increase in vegetation cover over the 20th century, poten-
tially associated with an increase in precipitation in the latter half of the century throughout
the region [94]. However, regional climate and hydrological records do not show a con-
sistent increase in precipitation or flooding over our study period (1984–2019) that would
explain the observed increase in vegetation cover. Data recorded at Gobabeb over the last
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three decades indicate that flood events may be approaching extremes, with consistent
moderate floods fewer and farther between (Figure 12a). Since 1983, the flood has reached
Gobabeb during all but five summers. The dry years all occurred in the last thirteen years,
with no flow in the summers of 2007, 2010, 2013, 2016, and 2019. Furthermore, precipitation
at the headwaters of the Kuiseb also shows no consistent trend, with a shift from below
average precipitation to a wet period at the turn of the century, followed by recurrent
droughts in recent years (Figure 12b). It is worth noting, however, that these hydrological
records do highlight a period of prolonged drought in the early 1980s, during which sur-
face flow did not reach Gobabeb for four consecutive years from 1980 to 1983. Significant
decline of the water table and widespread mortality of mature riparian trees—most notably
F. albida—were documented during this severe dry period [51,95]. Thus, the observed 33%
increase in vegetation cover since 1984 could represent a long-term recovery from drought.
This theory could be tested using coarser resolution satellite data and/or archival aerial
imagery acquired prior to this drought period, both of which would require substantial
calibration for comparison to present-day imagery.
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Figure 12. (a) Total days of Kuiseb surface flow at Gobabeb (100 km upstream), 1962-2019. Data
assembled from the Gobabeb-Namib Research Institute, Ward and Breen [91], and the Ministry of
Agriculture, Water, and Forestry. (b) Windhoek precipitation anomaly, 1980-2019. The mean annual
precipitation in Windhoek for 1980-2019, calculated from ERA-Interim reanalysis data [92], was 268.17
mm. The regional hydrological year begins in October of the previous year and ends in the following
September.

Figure 12. (a) Total days of Kuiseb surface flow at Gobabeb (100 km upstream), 1962–2019. Data as-
sembled from the Gobabeb-Namib Research Institute, Ward and Breen [95], and the Ministry of
Agriculture, Water, and Forestry. (b) Windhoek precipitation anomaly, 1980–2019. The mean an-
nual precipitation in Windhoek for 1980-2019, calculated from ERA-Interim reanalysis data [96],
was 268.17 mm. The regional hydrological year begins in October of the previous year and ends in
the following September.

The spatiotemporal analysis of fractional vegetation cover revealed that the most highly
vegetated reach of the river, located around 95 to 145 km from the coast, was also the most
dynamic over the last three-and-a-half decades showing greater increases than other parts
of the study area (Figure 11b). This may reflect a longitudinal response of the vegetation to
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hydrological and geomorphological trends. Like in other dryland river systems, transmission
losses in the Kuiseb result in much of the flood load being deposited in the middle reaches,
in this case between 90 and 190 km from the mouth of the river [27,29,31,33]. Ninety percent
of Kuiseb floods between 1981 and 2006 ran dry in the middle reaches of the Kuiseb around
Homeb (approximately 120 km from the coast) [6], roughly in the middle of the study
area. Jacobson et al. [27] found that silt content and levels of organic carbon, nitrogen,
and phosphorous peaked in the soils of this terminal alluvial zone. These soil nutrients have
important effects on production and decomposition, and silt traps moisture in shallow soil,
preventing downward absorption. The stream gradient decreases in this stretch, reaching
a minimum in the most highly vegetated reach between 95 and 145 km, before becoming
increasingly steep farther downstream [34], where vegetation cover is lower. That this stretch
is the most vegetated and shows the highest increases in cover suggests that the terminal
alluvial zone may be the most ecologically resilient river reach, sustaining the riparian forest
throughout the recurrent droughts of the last thirteen years. The observed ecological response
in this region is consistent with the geomorphological and hydrological activity in the terminal
alluvial zone.

5. Conclusions

The combination of high spatial resolution UAV imagery and high temporal resolution
satellite imagery facilitated the analysis of the structure of the Kuiseb riparian vegetation
across longitudinal and temporal gradients, revealing an overall increase in fractional veg-
etation cover of 33% over the last three-and-a-half decades. Furthermore, fractional cover
was highest in the stretch where the river runs dry, highlighting the importance of this
terminal alluvial zone in controlling the structure of the riparian forest. That this area also
exhibited the most change in vegetation cover between 1984 and 2019 raises important
questions about how the Kuiseb woody species will respond to a potential increase in
hydrologic variability in the future [97].

The observed spatiotemporal variability of the Kuiseb River highlights the importance
of understanding the processes influencing riparian vegetation growth and establishment in
ephemeral ecosystems, particularly in light of potential increases in hydrologic variability,
expansion of invasive species, and anthropogenic alteration of the hydrologic regime.
Riparian corridors act as thermal and moisture refugia for a range of plant and animal
species, particularly in water-limited landscapes. Changes in riparian vegetation cover
could therefore threaten the diversity of life these landscapes support. This, in addition to
the downstream effects of changes in riparian forest structure on the geomorphology and
hydrology of the riparian landscape in general, underscores the conservation significance
of such ecosystems. Approximately one-third of the Earth’s land surface is classified as
arid or semi-arid [4], making ephemeral hydrology extremely important to a large portion
of the world’s biodiversity and human population. Furthermore, because desert rivers, like
the Kuiseb, are adapted to such extremely variable conditions, understanding the behavior
of and changes in such systems may provide valuable insights for the future of riparian
forests. The changes observed in this study emphasize the utility of fusing highly spatially
and highly temporally resolved data to elucidate the complex ecological dynamics in these
highly variable arid river systems.
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