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Abstract: A stack of Sentinel-1 InSAR data in an urban area where flood events recurrently occur,
namely Beletweyne town in Somalia, has been analyzed. From this analysis, a novel method to deal
with the problem of flood mapping in urban areas has been derived. The approach assumes the
availability of a map of persistent scatterers (PSs) inside the urban settlement and is based on the
analysis of the temporal trend of the InSAR coherence and the spatial average of the exponential
of the InSAR phase in each PS. Both interferometric products are expected to have high and stable
values in the PSs; therefore, anomalous decreases may indicate that floodwater is present in an urban
area. The stack of Sentinel-1 data has been divided into two subsets. The first one has been used as
a calibration set to identify the PSs and determine, for each PS, reference values of the coherence
and the spatial average of the exponential of the interferometric phase under standard non-flooded
conditions. The other subset has been used for validation purposes. Flood maps produced by
UNOSAT, analyzing very-high-resolution optical images of the floods that occurred in Beletweyne in
April–May 2018, October–November 2019, and April–May 2020, have been used as reference data.
In particular, the map of the April–May 2018 flood has been used for training purposes together
with the subset of Sentinel-1 calibration data, whilst the other two maps have been used to validate
the products generated by applying the proposed method. The main product is a binary map of
flooded PSs that complements the floodwater map of rural/suburban areas produced by applying a
well-consolidated algorithm based on intensity data. In addition, a flood severity map that labels the
different districts of Beletweyne, as not, partially, or totally flooded has been generated to consolidate
the validation. The results have confirmed the effectiveness of the proposed method.

Keywords: flood; urban areas; Sentinel-1; persistent scatterers

1. Introduction

The frequency and intensity of urban flooding are likely to increase in the future
because heavy rainfall caused by storms is increasing in frequency and severity due to
climate change. Floods caused by intense rainfall events are responsible for numerous
casualties and several million euros of damage every year [1]. Many cities around the world
are affected by recurrent floods. The capability to detect floodwater in urban settlements
may help in identifying areas of the cities more prone to flooding. Identification may
be useful for urban development plans to prevent further building in flood-prone areas.
In addition, insurance companies require detailed global and national disaster impact
databases to identify areas vulnerable to flooding and to support parametric insurance,
i.e., to trigger payouts in cases of emergency using predefined criteria [2]. Operational
flood mapping can also be useful for relief management when a flood event occurs [3] or
when intense rainfall is forecasted.
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Synthetic Aperture Radar (SAR) represents the most suitable instrument for flood
mapping because of its capability to provide high spatial resolution images in almost
all weather conditions. Several algorithms from the literature are presently available to
produce near real-time (NRT) inundation maps useful for operational flood relief manage-
ment (e.g., [4–7]). However, although new insights were provided on mapping floods in
urban environments ([3,8–11]), this task still represents a challenge and deserves further
investigations. Mapping urban floods using SAR data is the subject of this paper, which
presents a new method to perform it.

In urban settlements, specular reflection, as well as double and multiple bounces, may
occur (e.g., walls and street forming dihedral reflectors) depending on the alignment of
roads and adjacent buildings with respect to the direction of the SAR line of sight [12].
Moreover, urban structures may cause shadowing and layover. Hence, urban flooded areas
(UFAs) do not have a unique and unambiguous backscattering signature that distinguishes
them from other targets. This implies that UFAs are generally not detected by NRT
algorithms used for rapid mapping based on SAR intensity data.

The high sensitivity of the interferometric SAR (InSAR) phase to small surface changes
can help in dealing with the ambiguity of the radar backscatter signature of UFAs. Past stud-
ies ([12–15]) showed that the presence of floodwater during the interval between the
observation times of two SAR images acquired in repeat pass configuration produces a
decrease in magnitude of the complex cross correlation (i.e., the coherence) between the
images. Three factors, namely spatial (related to the spatial baseline), thermal (related
to the signal to noise ratio), and temporal (related to physical changes in the observed
target) decorrelations, contribute to the total observed decorrelation [16]. Under standard
non-flooded conditions, an urban area is a typically coherent target, because, for manmade
structures, the spatial arrangement of the individual scatterers does not change in time
(low spatial decorrelation) and the double-/multiple-bounce effect typically produces a
high backscatter (low thermal decorrelation) [17]. Conversely, water surfaces show low co-
herence due to temporal decorrelation (signal scattered backward by Bragg waves generally
decorrelates within tens of milliseconds) and low backscattering (unless wind roughens
the water surface) [18].

Studies making use of the data provided by very high-resolution instruments such as
COSMO-SkyMed (CSK) [12,14] and TerraSAR-X (TSX) [19] showed that SAR interferometry
has potential to detect UFAs by searching for decreases in InSAR coherence (γ) due to
temporal decorrelation. The detection of the decreases is performed by comparing the
coherence of a co-event pair (one image acquired before the flood and one image of the
flood) to that of a pre-event (or pre-flood) pair (two images acquired before the flood).
More recently, the suitability of an approach based on γ data for mapping UFAs has been
assessed for Sentinel-1 (S1) data too [2,20].

Even approaches based on analysis of the coherence may have limitations. Firstly,
the analysis should be preferably limited to interferometric pairs having short spatial
baselines (Bs) to minimize spatial decorrelation [21]. This requirement on Bs is fulfilled by
S1 thanks to its narrow orbit tube [17]. Moreover, it must be considered that γ is computed
over a moving window (generally a square window including several pixels) and that
pixels where γ fluctuates because of causes like the presence of vegetation or unpaved
roads inside the urban area may be included in the window. In these targets, changes in the
spatial arrangement of the scatterers can occur even under non-flooded conditions. These
changes may give rise to low values of coherence even for urban pixels of the pre-flood
pair; therefore, low decreases in the coherence and thus omission errors can take place.

The regular acquisitions of S1 data in the frame of the Copernicus program guarantee
a continuous operational service and allow users to analyze a long time series of data.
Through this analysis, pixels that, under standard conditions, are expected to have little
likelihood of decorrelation may be identified. To be more confident that γ decreases are
produced by nothing but the presence of floodwater, attention can be restricted to this
kind of pixels, known as persistent scatterers (PSs) [22]. PSs are targets characterized by
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high backscatter combined with high temporal stability. They can be artificial or even
natural elements present on the terrain whose electromagnetic features (e.g., complex
radar reflectivity) do not vary significantly in time. Examples of PSs are buildings, metal
structures, and exposed rocks; therefore, it is likely to find a large density of PSs in urban
areas. PSs are basically insensitive to the effects of temporal (and thermal) decorrelation,
thus generally preserving the phase information in time.

Even focusing on coherence in PSs can have limitations for flood mapping in built-
up areas. Coherence accounts not only for the difference between the phases of the
master and the slave images (i.e., the phase of the interferogram from which γ is derived),
but also for the magnitude of the reflectivity of the pixels in the two images. For some
PSs, this magnitude can be so high that it tends to be dominant in the calculation of γ,
while the phase of the other pixels included in the window over which γ is computed has
limited influence [23]. In this case, phase variations due to the presence of floodwater in
the window may not produce a significant decrease in γ; this can lead to omission errors.
In [23], the use of interferometric phase statistics instead of coherence has been proposed
to reduce these errors.

The idea underpinning the present study is based on the consideration that the
PS interferometry technique is well-established and commonly used to monitor surface
displacements (e.g., [24]). It can be therefore expected that, in the near future, updated
maps of PSs will be available for many urban areas in the world, thanks to the availability
of Information and Communication Technology (ICT) for big data management and high-
performance computing. These maps could be complemented by metadata containing,
for each PS, reference data for γ and for the interferometric phase. Moreover, updated
inundation maps in rural areas at a global scale will soon be available thanks to one of the
automatic flood detection algorithms available in the literature (e.g., [4]). Hence, in the case
of detection of a flooded rural/suburban area surrounding an urban one, it will likely be
possible to quickly verify the occurrence of significant anomalies, with respect to reference
values, of the coherence and/or the interferometric phase in some PSs. If many PSs can be
identified in an urban area, they may represent a sample of where floodwater is present in
the urban area. The flood map could therefore be complemented by a map of flooded PSs.

This paper investigates the feasibility of the approach described above and presents a
new way to tackle the problem of the detection of floodwater in urban settlements using
SAR data based on the identification of flooded PSs. The identification is carried out
through a joint analysis of interferometric coherence and phase statistics, namely the spatial
average of the exponential of the interferometric phase, over the PSs. For this purpose,
a long time series (from June 2017 to July 2020) of IWS S1 data over the town of Beletweyne
(Somalia) has been processed and analyzed. Beletweyne is an area that is recurrently
affected by floods; during the period June 2017–July 2020, three big floods took place in
April–May 2018, October–November 2019, and April–May 2020. Beletweyne represents
a test site suitable to accomplish this study because, for the events listed before, maps
showing flooding severity in the different districts of the town have been made available
by the United Nations Institute for Training and Research (UNITAR) under the United
Nations Operational Satellite Applications Programme (UNOSAT) (https://unitar.org/
maps/all-maps). One of these maps has been used for calibration purposes, while the
other maps have been used for validation purposes.

It is worth pointing out that, to the best of our knowledge, the use of the PS technique
for a systematic monitoring of floods in an urban settlement was never investigated in the
past. Moreover, in view of a possible operational use of InSAR data for the purpose of flood
mapping in urban settlements, this study reliably evaluates commission errors by applying
the proposed method to a stack of data acquired not only under flooded conditions, but
also under non-flooded ones. Conversely, most of the previous studies making use of the
coherence dealt only with the capability of InSAR data to detect the presence of floodwater.

Section 2 synthetically describes the available dataset and the processing carried out to
identify the PSs. Then, it presents the method designed to detect flooded PSs and explains
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its rationale. Section 3 presents the flood maps obtained by applying the proposed method.
Section 4 analyzes the results and Section 5 draws the main conclusions.

2. Materials and Methods
2.1. Study Area and Test Cases

Beletweyne is a city in central Somalia placed in the Shabelle Valley near the Ethiopia
border. It is the capital of the Hiiraan province, and its population exceeds 400,000 people.
Figure 1 shows the geographic location of Beletweyne together with the main areas (dis-
tricts) of the town. The map of the districts has been derived from one of the maps made
available by UNOSAT.
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Beletweyne is crossed by the Shabelle River that, in recent years, frequently broke
its banks, causing severe floods. Most of them were caused by the Gu rains, which are
monsoon-like rainfall events that usually take place in late March–April and last until June.
A second flood season is known as the Dayr rains and occurs in October–November.

The flood that hit Beletweyne in April–May 2018 was caused by heavy Gu rains.
Reportedly, more than 120,000 people were displaced from Beletweyne town and sur-
rounding riverine villages. Floodwater inundated houses and crops and affected many
infrastructures. The flood that occurred in October–November 2019 was caused by the
increase in the level of the Shabelle River after the onset, in early October, of the Dayr rains.
An estimated number of 72,000 people from Beletweyne were moved to higher ground
in surrounding areas. The flood that took place in April–May 2020 was again due to the
Gu rains that significantly increased their intensity in the last week of April. This increase
caused a sharp rise in the level of the Shabelle river. Reportedly, more than 115,000 people
were displaced from Beletweyne.

2.2. Initial Processing of the Data

The initial processing of the data aimed at generating the following data: (A) pre-
liminary flood maps based on a standard algorithm exploiting the S1 intensity data
only [4]; (B) PSs in the Beleteweyne area; (C) InSAR coherence and spatial average of
the exponential of the interferometric phase; (D) reference maps derived from the shape-
files produced by UNOSAT. The production of the aforementioned data is described in the
following subsections.

2.2.1. SAR Data

S1 Level-1 Single Look Complex (SLC) products acquired in Interferometric Wide
Swath (IWS) mode have been used to carry out this study. In general, S1 observations of
Beletweyne are available every 12 days from the Sentinel-1A platform (S1A); 81 images,
acquired by S1A between the beginning of June 2017 and the beginning of July 2020,
have been gathered (relative orbit 35) and the acquisition days are listed in Table 1. Only
co-polarized data (VV polarization) have been considered in this study.

Table 1. Acquisition days of the Sentinel-1 data. Italic font: images used for calibration; bold font: images used to produce
flood maps in rural/suburban areas; underlined font: images excluded from the persistent scatterers (PSs) identification;
blue text: master image for the PSs identification.

06/06/2017 18/06/2017 30/06/2017 12/07/2017 24/07/2017 05/08/2017 17/08/2017 29/08/2017 10/09/2017
22/09/2017 04/10/2017 16/10/2017 28/10/2017 09/11/2017 21/11/2017 03/12/2017 15/12/2017 27/12/2017
08/01/2018 20/01/2018 01/02/2018 13/02/2018 25/02/2018 09/03/2018 21/03/2018 02/04/2018 14/04/2018
26/04/2018 08/05/2018 20/05/2018 01/06/2018 13/06/2018 25/06/2018 07/07/2018 19/07/2018 31/07/2018
12/08/2018 24/08/2018 05/09/2018 17/09/2018 29/09/2018 11/10/2018 23/10/2018 04/11/2018 16/11/2018
28/11/2018 22/12/2018 03/01/2019 27/01/2019 08/02/2019 20/02/2019 04/03/2019 16/03/2019 28/03/2019

09/04/2019 27/05/2019 08/06/2019 20/06/2019 02/07/2019 14/07/2019 26/07/2019 07/08/2019 19/08/2019
31/08/2019 12/09/2019 24/09/2019 06/10/2019 30/10/2019 11/11/2019 23/11/2019 03/02/2020 15/02/2020
22/03/2020 03/04/2020 27/04/2020 09/05/2020 21/05/2020 02/06/2020 14/06/2020 26/06/2020 07/07/2020

2.2.2. Flood Maps in Rural/Suburban Areas

Flood maps in rural/suburban areas have been generated by applying, to the images
acquired on April 26th, 2018, May 8th, 2018, October 30th, 2019, and May 21st, 2020
(bold font in Table 1), the algorithm proposed in [4], which works on SAR intensity
data (backscattering). A smooth water surface reflects incident radiation mainly in the
specular direction (low radar return), while rougher surfaces have a more diffuse scattering
pattern [25]. Considering that in a scene observed by SAR, not only calm water but
also other surfaces like asphalt are smooth, the algorithm developed in [4] searches for
areas where the backscattering is low and decreases with respect to the backscattering
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of a pre-flood image, thus performing a change detection approach. These areas are
detected through a parametric thresholding of the flood image and of the difference image
(difference between flood and pre-flood backscattering values in dB units). Readers are
referred to [4] for more details about the algorithm.

To generate the difference images, even the S1 data acquired on 14 April, 2018, 6 Oc-
tober, 2019, and 9 May, 2020 (i.e., the closest in time to the flood images listed above)
have been processed. The SARscape COTS software package has been used to calibrate,
multilook, and geocode the SLC images. A multilooking factor of 4 (range) × 1 (azimuth)
has been applied, obtaining a pixel size of 15 × 15 m2. The freely available Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model (DEM) at 1 arcsec resolution (SRTM1),
resampled at 15 × 15 m2, has been used to geocode (Lat/Lon projection, datum WGS84)
the SAR images. As an example, in Figure 2, the areas classified as flooded on 26 April,
2018 are indicated in blue color. As expected, an intensity-based flood detection algorithm
searching for areas of low backscatter in SAR images hardly detects floodwater in the urban
settlements. Hence, the idea is to complement the intensity-based flood maps with a map
of flooded PSs.
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Figure 2. Rural/suburban areas classified as flooded on 26 April, 2018 by the algorithm developed
in [4] (blue) and persistent scatterers (red dots) identified in the Beletweyne area. The boundaries of
the districts shown in Figure 1 are highlighted in black.

2.2.3. Identification of the PSs

A spatial subset has been initially created in order to reduce the image extent to the
area of interest (AOI: Beletweyne town, in this case), thus speeding up the processing
time. To extract the PSs, the S1 data acquired from June 2017 to December 2018 have been
selected (italic font in Table 1), except those acquired in April–May 2018 and on 1 June,
2018 (6 images, underlined font in Table 1) in order to exclude from the processing stack the
images acquired when, reportedly, floodwater was present in Beletweyne. The rationale
is that phase fluctuations due to the presence of floodwater have an impact on the PSs
identification, which has therefore been performed using 41 images (the total number of
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images of Beletweyne acquired by S1A in orbit 35 during the period June 2017–December
2018 is 47).

The PS module available from SARscape [26], based on [22], has been used to identify
the PSs. Firstly, all the images (slaves) have been co-registered onto a selected master
image. Among the stack of 41 images used by the PS tool, the 21st one has been selected
as the master. Then, interferograms have been generated for each slave image using the
master one. The spatial and temporal baselines of the interferograms are shown in Figure 3.
To perform interferogram flattening, the SRTM1 DEM previously introduced has been used.
Successively, the amplitude dispersion index D, defined as the ratio between the temporal
standard deviation of the backscattered radar signal amplitude for the single pixel and the
temporal mean [22], has been computed. A first selection of the PSs has been performed
based on the D value, considering that a pixel that constantly has a similar, relatively large
amplitude during all acquisitions is expected to have a small phase dispersion; therefore,
D is a proxy of the phase stability. Pixels with small D (a threshold of 0.25 was proposed
in [22]) are therefore expected to have a small phase standard deviation.
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Figure 3. Perpendicular baseline of the interferometric pairs used to identify the PSs versus the
acquisition dates of the 41 S1 images of the stack. The yellow diamond indicates the master image;
the green diamonds indicate the slaves. The numbers represent an index identifying each image of
the stack.

Atmospheric artifacts (commonly known as atmospheric phase screen) have been
removed using spatially low-pass and temporally high-pass filters, because the atmospheric
component has high spatial correlation and low temporal correlation [27]. The final
identification of the PSs has been performed based on a temporal analysis of their phase
values, by searching for pixels having a stable temporal behavior of the phase.

Even the PSs product has been geocoded (Lat/Lon projection, datum WGS84, pixel
size of 15 × 15 m2) by using the SRTM1 DEM. In Figure 2, the red dots indicate location
of the PS identified by the processing described above. The PSs placed outside the AOIs
shown in Figure 1 will not be considered in the following analysis.

2.2.4. Interferometric Products

Besides the interferograms used to identify the PSs, other interferograms have been
generated from the same stack of 47 S1 SLC data acquired throughout the period June 2017–
December 2018. In particular, 46 interferometric pairs have been derived; by denoting as
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t1,t2,...,t47 the acquisition times of the S1 images, pairs have been formed by images acquired
at ti and ti+1 (i = 1:46), i.e., at consecutive times. From the interferograms, the coherence
has been firstly derived; it can be expressed as:

γ =
|〈s1(x)s∗2(x)〉|√
〈|s1(x)|2〉·〈|s2(x)|2〉

=

∣∣∣ 1
N ∑xεW s1(x)s∗2(x)

∣∣∣√
1
N ∑xεW |s1(x)|2· 1

N ∑xεW |s2(x)|2
(1)

where < > indicates the expected value, s1 and s2 are two co-registered complex SAR
images, x represents a generic pixel, W is the mobile window over which γ is computed,
and N indicates the size of the window in number of pixels. In Equation (1), expected
values are implemented by computing spatial averages.

A complex SAR image has module and phase components:

s(x) = ρ(x)e−2jβR(x)−jϕ(x) (2)

where ρ(x) and ϕ(x) represent the module and the phase of the reflectivity of pixel x, β is
the phase constant, and R(x) is the sensor–pixel distance (i.e., the range). Then:

γ =

∣∣∣ 1
N ∑xεW ρ1(x)ρ2(x)e−j∆ϕ(x))

∣∣∣√
1
N ∑xεW ρ1(x)2 × 1

N ∑xεW ρ1(x)2
(3)

where no variation of R(x) between the InSAR acquisitions has been assumed (i.e., no
surface displacements) and ∆ϕ = ϕ1 − ϕ2. To take into account, besides γ, a quantity
depending only on ∆ϕ and not on the modules, the magnitude of the average over W of
the interferometric phase, introduced in [23], has been computed too:

ζ =

∣∣∣∣∣ 1
N ∑

xεW
e−j∆ϕ(x)

∣∣∣∣∣ (4)

Hereafter, ζ will be denoted as the spatial average of the exponential of the interfero-
metric phase (although, more rigorously, it is the magnitude of the spatial average).

A factor of 4 (range) × 1 (azimuth) looks has again been applied to generate multi-
looked interferograms. A square window of 5 × 5 pixels has been used to derive the γ
and ζ maps from the flattened interferograms. All the maps have firstly been co-registered
onto the geometry of the (4 × 1) multilooked master image selected to perform the PSs
identification and successively geocoded using the SRTM1 DEM resampled at 15 m.

2.2.5. Reference Data

Flood maps made available by UNOSAT have been used as reference data for both
calibration and validation of the proposed procedure. These maps, in shapefile format,
provide information about two different classes of severity of flooding: totally flooded
and partially flooded. The areas of partially flooded districts present affected roads and
buildings but are not totally submerged by water like districts classified as totally flooded.
The shapefiles have been rasterized taking as reference the geocoded maps generated
as described in the previous sections. For the event that occurred in April–May 2018,
the reference map has been derived by rasterizing the shapefile available from https:
//unitar.org/maps/map/2806, considering only the Beletweyne urban area. It has been
produced by UNOSAT from the analysis of a GeoEye-1 very-high-resolution (VHR) optical
image acquired on 30 April, 2018.

For the floods that took place in October–November 2019 and April–May 2020,
the same procedure (i.e., rasterization of a shapefile) has been carried out to produce
the reference maps. For the former event, the shapefile has been downloaded from
https://unitar.org/maps/map/2972, while for the event that occurred in April–May 2020,

https://unitar.org/maps/map/2806
https://unitar.org/maps/map/2806
https://unitar.org/maps/map/2972
https://unitar.org/maps/map/2972
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the shapefile has been downloaded from https://unitar.org/maps/map/3054. They have
been generated by analyzing a VHR WorldView-1 image acquired on 1 November, 2019 and
a VHR Worldview-2 image acquired on 13 May, 2020, respectively. Note that the shapefiles
were produced using the first clear sky image available to map the flood. Hence, they do
not correspond to the situation of maximum flooded area. The result of the rasterization of
the shapefile produced for the event that occurred in 2018 (i.e., that used for calibration
purposes) is shown in Figure 4.

Remote Sens. 2020, 17, x FOR PEER REVIEW 10 of 21 
 

10 
 

 
Figure 4. Reference map derived from the shapefile made available by UNOSAT to provide infor-
mation about the flood that occurred in Beletweyne in April–May 2018. The boundaries of the 
districts shown in Figure 1 are highlighted in black. 

2.3. Temporal Trends of the Interferometric Data 
Figures 5 and 6 show, for the calibration data acquired in 2017–2018, the temporal 

trends of the mean values of γ and ζ, respectively. They have been produced by compu-
ting, for each map of γ and ζ, the mean values of these quantities (denoted as �̅� and 𝜁)̅ 
over the AOIs shown in Figure 1 (upper panels) and only over the PSs included in the 
AOIs (lower panels). The AOIs with a small density of PSs have been discarded. 

Figure 4. Reference map derived from the shapefile made available by UNOSAT to provide informa-
tion about the flood that occurred in Beletweyne in April–May 2018. The boundaries of the districts
shown in Figure 1 are highlighted in black.

2.3. Temporal Trends of the Interferometric Data

Figures 5 and 6 show, for the calibration data acquired in 2017–2018, the temporal
trends of the mean values of γ and ζ, respectively. They have been produced by computing,
for each map of γ and ζ, the mean values of these quantities (denoted as γ and ζ) over the
AOIs shown in Figure 1 (upper panels) and only over the PSs included in the AOIs (lower
panels). The AOIs with a small density of PSs have been discarded.

https://unitar.org/maps/map/3054
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The decrease in γ and ζ in April–May 2018 can be noted for several districts of
Beletweyne town. This decrease is better detected in the lower panels (i.e., considering only
the PSs), for which the trends of γ and ζ are quite stable for the other InSAR pairs. Con-
versely, larger fluctuations occur considering all the pixels included in the urban AOIs. As
discussed in the introduction, these fluctuations can produce errors if, to detect floodwater,
γ decreases are searched for, as commonly performed in the literature. This could represent
a criticality in view of an operational use of the coherence for urban flood mapping.

As expected, since mean values are considered in Figures 5 and 6, the trends of γ
and ζ are quite similar. More differences between these two quantities will emerge in the
following analysis.

2.4. Detection of Flooded PSs Based on Coherence and Spatial Average of the Interferometric Phase

A method for identifying flooded PSs has been developed based on the outcomes of
the previous section. As mentioned in the introduction, the goal is to detect anomalous
values of γ and ζ. For this purpose, reference values (γre f and ζre f ) have been determined
for each PS by computing the average over time of the values of γ and ζ. The interferometric
pairs used to generate Figures 5 and 6 (except those derived from the images acquired in
April–May 2018 and on 1 June, 2018) have been considered to perform this calculation.
Then, we have defined the anomalies of γ and ζ as:

γanom(x, i) = γre f (x)− γ(x, i) (5)

ζanom(x, i) = ζre f (x)− ζ(x, i) (6)

where x represents a PS in this case and i denotes an interferometric pair.
To calibrate the new method for detecting flooded PSs, the quantities defined by

Equations (5) and (6) have been derived for the following interferometric pairs acquired
under non-flooded and flooded conditions: 9 March–21 March, 2018, (non-flooded) and
26 April–8 May, 2018 (flooded). The last pair of images has been chosen considering that,
for most of the districts, γ and ζ have a minimum just in correspondence to this pair
(see Figures 5 and 6). For the Kutimbo district, the minimum of γ and ζ is reached for
the pair 14 April–26 April, 2018. Therefore, for the PSs included in this AOI, the values of
γanom and ζanom for flooded conditions have been extracted from the latter pair. Among
the pairs acquired under non-flooded conditions belonging to the calibration stack, the
pair 9 March–21 March is the closest in time to the pairs acquired under flooded conditions.
Figure 7 shows the statistical distribution of the values of γanom and ζanom in the PSs, as well
as the scatterplot of γanom versus ζanom. Only the AOIs classified as totally flooded by
UNOSAT (see Figure 4) have been considered to generate this figure.

Looking at the upper and central panels of Figure 7, good discrimination between the
blue (non-flooded) and red (flooded) histograms can be noted, especially concerning ζanom.
To quantify the discrimination capability, the parametric separability index (S), used for
instance in [28], has been used here too:

S =

∣∣∣µnon− f looded − µ f looded

∣∣∣
σnon− f looded + σf looded

(7)

where µnon− f looded and µ f looded are the mean values of the samples belonging to the classes
of non-flooded and flooded PSs, respectively, and σnon− f looded and σf looded are the corre-
sponding standard deviations. The separability between two classes is generally considered
good if S > 1 and the higher the S, the higher the separability [29]. The following S values
have been obtained: 1.35 for γanom and 1.47 for ζanom. Moreover, only 33 out of 5741 PSs
classified as totally flooded in the reference data have ζanom < 0, whereas positive values
are expected; this number increases up to 118 for γanom. Hence, an improvement of the
discrimination of the flooded PSs can be achieved also considering ζ.
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Figure 7. Statistical distribution of the values of γanom (upper panel) and ζanom (central panel) in
the PSs and scatterplot of γanom versus ζanom (lower panel). Blue lines and dots: data derived from
the pair of images acquired on 9 March and 21 March under non-flooded conditions; red lines
and dots: data derived from the pair of images acquired on 26 April–8 May, 2018 under flooded
conditions (except for the PSs included in the Kutimbo district whose data were derived from the
pair 14 April–26 April, 2018).

From the lower panel of Figure 7, it can be deduced that the populations of flooded
and non-flooded PSs form two different clusters. In particular, by applying a test-and-trial
method, it has been found that the line that separates the clusters of red dots and blue
dots (dashed line in the lower panel of Figure 7), i.e., that contemporary maximizes the
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number of blue dots below the line and the number of the red dots above the line, has the
following equation:

ζanom(x, i) = −0.84 · γanom(x, i) + 0.27 (8)

Some blue dots above the line defined by Equation (8) are visible in the lower panel of
Figure 7; they correspond to non-flooded PSs misclassified as flooded ones. To decrease
the risk of making commission errors, flooded PSs identified through Equation (8) have
been intersected with those identified by applying thresholds on γanom and ζanom. For this
purpose, the 95th percentile of their distribution for the pair 9 March–21 March, 2018 (blue
lines in the upper and central panels of Figure 7) has been computed, thus deriving the
following combination of inequalities:

ζanom(x, i) > 0.25 OR γanom(x, i) > 0.20 (9)

Flooded PSs have been identified through a logical AND of Equations (8) and (9):

[ζanom(x, i) > −0.84 · γanom(x) + 0.27] AND [ζanom(x, i) > 0.25 OR γanom(x, i) > 0.20] (10)

2.5. Validation

To validate the methodology described in the previous section, the reference maps
derived from the shapefiles produced by UNOSAT for the floods that affected Beletweyne
in October–November 2019 and April–May 2020 have mainly been used. They have been
compared to the maps of flooded PSs obtained for the pairs 6 October–30 October, 2019
and 9 May–21 May, 2020. For the AOIs classified as partially flooded by UNOSAT, it was
not possible to distinguish flooded pixels from non-flooded ones. Moreover, the class of
non-flooded pixels is not included in the UNOSAT data. Consequently, we have been able
to compute only the omission error (εom) for the flooded PSs, corresponding to the PSs
included in the AOIs labelled as totally flooded by UNOSAT that have been classified as
non-flooded by our method.

As discussed in the introduction, in view of an operational use of the InSAR data for
detecting UFAs, it is important to evaluate not only εom, but also the commission error
(εcomm). For this purpose, a map of flooded PSs has been produced not only for the two
InSAR pairs mentioned above, but also for the pairs of images acquired at consecutive
times in the validation period January 2019–7 July, 2020 (normal font in Table 1), that is at ti
and ti+1 (i = 48:80, 33 interferometric pairs). The percentage of PSs labelled as flooded with
respect to the total number of PSs has been calculated to determine εcomm considering only
the period when no floods were reported (the pairs acquired in October–November 2019
and April–May 2020 have therefore been excluded). Moreover, to avoid working with long
temporal baselines, even the pairs acquired on 9 April–27 May, 2019, 23 November, 2019–3
February, 2020, and 15 February, 2020–22 March, 2020 have been discarded.

To further consolidate the validation by comparing the maps produced by applying
Equation (10) to the UNOSAT-derived ones, a simple way to label the AOIs has been
designed. An AOI included in the validation maps has been classified as non-flooded,
partially flooded, or totally flooded based on the percentage of the PSs classified as flooded
with respect to the total number of PSs identified in each AOI (PSperc). The following
thresholds have been used:

(1) PSperc < 25%: non-flooded;
(2) PSperc ≥ 25% AND PSperc ≤ 75%: partially flooded;
(3) PSperc > 75%: totally flooded.

For the two events considered for validation, an AOI-based confusion matrix has been
calculated, by comparing, for each AOI in the reference maps, the UNOSAT-derived classi-
fication with that produced by applying the thresholds on PSperc listed above. The AOIs
including few PSs (less than 5% of the total number of pixels) have not been classified
except for the “Unknown” district (dark gray in Figure 1), which is basically a rural area.
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The latter has been classified based on the percentage of open water pixels with respect to
the total number of bare soil pixels.

3. Results

Figure 8 presents the maps of flooded areas derived by combining the maps of flooded
PSs with the maps of flooded rural/suburban areas. The former has been produced by
applying Equation (10) to the pairs 6 October–30 October 2019 and 9 May–21 May 2020.
The latter has been generated by applying, to the images acquired on 30 October 2019
and 21 May 2020 (see Section 2.2.2), the algorithm designed in [4]. These combined maps
represent an example of what can be derived from the procedure proposed in this study.
The following values of εom have been obtained: 18% for 6 October–30 October, 2019 and
17% for 9 May–21 May 2020.
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Figure 9 shows a visual comparison between reference maps and PSperc-derived ones,
while the AOI-based confusion matrices are reported in Tables 2 and 3, which also report
the values of the overall accuracy (OA) and the kappa coefficient (κ). Looking at the right
panels of Figure 9, it can be noted that none of the AOIs have been classified as non-flooded
by our method, while some small AOIs have not been classified in the PSperc-derived
maps because of the low percentage of PSs (less than 5%).

Concerning the commission error, its value is shown in Figure 10 (blue line) for the
pairs included in the validation period (except those acquired in October–November 2019
and April–May 2020). For most of the pairs, εcomm is less than 10% and never exceeds 15%
(maximum value 13.1%).
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Table 2. Results of the comparison between UNOSAT-derived maps and PS-derived maps for the
flood that occurred in October November 2019. OA: overall accuracy. Columns represent classes in
the reference maps.

October–November 2019 Totally Flooded Partially Flooded Total OA κ

Totally flooded 11 3 14
84.2 0.66Partially flooded 0 5 5

Total 11 8 19

Table 3. Same as Table 2, but for the flood that occurred in April–May 2020.

April–May 2020 Totally Flooded Partially Flooded Total OA κ

Totally flooded 7 1 8
82.4 0.65Partially flooded 2 7 9

Total 9 8 17
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4. Discussion

This paper proposes a method for tackling the problem of UFAs mapping based on
the assumption that maps of PSs complemented by metadata derived from InSAR products
are available.

S1 allows for a continuous streaming of SAR-derived added value products; since
SAR intensity-based algorithms are presently mature for an operational application, one
of the first products that is expected to be available at a global scale is represented by
frequently updated maps of rural/suburban flooded areas. Considering also that PSs
will be used in the future to provide an operational monitoring of surface displacement
phenomena (an example is the new European Ground Motion Service recently presented
in the framework of the Copernicus Land Monitoring Service: https://land.copernicus.eu/
user-corner/technical-library/european-ground-motion-service), another product whose
availability might be expected in the future is a global map of S1-derived PSs. If these
two products are available, once a rural/suburban area surrounding an urban settlement
is labelled as flooded, it can be soon verified whether an anomalous behavior of γ and ζ
occurs in the settlement.

With respect to previous papers dealing with the same topic [2,12,14,20], here a joint
use of phase statistics and coherence data is carried out. The use of phase statistics has been
previously suggested in [23], but instead of the coherence, not jointly. As expected, γ and ζ

https://land.copernicus.eu/user-corner/technical-library/european-ground-motion-service
https://land.copernicus.eu/user-corner/technical-library/european-ground-motion-service
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are quite correlated (see the right panel of Figure 7); nonetheless, pixels whose backscatter-
ing is so high and stable even under flooded conditions that γ does not show significant
changes can be detected by accounting for ζ. It has been found that, for the October–
November 2019 event, more than 12% of flooded PSs has ζanom > 0.25 and γanom < 0.20;
they would have likely been classified as non-flooded by considering only coherence.
Almost half of them have a high intensity (>2 dB) in the post event image (30 October 2019).
Similar percentages (slightly smaller) have been obtained by considering the April–May
2010 event.

The advantage of focusing on the PSs identified by processing a stack of SAR data is
that the analysis is based only on pixels that are not affected by variations of the coherence
due to, for instance, the presence of vegetation inside the urban settlement. Considering
that in the upper panels of Figures 5 and 6, average values of γ and ζ are shown, even
larger fluctuations of these quantities can be expected in some urban pixels not identified
as PSs; this may affect the reliability of the detection of the possible presence of floodwater.
By simply applying a threshold (0.2) on the difference between γ pre-event and γ co-event
considering all the pixels included in the urban AOIs (not only the PSs), as commonly
done when searching for UFAs using SAR data, omission errors larger than 30% have been
obtained for both the test cases considered for validation. It has been found that most of
these errors have been caused by pixels having low coherence in the pre-flood pairs. Note
that even for this exercise, only the AOIs labelled by UNOSAT as totally flooded have
been considered.

By comparing the maps shown in the left and right columns of Figure 9, fairly good
agreement emerges between the reference maps and PSperc-derived ones. This agreement
is confirmed by the values of OA (larger than 82%) and κ (~0.65) reported in Tables 2 and 3.
It must be considered that the different acquisitions times of the images used by UNOSAT
and the S1 ones might have an impact on the results. In this case, the temporal scales of
flood progression and recession were quite slow because the floods lasted several weeks.
Hence, the impact on the results is limited. Note that similar results in terms of OA and κ,
as well as εom have been obtained for the October–November 2019 flood and the April–May
2020 flood, even though for the former case study, the difference between acquisition times
of reference and S1 data was only one day, while for the other test case, it was 8 days.

Equation (10) is a combination, through a logical AND, of Equations (8) and (9).
The omission error obtained by applying Equation (10) is around 17–18%; εom is due
to point targets whose reflectivity is not very influenced by the presence of floodwater.
Therefore, the anomalies of γ and ζ are not high enough to be above the thresholds used in
Equation (10), or to produce a point in the scatterplot of ζanom versus γanom that is above
the line defined by Equation (8). Note that by using only the thresholds, i.e., Equation (9),
the reduction in εom is not very significant (from 18% to 17% for the event that occurred in
2019 and from 17% to 16% for the event that occurred in 2020). A slightly larger reduction
has been achieved by using only the classification based on Equation (8); in this case, values
of εom equal to 14% (October 2019) and 13% (May 2020) have been obtained. However, the
reduction in εom is compensated by an increase in εcomm. Looking at Figure 10, it can be
noted that quite large increases in this error have been obtained by using only Equation (8)
or only Equation (9). In the literature, even better results have been reported (e.g., in [20]),
but this was by either analyzing small AOIs within an urban area and/or also including
rural/suburban areas in the evaluation of the performances.

Previous papers dealing with the detection of UFAs using coherence analyzed few
interferometric pairs, typically 1–2 pre-event pairs (except [20], where 9 pre-event pairs
were used), a co-event pair, and possibly a post event pair. In this study, considering only
the validation set, 30 pairs have been processed. In this way, a continuous monitoring and
mapping of the flood situation in Beletweyne throughout 2019–2020 has been provided as
an example of the potentiality of the proposed method in view of an operational application.
Moreover, commission errors have been reliably evaluated. It is understood that the
analysis of data related to the flood phenomenon should be based on multi-annual data.
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From this point of view, the research period is quite short. However, S1 observations
of Beletweyne are available only since 2015. In the period 2015–2020, reference data are
available only for the three floods considered in this work. Hence, even enlarging the stack
of S1 images, it would not have been possible to take into account other flood events to
calibrate/validate the method.

As for the limitations of the proposed method, the first one is the necessity to have a
dense grid of PSs to achieve a reliable evaluation of where UFAs are present. This problem
could be overcome by complementing the PSs map with a map of the buildings, as proposed
in [2], although a tool for building detection such as that developed in [2] would be
needed in this case. In addition, since PSs maps are currently unavailable at a global scale,
an amount of work to gather a stack of S1 data and extract the PSs in the built-up area
has been performed. Such an effort is worthwhile only for urban areas prone to recurrent
flooding, such as Beletweyne.

The use of fixed thresholds for γanom and ζanom might represent another critical point,
although the identification of flooded PSs is not based only on these thresholds. The values
chosen in this study have been derived from the analysis of the distributions of the values
of γanom and ζanom. The use of the 95th percentile of the distributions obtained considering
InSAR pairs acquired under non-flooded conditions allowed us to achieve a good com-
promise between omission and commission errors. Note that by increasing the thresholds
used in Equation (10) to 0.30 and 0.25 for γanom and ζanom, respectively, the AOI-based
OA reduces to 0.76 (2019) and 0.73 (2020), while obviously the omission error increases,
reaching values of about 25% for both events. Conversely, by decreasing the thresholds to
0.20 and 0.15 for γanom and ζanom, respectively, the AOI-based OA reduces to 0.70 (2019)
and 0.73 (2020), even though εom decreases as expected.

This paper proposes a general procedure to detect flooded PSs, which consists of the
identification of the PSs and the analysis of two maps of γanom and two maps of ζanom :
a group of two maps derived from a pre-event pair and the other group with γanom and
ζanom derived from a co-event pair. The availability of reliable information about flood
extent is fundamental for an accurate determination of the thresholds and of the line
separating the two clusters shown in the lower panel of Figure 7. Only in urban areas prone
to recurrent flooding a similar training set is expected to be available at present. On the
other hand, the fact that by performing the calibration using a stack of data acquired in
2017–2018, good results have been obtained even using SAR observations performed three
years later (2020), this might be considered an indication that Equation (10) can be applied
even for other urban areas obtaining fairly good results.

5. Conclusions

The analysis of a time series of Sentinel-1 InSAR data has led to the proposal of a new
method to monitor the presence of floodwater in flood-prone urban areas. The method
takes advantage of the pre-programmed operation mode of Sentinel-1 which continuously
provides consistent data acquired in Interferometric Wide Swath mode and allows users
to generate a long-term archive of interferograms. The method assumes the availability
of a map of PSs and requires a calibration step in which, for each PS, a reference value of
the coherence and the spatial average of the exponential of the phase must be computed.
Once this training phase has been accomplished, as soon as new S1 data are available, it is
possible to quickly verify whether one or more clusters of PSs show an anomalous decrease
in the coherence and/or the spatial average of the exponential of the phase. The com-
parison between the maps of flooded PSs generated by applying the proposed method
and reference maps produced by UNOSAT by analyzing VHR optical images provided
promising results in terms of omission error and commission error. The latter has been
evaluated by considering a stack of Sentinel-1 data acquired under non-flooded conditions.

With respect to the use of an approach based on coherence change detection consider-
ing a whole urban area, by focusing on the PSs, the errors due to variations of the coherence
caused, for instance, by the presence of unpaved roads among the buildings or vegetation



Remote Sens. 2021, 13, 37 19 of 20

inside the urban settlement can be limited. Since, in some PSs, the coherence may remain
high even in the presence of floodwater in the spatial window considered to compute it,
adding the spatial average of the exponential of the interferometric phase has allowed us
to reduce the omission error, without an excessive increase in the commission error.

Although focusing on the PSs, a smaller number of urban pixels are monitored, they
can be considered a sparse grid of measurements giving an indication of the zones of an
urban settlement where floodwater is present. From this point of view, the larger the PS
density, the higher the reliability of the flood mapping.

This study has been intended to open the way for a new urban flood monitoring
system consisting of the systematic processing of Sentinel-1 data based on the PS multipass
approach, while, at present, only the routine elaboration of intensity data is carried out for
operational flood mapping service in rural/suburban areas. Considering that, at present,
an amount of work is required to gather a stack of Sentinel-1 data to identify the PSs (while
the availability of PSs maps can be expected in the future) and determine the reference
values for each PS, i.e., to perform the calibration, it is currently worthwhile to apply the
proposed method to flood-prone urban areas like Beletweyne.

To consolidate the proposed methodology, a more comprehensive investigation con-
sidering a longer research period will be carried out in the future in order to overcome the
time limitations of the data used in this study. In addition, the method will be tested on
other flood-prone urban areas to further verify its performances.
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