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Abstract: The spatiotemporal variability of phytoplankton biomass has been widely studied because
of its importance in biogeochemical cycles. Chlorophyll a (Chl-a)—an essential pigment present in
photoautotrophic organisms—is widely used as an indicator for oceanic phytoplankton biomass
because it could be easily measured with calibrated optical sensors. However, the intracellular Chl-a
content varies with light, nutrient levels, and temperature and could misrepresent phytoplankton
biomass. In this study, we estimated the concentration of phytoplankton carbon—a more suitable
indicator for phytoplankton biomass—using a regionally adjusted bio-optical algorithm with satellite
data in the South China Sea (SCS). Phytoplankton carbon and the carbon-to-Chl-a ratio (θ) exhibited
considerable variability spatially and seasonally. Generally, phytoplankton carbon in the northern
SCS was higher than that in the western and central parts. The regional monthly mean phytoplankton
carbon in the northern SCS showed a prominent peak during December and January. A similar
pattern was shown in the central part of SCS, but its peak was weaker. Besides the winter peak, the
western part of SCS had a secondary maximum of phytoplankton carbon during summer. θ exhibited
significant seasonal variability in the northern SCS, but a relatively weak seasonal change in the
western and central parts. θ had a peak in September and a trough in January in the northern
and central parts of SCS, whereas in the western SCS the minimum and maximum θ was found
in August and during October–April of the following year, respectively. Overall, θ ranged from
26.06 to 123.99 in the SCS, which implies that the carbon content could vary up to four times given
a specific Chl-a value. The variations in θ were found to be related to changing phytoplankton
community composition, as well as dynamic phytoplankton physiological activities in response to
environmental influences; which also exhibit much spatial differences in the SCS. Our results imply
that the spatiotemporal variability of θ should be considered, rather than simply used a single value
when converting Chl-a to phytoplankton carbon biomass in the SCS, especially, when verifying the
simulation results of biogeochemical models.

Keywords: chlorophyll a; phytoplankton carbon; carbon-to-chlorophyll a ratio; South China Sea;
satellite data

1. Introduction

Phytoplankton form the base of marine ecosystems. More than half of the primary
production on Earth occurs in the surface layer of the global ocean and involves photo-
synthetic fixation of carbon by phytoplankton [1,2]. These primary producers are also
fundamental players in marine biogeochemical cycles [3,4]. Phytoplankton biomass and
productivity show variations in timing and magnitude in different regions from processes
affecting their growth and demise—such as nutrient supply, incident solar irradiance, and
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predation pressure—that may vary with latitude, apart from regional and local oceano-
graphic conditions. Due to these important and complicated processes, it is important to
study the distribution of phytoplankton biomass with high spatial and temporal resolution.

The most widely used predictor for monitoring phytoplankton biomass is chlorophyll
a concentration (Chl-a), and it is still the most common measure of phytoplankton in
ecological studies. Chl-a can be estimated remotely using ocean color satellites [5], in situ
with fluorometers [6] or radiometers, or measured on discrete samples through high per-
formance liquid chromatography [7], fluorometric [8] or spectrophotometric methods [9].
Even though Chl-a is widely used as a proxy, the relationship between Chl-a and phy-
toplankton biomass is not straightforward. It has long been recognized that variability
in intracellular Chl-a content from light acclimation, nutrient stress, phytoplankton com-
munity structure, and other environmental stresses confounds the relationship between
chlorophyll and phytoplankton biomass [10–14].

Phytoplankton carbon—as an alternative index—might provide a more accurate distri-
bution of phytoplankton biomass and improve our ability to estimate primary productivity.
Much effort had been done to develop approaches to retrieve phytoplankton carbon from
optical measurements [15], including satellite ocean color observations [16]. Particulate
backscattering coefficients (bbp, m−1) in marine waters are shown to covary with suspended
particles [17] and can be obtained from satellite remote sensing [18]. bbp have been used to
estimate phytoplankton carbon in the open ocean (Behrenfeld et al. 2005; phytoplankton
carbon = 13,000 × (bbp − 0.00035), where the background value is 0.00035 m−1 and scale
factor is 13000 mg m−2). The contribution of nonalgal particles to the backscattering co-
efficient (bbpNAP) is a constant value of 0.00035 m−1 in this estimate [16]. The underlying
assumption is that bbpNAP represents the stable heterotrophic and detrital components of the
surface population and is therefore not dependent on phytoplankton dynamics. However,
Siokou-Frangou et al. (2010) [19] showed that the heterotrophic and detrital components
of the surface particle population in the Mediterranean Sea are neither negligible [20] nor
stable, but highly dynamic in both space and time. In addition, Bellacicco et al. (2016,
2018, 2019, 2020) [21–24] found that bbpNAP were highly variable using satellite data and
Bio-Argo data in the Mediterranean Sea and globally. Therefore, in order to calculate
phytoplankton carbon concentrations accurately, the regionally adjusted bbpNAP should be
considered when using the phytoplankton carbon retrieval algorithm.

The carbon-to-Chl-a ratio of phytoplankton (hereafter termed θ following Geider
et al. 1987 [11]) plays an essential role in the computation of primary production [25],
in evaluating the phytoplankton community dynamics and its physiological adjustments to
environmental factors [13,26], and in verification and initialization of global biogeochemical
models [27,28]. Moreover, the carbon-to-Chl-a ratio of phytoplankton is a dynamic and
highly variable property [29]. Estimating such changes in θ in response to variations in
available light, nutrient, and temperature, is not a trivial task, but it is an essential step
in primary production models and biogeochemical models. A wide range of θ values has
been reported in the literature across laboratory, field, and model studies [11,25,29–32].
Sathyendranath (2009) [30] provided a conservative estimate of θ (15–176) based on field
data collected across different types of marine and coastal environments, and proposed an
empirical model to estimate phytoplankton carbon from Chl-a. Based on biogeochemical
model results, Wang (2009) [31] observed θ within the mixed layer increased from <100 in
the eastern upwelling region to >150 in the warm pool in the Pacific, whereas subsurface θ
was about 50 below 100 m water depth. Seasonal variation of θ has also been documented
from a large amount of field measurements [32] which showed that the lowest θ during
winter (≈15) and summer θ between 20 and 96. With the advance of ocean color remote
sensing, the large-scale and long-term variability of θ could be estimated from satellite
data, which were expected to significantly enhance our understanding of θ.

The South China Sea (SCS) is the largest tropical marginal sea in the northwestern
Pacific Ocean. It is a semiclosed deep sea with an average water depth over 2000 m. The
East Asian monsoon is characterized by two regimes, the southwest monsoon from late
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May to September and the northeast monsoon from November to March, which plays
an important role in the hydrological features and upper circulation of the SCS [33–36].
The SCS basin is quite similar to oligotrophic regions with the primary producers domi-
nated by picophytoplankton [37–39]. The temporal and spatial distribution of physical,
ecological, and biogeochemical parameters in the SCS and their driving mechanisms have
been research foci for many years. For example, Ning et al. (2004) [37] used multidis-
ciplinary survey data to describe the phytoplankton seasonal distribution and revealed
clearly coupled physical–chemical–biological oceanographic processes in relation to phyto-
plankton abundance and production in the SCS. Additional studies used satellite derived
Chl-a data to investigate the spatial and temporal distributions of phytoplankton in the SCS
and found significant seasonal change, with high concentration in winter and low values in
summer, and higher Chl-a in inshore areas than that in the central sea basin [39–45]. In the
northern SCS, Chl-a starts to increase in September and reaches its maximum in December
or January [46]. Furthermore, seasonal and spatial variability of primary production and
phytoplankton carbon has been studied in the SCS using physical–biogeochemical model
data [47,48].

However, study on the phytoplankton biomass in units of carbon are quite limited with
Chl-a usually used as the only indicator of phytoplankton biomass in the SCS. We know less
about variability of carbon-to-chlorophyll ratio which was affected by many environmental
stressors such as light and nutrient limitation. Therefore, the objective of this study was to
estimate phytoplankton carbon from the backscatter-based model using satellite, and then
to investigate the spatial and seasonal variability of phytoplankton carbon and its ratio to
Chl-a by accounting for physiological environment factors and phytoplankton community
structures.

2. Materials and Methods
2.1. Study Area and Sampling

Multiyear Chl-a concentrations were measured at 133 stations from different regions
in the SCS (Figure 1). The regions included coastal high productivity waters and the
oligotrophic open ocean. The range of Chl-a concentrations was about 0.03–2.32 mg m−3.
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Figure 1. Hydrographic stations at which chlorophyll a (Chl-a) concentrations were measured in the
South China Sea from 2004 to 2012. The survey stations from different cruises are distinguished by
different marker types. The blue line shows the 200-m isobath.
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Seawater samples were collected in clean Niskin bottles on a rosette with a conductivity–
temperature–density instrument. A volume of water (0.5–1 L) was filtered onto glass fiber
filters (Whatman GF/F) at low vacuum. Filters were stored frozen at −80 ◦C before anal-
ysis in the laboratory. The Chl-a concentrations were measured with a Turner-Design
10-AU Fluorometer.

2.2. Satellite Data

We used a continuous time-series of global ocean color data—produced by the
European Space Agency’s Ocean Colour Climate Change Initiative (OC-CCI) project
(https://www.oceancolour.org/)—by systematically merging available satellite data from
three major sensors: NASA-SeaWiFS, NASA-MODIS-Aqua, and ESA-MERIS [49]. In ver-
sion 4.2, the best algorithms for Chl-a retrieval were selected depending on water class
memberships and the particulate optical backscattering coefficient at 555 nm were pro-
duced by the Quasi-Analytical algorithm (QAA) [18]. The diffuse attenuation coefficient at
490 nm (Kd490) and the photosynthetically active radiation (PAR) were downloaded from
GlobColour (http://hermes.acri.fr/). All of the variables reported monthly values from
September 1997 to December 2019 at a spatial resolution of 4 × 4 km. The sources and
types of particulate matter that affect Chl-a and bbp are more complicated in the near-shore
shallow water of the SCS (<200 m water depth). Therefore, we focused on the open ocean
with water depths deeper than 200 m.

The sea surface temperature (SST) data are from the Optimum Interpolation Sea
Surface Temperature (OISST) dataset provided by the NOAA Earth System Research
Laboratory (https://www.ncdc.noaa.gov/). Monthly OISST data (data from the AVHRR
sensor only with the longest record) from September 1997 to December 2019 were used in
this study.

Over the photoperiod, incident light in the mixed layer decreases exponentially with
water depth. To reduce its impact, values of mean light in the mixed layer (Ig) were
calculated by:

Ig = PARe−0.5Kd490 MLD (1)

where MLD is mixed layer depth. The monthly mean climatology of MLD data were
downloaded from the SCS Physical Oceanographic Dataset (SCSPOD14), which is based
on 51,392 validated temperature and salinity profiles for the period 1919–2014 [50]. MLD is
defined as the depth where the potential density is 0.03 kg m−3 greater than the reference
depths as 10 m.

2.3. Estimates of Phytoplankton Carbon

Phytoplankton carbon was retrieved using the formula proposed by Behrenfeld et al.
(2005) [16]:

Carbon(x, y, t) =
[
bbp(x, y, t)− bbpNAP

]
SF (2)

where x and y are longitude and latitude, t is the time in months, the conversion coefficient
(SF) was 13,000 mg C m−2 and bbpNAP is the part of bbp contributed by nonalgal particles.
It should be pointed out that when retrieving bbpNAP, Behrenfeld et al. (2005) used bbp at
440 nm, but bbp at 555 nm was used in this study. Therefore, a spectral dependence of λ−1.03

was applied to transfer the curve reported at 440–555 nm consistent with the slope used
by GSM model [51]. The bbpNAP was estimated as the intercept of the least square linear
regression fit between Chl-a and bbp. A new value of bbpNAP (0.00056 m−1) was estimated
by using the monthly mean climatology of Chl-a and bbp(555) in the SCS (Figure 2). Our
value is relatively higher than the global mean value estimated by Behrenfeld et al. (2005).
As a result, the phytoplankton carbon concentrations retrieved by Eq. 2 and with regionally
adjusted bbpNAP values are only one-half of previously published values. This difference
has also been documented in a previous study [22].

https://www.oceancolour.org/
http://hermes.acri.fr/
https://www.ncdc.noaa.gov/
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2.4. Algorithm to Estimate Phytoplankton Size Classes

Based on 7 years of pigment measurements acquired in the SCS, Lin et al. (2014)
re-parameterized a three-component model of phytoplankton size classes (PSC) [52]. The
model could be expressed as:

Fm =
C− Cm

p,n ×
[
1− exp

(
−Sp,nC

)]
C

(3)

Fn =
Cm

p,n ×
[
1− exp

(
−Sp,nC

)]
− Cm

p ×
[
1− exp

(
−SpC

)]
C

(4)

Fm =
Cm

p ×
[
1− exp

(
−SpC

)]
C

(5)

where, C was the total Chl-a concentration, and Cm
p,n (mg m−3), Cm

p (mg m−3), Sp,n, and
Sp were statistical parameters derived from fitting model to in situ data with values
suitable for SCS that are 0.9532, 0.2563, 0.9835, and 3.5346, respectively [53]. The model
was relatively accurate for the inversion of PSC in the SCS, with the relative root mean
squared errors being 28.2% (pico-plankton), 20.8% (nano-plankton), and 18.8% (micro-
plankton), respectively.

2.5. Dividing Biogeochemical Provinces in the SCS

In previous studies, the time series of remote sensing observations were usually
calculated by averaging the pixels data in a given part of the study area [40,44,54]. This part
is usually defined in terms of geography or pure geometry by assuming that study area is
highly uniform, and its main characteristics change slightly, which may be less instructive
for areas with large variability. Instead, in this study, trophic regimes of the South China Sea
were classified based on the seasonality cycle of surface Chl-a data from satellite. As some
researchers have reported in Mediterranean Sea and Indian Ocean [55,56], seasonality of
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surface Chl-a could reflect different mechanisms driving the functioning of the ecosystem,
like, the increase of Chl-a appears to be strongly coupled to physical forcing which could
induce locally favorable conditions for phytoplankton growth.

Monthly climatological time-series of Chl-a were then engendered for each pixel of
the SCS. The resulting climatological time-series were then normalized by the maximum
values of each specific pixel. Then, k-means clustering was implemented for the normalized
data with the aim to statistically organize the time-series dataset and to generate clusters
representing regions of similarity. One of the key challenges for the k-means algorithm
was determining the number of clusters in a data set. Here, the number of clusters was
determined by four specific tests [57] conducted on satellite image data. The optimal
number of clusters was six, which was determined through use of a series of evaluation
indicators in our dataset.

In general, the structure and spatial classification of the SCS pixels—as obtained
with the k-means method—were very consistent (Figure 3a). The geographical bound-
aries between clusters are well defined and the heterogeneity within clusters is very low.
The temporal evolution of the six cluster centers can be seen in Figure 3b. Noticeably,
the constraints imposed on to the k-means algorithm were (1) the number of clusters and
(2) the normalization implemented on the climatological time-series.
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Figure 3. Results of k-means cluster analysis showing (a) spatial distribution of the clusters (1–6) and (b) temporal evolution
of the cluster centers. The black lines in (a) show the 200-m isobath. The curve colors in (b) correspond to the same color
scale in (a). Error bars in (b) indicate the relative +/− one standard deviation.
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To better describe the results, clusters were then regrouped into three regions using
characteristics of the cluster center temporal evolution. Specifically, two clusters (#1 and #2,
Region I, Figure 3)—located in the northern of the SCS—almost covers the area north of
17◦ N (about 37% of the total area). Its annual pattern indicates a maximum in January with
appreciable growth in September and loss in February. The slight difference within the two
clusters is that the magnitude of Cluster #1 was about 1.5 times greater than Cluster #2.
Another two clusters (#3 and #4, Region II, Figure 3) are widely distributed in the central
part of SCS including the deep basin on the Philippine side of the SCS and the SCS central
basin along 15◦N. The most obvious characteristic of those clusters is a rapid increase in
December, which then peaked in January. However, the seasonal signals in these categories
are very weak with very similar values all year round. Additionally, the southeastern area
offshore Vietnam—the offshore extension of the Vietnam coastal current—were categorized
as one region (#5 and #6, Region III, Figure 3), denoted as the western part of SCS. This
cluster experiences two peaks of Chl-a throughout the year—one in August and the other
in January.

2.6. Statistical Methods

To quantitatively assess the difference between the OC-CCI derived Chl-a data and in
situ Chl-a data, several statistical parameters were used: (1) the bias (the average difference),
(2) the root mean squared error, and (3) the median absolute relative difference.

The bias is defined as:

bias =
1
N

N

∑
i=1

(Chlsat − Chlinsitu) (6)

the root mean squared error (RMSE) as:

RMSE = 2

√√√√ 1
N

N

∑
i=1

(Chlsat − Chlinsitu)
2 (7)

and the median absolute relative difference (MARD) is expressed in percentage as:

MARD = 100×median
[
|Chlsat − Chlinsitu|

Chlinsitu

]
(8)

where Chlsat and Chlinsitu are satellite derived and in situ Chl-a values, respectively; N is
the number of matched up data points.

Statistical analysis was used to assess the existence of linear dependence between θ
and other environmental variables. The correlation and its significance were calculated
using linear regression and Student’s t-tests following Santer et al. (2000) [58].

3. Results
3.1. Validation of OC-CCI Product

The correlation between Chl-a concentrations measured shipboard and those esti-
mated from satellite data for each station is shown in Figure 4. To minimize the differences
between in situ measured Ch-a concentrations and those estimated from satellite data, it is
important to use satellite data for the pixel closest to the station and obtained as soon as
possible after sampling at the station. The mean values within the 3 × 3 pixel area of daily
satellite data were selected to match in situ measurement. Statistical comparisons show
relatively good agreement between in situ data and the satellite data, with a statistically
significant correlation (R2 = 0.71, p < 0.001), a low median absolute relative difference
(MARD = 36.99%), and a low root mean square error (RMSE = 0.23 mg m−3). OC-CCI data
are slightly higher than in situ Chl-a with the bias being around 0.04 mg m−3 (Figure 4).
The validation results present here provide confidence in the use of OC-CCI Chl-a data in
the SCS.
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Figure 4. Correlation between Chl-a concentrations measured shipboard and those estimated from
OC-CCI data for each hydrographic station. Selected criterium OC-CCI data were used, which were
averaged within a 3 × 3 pixel box of daily satellite collocation. Owing to persistent cloud cover, the
daily products resulted in no data being available for 47 of the 133 stations.

The use of bbp values retrieved by QAA has been widely used in ocean ecology and
biogeochemistry research [16,59,60] and has been validated globally and on a regional
scale [61,62]. In the SCS, the bbp was validated by a limited set of in situ bio-optical data
that showed the inversion values were close to the measured value, as indicated by a low
mean absolute percent error difference (32.08%) and a high coefficient of determination
(0.92) [62].

3.2. Comparison of Phytoplankton Carbon Estimates Using Different Empirical Algorithms

To evaluate the phytoplankton carbon determined by the empirical algorithm, we plot-
ted the satellite-retrieved phytoplankton carbon as a function of Chl-a and added the
existing empirical relationships between Chl-a and phytoplankton carbon (Figure 5). The
solid black line representing the best fit was plotted in Figure 5, and it was consistent
with the model proposed by Maranon et al. (2014) [63] and using in situ data collected
in surfaced waters over coastal and open-ocean regions, and consistent with the model
developed by Loisel et al. (2018) [64] based on satellite data. However, the relationships
proposed by Buck et al. (1996) [65] for satellite-derived phytoplankton carbon as a function
of observational Chl-a and Sathyendranath et al. (2009) [30] for a simple conceptual model
to infer in situ phytoplankton carbon as a function of Chl-a differ significantly from our
results (Figure 5). Their values are higher when Chl-a concentrations were <1 mg m−3

and are lower when Chl-a were >1 mg m−3. After comparing our results with published
empirical relationships, they suggest that phytoplankton carbon retrieved by our adjusted
algorithm is more reliable.
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Figure 5. Phytoplankton carbon retrieved with a modified method proposed by Behrenfeld et al.
(2005) as a function of Chl-a for monthly mean climatology of satellite data (September 1997 to
December 2019) of the South China Sea. The solid black line represents a power law fit to OC-CCI
data. For comparison, we also included several empirical fits. The red dashed and blue dash-dotted
curves correspond to Sathyendranath et al. (2009) for HPLC and Turner Chl-a, respectively. The other
empirical algorithms derived by Buck et al. (1996) (blue dotted line), Mara et al. (2014) (magenta
solid line with asterisk symbol), and Loisel et al. (2018) (cyan solid line with plus sign symbol) are
also shown.

3.3. Spatiotemporal Distribution of Phytoplankton Carbon and θ

A 22-year analysis of composite monthly mean phytoplankton carbon showed pro-
nounced regional and seasonal differences in the SCS (Figures 6 and 7). The phytoplankton
carbon maps revealed similarities with Chl-a concentrations (Figure A1), which is unsur-
prising because of the correlation between those properties. Generally, phytoplankton
carbon in the northern SCS was higher than in the southern and central areas (Figure 7a–c).
The seasonal pattern of phytoplankton carbon showed that maximum values in the north-
ern and central SCS occurred in winter and minimum values in the whole SCS occurred in
spring (Figure 6). Interestingly, phytoplankton carbon showed relatively weak seasonality
in the deep basin on the Philippine side of the SCS (Figures 6 and 7b), but considerably
strong seasonal patterns in the northern SCS (Figure 7a). Individual pixels of phyto-
plankton carbon of the averaged 22-year period were 9.17±6.72 mg m−3. In the summer
and early autumn (June to September), phytoplankton carbon concentrations were low
throughout the SCS with the exception of higher concentrations to the east of southern
Vietnam (Figure 7c).
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Figure 7. Time-series of monthly mean climatology of phytoplankton carbon (a–c) and θ (d–f) in the northern (Region I),
central (Region II), and western (Region III) parts of South China Sea. The definitions of those regions are shown in Figure 3a.
Color shading indicates standard deviations of the monthly mean climatology of θ. Noting that the time starts in June.

The monthly averaged climatology of θ—computed over the SCS using composite
monthly images from September 1997 to December 2019—varied over a wide range from
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<20 in eutrophic waters to >90 in oligotrophic regions (Figure 8). These results are consistent
with our current understanding of oceanic systems where low and high θ values represent
regions characterized by microplankton and picoplankton, respectively [30,66,67]. The θ
of individual pixels averaged over 22 years was 67.77 ± 32.44. In addition, the monthly
mean climatological distribution of θ in the SCS showed pronounced regional and seasonal
variations (Figures 7d–f and 8). The mean θ in the northern (Region I), central (Region II),
and western (Region III) parts of SCS was 64.13 ± 11.08, 74.83 ± 17.98, and 67.73 ± 13.23,
respectively. The monthly average climatology of θ showed highest values during Septem-
ber in the western part of SCS (Region I: 103.05 ± 22.55) and central part of SCS (Region II:
73.8 ± 18.17), but occurred in March in western part of SCS (Region III: 76.74 ± 13.21). The
lowest values were observed during January in the northern SCS (Region I: 58.41 ± 6.66)
and central SCS (Region II: 55.21 ± 6.12), but in August in the western SCS (Region III:
53.93 ± 0.05). In contrast to the seasonal pattern of phytoplankton carbon, relatively lower
θ values were observed during winter compared to autumn.
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Figure 8. Monthly mean climatological distribution of the θ in the South China Sea (September 1997
to December 2019). The blue line shows the 200-m isobath.

Although there are some regional differences, a seasonal cycle is evident. There is a
distinct annual cycle in the western SCS (Region I) where high values last from September to
January (Figure 7d). In central SCS (Region II), there are two peaks, one in September and one
in April (Figure 7e). It is interesting to note that the summer in the western SCS (Region III)
has considerably lower values, while values in other months are higher (Figure 7f).

4. Discussion
4.1. Spatial and Temporal Variability of Phytoplankton Carbon and θ

Although many studies have been conducted on the spatial and temporal distribution
of Chl-a [44,45,68] and particulate organic carbon [69–71] in the SCS using ocean color
data, little research has focused on phytoplankton carbon. It has long been recognized
that the high concentration of Chl-a in winter in the northern SCS was due to the strong
mixing caused by the northeast monsoon [46,72–74]. In our research, the similar seasonal
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pattern in the northern SCS was also shown in phytoplankton carbon, with a prominent
peak during December–January of the following year. The winter peak of phytoplankton
carbon in the central SCS was much weaker than the peak of Chl-a. In the western part of
SCS, Chl-a showed a bimodal structure, with one peak in winter and the other in summer
and phytoplankton carbon also showed the same distribution characteristics.

The spatial variability and magnitude of θ retrieved in our study were shown to be
relatively consistent with seasonal patterns reported by Xiu and Chai (2012) for the SCS [48].
Xiu and Chai (2012) includes—to our knowledge—the rarely published data describing
the annual cycle of θ for the SCS used biogeochemical model. A large variation wide
range of θ was found in their model results, and the minimum θ always occurred in winter
and high values present in later summer to early autumn. Based on our estimation from
ocean color data, a wide range of θ (≈26–≈130) were found in SCS and similar results
about the seasonal distribution of θ were found in the northern (Region I) and central part
(Region II) of SCS. However, in the western SCS (Region III), different seasonal pattern was
observed with its lowest value being in summer, which might be influenced by upwelling
driven by southwest monsoon [75]. This bias was likely related to their biogeochemical
model resolution which cannot fully resolve coastal upwelling condition in the western
SCS. Upwelling brought cold and nutrient-repleted water from the depth of the ocean to
the nutrient-depleted surface water, which stimulated the growth of phytoplankton and
might have potentially altered the phytoplankton community structure (the fraction of
microplankton might be increased) [76]. Due to new nutrients added, microphytoplankton,
such as diatoms, had more sensitivity response to nutrient uptake than other phytoplankton
groups [76]. In addition, a northeastward jet in the western SCS interaction with mesoscale
eddy may increase the microphytoplankton contribution through water mass transport
and mixing [77]. Therefore, lower values of θ in the western SCS in the summer may be
attributed to the increase of microphytoplankton caused by upwelling. In addition, low
temperature caused by upwelling could also influence the θ value, but its effect was more
complex [12,32,78]. High values of θ in the open ocean—often well above 100—have also
been documented by a field study [32] and satellite results [16]. One possible explanation is
that in open ocean environments or at low latitudes, a more permanent nutrient limitation
leads to relatively high values of θ [32].

4.2. Factors Affecting θ

Intracellular Chl-a varies as a function of many factors, including cell size, growth, ambi-
ent light, temperature, and nutrient status. Hence, it is not surprising that θ varies throughout
the world’s aquatic systems by three or more orders of magnitude of change [32,79]. The
reasons for θ variability have been explained in this study by considering the mean light
intensity within the MLD (Ig), sea surface temperature (SST), and the phytoplankton
community structure.

The phytoplankton θ may be affected by physiological processes [11,80], which have a
great impact on cells because they change intracellular Chl-a concentrations in response to
light and nutrient availability. The two main factors that affect the physiological state of
phytoplankton—light and nutrient stress—are represented by the mean light in the mixed
layer (Ig) and SST, respectively [16]. To interpret the variability in photoacclimation and
its causes, θ as a function of SST and Ig are shown in Figures 9 and 10. Quite specifically,
increases in θ are associated with increases in growth irradiance, and increases in temper-
ature (decreases in nutrients) [11,12]. Additionally, the variability in our data generally
confirms that θ is high under high light and nutrient-depleted conditions and low during
low light and nutrient-repleted conditions in natural phytoplankton communities. In the
northern part of SCS (Region I), the northeast wind was prevailing in the winter, which is
characterized by cool, dry northeasterly flow. The momentum, heat, and buoyancy fluxes
resulting from these atmospheric conditions promoted oceanic convective mixing that
leaded to a cooler and saltier surface layer as the thermocline eroded and the mixed layer
deepened over the winter [81,82]. This substantial nutrient pool was readily entrained
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into the surface layer during the winter by the convective mixing and the value of θ was
also decreased. Both increase of light and decrease of wind speed could increase the SST
and enhance upper-ocean stratification in the summer. The upper layers of the ocean
were rapidly depleted of nutrients with relatively high θ. Therefore, we found that the
linear relationship between θ and SST was significant in the northern SCS, as indicated
by the relatively high values of r being 0.53 (p < 0.001). Additionally, it was likely that Ig
was not the dominant factor causing θ change in the northern SCS, with no relationship
between them (r = 0.08, p = 0.81). In Region II (central basin), the θ gradually decreased
from spring to winter because of weakened light and reductions in nutrient stress (SST
decrease); relatively high correlations between θ and Ig and SST were detected, with the
r being 0.52/0.31 (p = 0.09/ p < 0.001), respectively (Figures 9b and 10b). However, there
were no obvious correlations in the western part of SCS (Region III), as indicated by the low
values of r (p > 0.1), which could be due to the complexity of other processes, such as strong
upwelling caused by the southwest monsoon during summer and eddy activity [75].
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Figure 9. Monthly mean climatology of θ as a function of Ig. (a) Region I, (b) Region II, (c) Region III. The solid line
represents a linear fit to OC-CCI data.
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Figure 10. Monthly mean θ as a function of sea surface temperature (SST) and Fp. (a,d) Region I, (b,e) Region II, (c,f) Region
III. The solid line represents a linear fit to OC-CCI data
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The θ may also be affected by the phytoplankton community structure, being lowest
for the larger diatom cells and highest for smaller species such as Prochlorococcus [30].
The fraction of picophytoplankton (Fp) was inferred from a three-component model that
reparametrized many years of pigment measurements collected in the SCS [53], and their
relationship with θ was studied (Figure 10d–f). As the fraction of Fp increased, θ gradually
increased except for the western part of SCS (Region III), as indicated by the relatively high
value of r being 0.64 (p = 0.03) (Region I), 0.58 (p = 0.05) (Region II), and by low value of r
being 0.24 (p = 0.45) (Region III). This relationship was consistent with current research
results.

Additionally, we also found that the relationship between θ and environmental factors
shows slight differences in different months, which may be due to a strong coupling rela-
tionship within environmental variables. From the scatter plot of θ versus environmental
factors for different bioregions, we could only make simple speculations. The specific
influencing process between them still needs further analysis.

5. Conclusions

In this study, phytoplankton carbon concentrations retrieved with an adjusted al-
gorithm from ocean color satellite, were used as an alternative proxy for phytoplankton
biomass in the South China Sea (SCS). The estimated phytoplankton carbon was compa-
rable with results from the two previously established empirical models (Maranon et al.
(2014) and Loisel et al. (2018)) in the literature. Additionally, the spatial and temporal
variability of phytoplankton carbon and the carbon-to-chlorophyll a (Chl-a) ratio (θ) were
investigated by dividing the whole SCS into three subregions based on k-means algorithm.
Drivers of their variability were further discussed by examining the effect of light intensity,
temperature, and phytoplankton size structures.

Both phytoplankton carbon concentrations and θ showed significant seasonality in the
SCS. Phytoplankton carbon concentrations were high in the northern and western SCS, but
very low in the deep basin on the Philippine side of the SCS from November to February.
From June to September, phytoplankton carbon concentrations were low throughout the
SCS, with the exception of higher concentrations to the east of southern Vietnam. Over
a 22-year period, the θ of individual pixels averaged 67.77 ± 32.44. The highest values
were observed in September in the northern and central basin of SCS and in March in
the western SCS. The lowest values were observed in January in the northern and central
basin of SCS but in August in the west. It was found that spatial distribution of Chl-a
concentrations was broadly similar to that of phytoplankton carbon, but some important
differences remained. These differences can be indicated by the θ, which varied over a
wide range from <20 in eutrophic waters to >90 in oligotrophic regions in the SCS.

The robust verification for the use of satellite-derived phytoplankton carbon concentra-
tions should include the collection of comprehensive in situ measurements in future work.
Accurately resolving the significant spatiotemporal variability of θ in the SCS requires more
field data related to phytoplankton physiological processes.
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