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Abstract: Due to the coastal morphodynamic being impacted by climate change there is a need
for systematic and large-scale monitoring. The monitoring of sandy dunes in Pays-de-la-Loire
(France) requires a simultaneous mapping of (i) its morphology, allowing to assess the sedimentary
stocks and (ii) its low vegetation cover, which constitutes a significant proxy of the dune dynamics.
The synchronization of hyperspectral imaging (HSI) with full-waveform (FWF) LiDAR is possible
with an airborne platform. For a more intimate combination, we aligned the 1064 nm laser beam of a
bi-spectral Titan FWF LiDAR with 401 bands and the 15 cm range resolution on the Hyspex VNIR
camera with 160 bands and a 4.2 nm spectral resolution, making both types of data follow the same
emergence angle. A ray tracing procedure permits to associate the data while keeping the acquisition
angles. Stacking multiple shifted FWFs, which are linked to the same pixel, enables reaching a 5 cm
range resolution grid. The objectives are (i) to improve the accuracy of the digital terrain models
(DTM) obtained from an FWF analysis by calibrating it on dGPS field measurements and correcting
it from local deviations induced by vegetation and (ii) in combination with airborne reflectances
obtained with PARGE and ATCOR-4 corrections, to implement a supervised hierarchic classification
of the main foredune vegetation proxies independently of the acquisition year and the physiological
state. The normalization of the FWF LiDAR range to a dry sand reference waveform and the centering
on their top canopy echoes allows to isolate Ammophilia arenaria from other vegetation types using
two FWF indices, without confusion with slope effects. Fourteen HSI reflectance indices and 19 HSI
Spectral Angle Mapping (SAM) indices based on 2017 spectral field measurements performed with
the same Hyspex VNIR camera were stacked with both FWF indices into a single co-image for each
acquisition year. A simple straightforward hierarchical classification of all 35 pre-classified co-image
bands was successfully applied along 20 km, out of the 250 km of coastline acquired from 2017 to
2019, prefiguring its systematic application to the whole 250 km every year.

Keywords: airborne remote sensing; hyperspectral; full-waveform LiDAR; dune morphodynamics;
low vegetation; classification

1. Introduction

The coastline is an interface between sea and land [1]. Coastal habitats shield the
hinterland from marine hazards [2–4]. Sandy coasts are constantly evolving [5] under the
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effect of tides and waves [5–10] but mostly storm surges [11,12] via the remobilization of
sediments induced by such forcings. Under the current circumstances, climate change
increasingly and directly affects coastal morphology [13–16]. According to Luijendjk et al.
(2018) [17], around 24% of the world’s sandy beaches are eroding (28% are in accretion
and 48% are stable). In France, as in many other places, the concentration of people
and activities in coastal zones is increasing [18–21]. The perspective of higher sea levels
due to climate change increases the risk that these territories will be exposed to natural
coastal hazards [22]. Therefore, systematic and large-scale monitoring is needed in order to
implement adapted protection measures [23–25].

In order to accurately monitor the spatial and temporal variations of the coastal
dune (illustrated in Figure 1), it is necessary to define a proxy [26] and to measure it in a
systematic way (regularly in time). The coastal morphology and its dynamics (particularly
the foredune, which is in direct contact with the shore, Figure 1) are mainly controlled
by physical and biological processes [27]. Indeed, the foredune is mainly made up of
the accumulation of windborne beach-sand sediments trapped by burial-tolerant plants
during the sedimentary accretion. The stability of the coastal morphology often increases
with the distance to the shore. The foredune constitutes a frontline protection for the
shifting dune system (Figure 1) against storm surges, resulting in a landward salinity
decrease from the embryonic to the white dune (Figure 1). This allows the development of
vegetation gradients [28–31] from couch grass to marram grass, used as proxies for coastline
monitoring. In the same way, the shifting dune system constitutes a frontline protection for
the grey dune (Figure 1), allowing its stabilization and, by extension, the implantation of
lichens and mosses, proxies of its stability, then conducting to the development of more or
less wooded dunes at the back (Figure 1).

Figure 1. A typical western French sandy coast profile. The morphological terminology is written in blue and typical
vegetation cover is written in green. Note that the distance scale from the foreshore is only indicative and can vary from one
area to another.

Consequently, this work focuses on two foredune proxies: Ammophila arenaria (Eu-
ropean marram grass) and Elymus farctus (Couch grass). Elymus farctus is a 20 to 50 cm
high pioneer herbaceous, which belongs to the Poaceae family, colonizing the embryonic
dune and contributing at the same time to its formation by fixing sediments [29]. Located
right next to Elymus farctus is Ammophila arenaria (see Figure 1), which is a 30 to 110 cm
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high leaf clump, and is a perennial psammo-halophilic herbaceous that belongs to the
Poaceae family as well [32]. It generally colonizes white dunes, where its leaf density, root
network and the surface roughness that it induces act as sediment fixers and eolian erosion
barriers [33], allowing the implantation of other species [34] and making it a plant often
used in dune system stabilization [35].

Moreover, topographic measurements have to be implemented in order to assess
sedimentary stock variations [26]. The monitoring of the coastal dynamics is directly related
to the tracking of sedimental fluxes, involving volume variations of the morphology [36].
As a result, an error in the the assessment of the topography will directly induce an error
in the assessment of the volume of sediments involved in the sedimental flux. This is why
it is very important to guarantee an optimal topographic accuracy and correct the potential
errors induced by the vegetation thickness. Moreover, low vegetation cover can induce a
vertical accuracy decrease leading to topographic errors [37,38].

The systematic measurement of Ammophila arenaria–Elymus farctus boundaries and/or
the altitude of both the top and toe of the white dune are time-consuming and often
restricted to scattered narrow field studies. Only remote sensing enables hundreds of
kilometers of continuous coastline monitoring in a short amount of time. Hyperspectral
imaging is a passive remote sensing method measuring physico-chemical parameters based
on the spectral signature of the sunlight reflection on a ground target [39]. It is particularly
well-suited for vegetation mapping and analysis [40,41] as can be attested by numer-
ous applications such as wetlands [42,43], grasslands [44], forests [45,46], urban [47,48],
and coastal areas [49]. In the case of the foredune submitted to strong sudden events
like storm surges and long droughts, the monitoring of Ammophila arenaria and Elymus
farctus becomes more and more difficult. Strong variations of salinity and humidity induce
different physiological behaviors in both types of vegetation, inverting their contrast in
green color from one year to another. Moreover, both species are two types of grass shar-
ing the same set of pigments, giving them almost identical spectral signatures. LiDAR
(Light Detection And Ranging) is an active remote sensing technique based on a laser
pulse roundtrip measuring a range between the platform of emission and the ground,
which returns an echo [50]. It is well-suited for geomorphological studies [37,50–52] but
low vegetation covers are often intimately mixed in a single echo, reducing its vertical
accuracy [37]. Full-waveform (FWF) LiDAR records the whole laser pulse interaction
returned by the ground and its overlying vegetation [53]. To focus the FWF analysis on its
interaction with the ground and vegetation, which backscatters the laser pulse, it is then
convenient to normalize it to its altitude, amplitude, and relative intensity [54]. However,
the slope of the ground and the height of the vegetation can induce similar enlargement of
the FWF signal leading to a confusion between both effects [53,55,56]. The combined used
of both hyperspectral imaging and LiDAR was first used for forest characterization, as it
permitted to access the biochemical and structural properties of trees [57,58]. A majority of
studies merge hyperspectral and LiDAR data that were acquired separately. This requires
inter-calibration as suggested by [59–61]. Our goal is to study the intimate link between the
two datasets following the same emergence angle and acquisition time. The in-flight fusion
or combination, first proposed by the authors of [57] and then also used by the authors
of [54,60,62] consists of aligning both sensors in order to simultaneously acquire LiDAR
and hyperspectral data by following the same acquisition geometry.

After a presentation of the ground and airborne devices’ technical characteristics,
followed by a presentation of the study area with the main vegetation attached to each
dune morphology type in Section 2.1, this work relies on ground sampling, presented in
Section 2.3, and prior airborne campaigns carefully combining hyperspectral and LiDAR
data from the acquisition step in Section 2.4. This work continues in Section 3.1 with a
presentation of the LiDAR methodology, with particular attention given to the improve-
ment of the FWF signal noise reduction allowing the detection of subpixel laser footprints
that reveal morphological details allowing the separation between steep slope and low
vegetation FWF distortion. A full study of the dune morphology vegetation proxy requires,
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however, hyperspectral analyses, which are presented in Section 3.2. A straightforward
classification directly combining both data sources without any further processing gives
access to a map of both Ammophila arenaria and Elymus farctus proxies, which is presented
in Section 3.3.1. Some topographic calibrations are presented in Section 4.1. The results
obtained on the training area are presented in Section 4.2 with detailed comparisons to
series of ground control points of elevations and vegetation covers. Section 4.3 is a blind
application to an extended area presenting different morphological types of coastline used
to validate the method with post ground controls of the map produced. This works ends
with a discussion and conclusions.

2. Study Areas, Field Measurements, and Data Acquisition
2.1. Study Areas

All the processes of the analysis were established on one training area (presented in
Section 2.1.1, see Figure 2). The selected parameters used remain unchanged for the two
main validation areas (presented in Section 2.1.2, see Figure 2). For readability purposes,
only subset areas are presented in this paper. However, topographical and classification
final products were applied to the whole continuous area containing the Tresson, Barbâtre,
and Pays-de-Monts beaches (see Figure 2) for the acquisition years of 2017, 2018, and 2019.
The corresponding images of the area are available in the Supplementary Materials section.

2.1.1. Training Area: Tresson

Tresson is a rectilinear 1.5 km-long sandy beach located at the southern end of Noir-
moutier island’s sandy pit (Figure 2), between the municipalities of Barbâtre and Guériniere.
Oriented NW–SE and facing the SW direction, it presents a 8 to 15 m-high dune ridge
backed by a large grey dune [63] with a 6 m mean height. It is subject to an alongshore drift
toward the SE direction estimated at 25,000 m3/year [64], leading to a sediment deficit in
the northern part of the spit to the benefit of the southern part. Tresson beach is classified
as a “sensitive natural area” [65]. Area a (Figure 2), presented in Figure 2, corresponds to
the location of the dGPS field sampling.

2.1.2. Validation Areas
Barbâtre

Barbâtre is a rather rectilinear, 6.5 km-long, sandy beach located at the south of Tresson
beach. It is mainly oriented 155◦N, facing the WSW direction. Barbâtre beach constitutes the
direct continuity of the Tresson one. It follows the same sedimentary flux (SW alongshore
drift) on its NW part but is also influenced by the Fromentine inlet forming a narrow
tide channel in the south of Noirmoutier island between the Bourgneuf bay and the open
Atlantic ocean.

Pays-de-Monts

The north part of Pays-de-Monts is a 8 km-long rectilinear 174◦N sandy beach
(Figure 2) to the south of the Fromentine inlet and to the north of the Pont d’Yeu rocky
shoal of Notre-Dame-de-Monts. The subsidiary areas b and c respectively correspond to
Notre-Dame-de-Monts and Barre-de-Monts. Areas b1 and b2 (Figure 2) are locations of the
second dGPS field sampling. According to [5], from 1920 to 2010 the coastal morphody-
namic of the beach was temporally and spatially heterogeneous and showed a sensitivity to
storm intensity and frequency, particularly after the Xynthia storm (2010), which induced
a 7 to 8 m coastal retreat. The general current sediment dynamics seems to be a north
sediment accretion slowly spreading southward (Notre-Dame-de-Monts).
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Figure 2. Location of the study areas: Noirmoutier Island and the north part of Pays-de-Monts, in western France. Here
are noted: the working area “Tresson” and the validation areas “Barbâtre” (available in the appendix) and the north part
of “Pays-de-Monts”. (a) Represents the dGPS field sampling location of the working area, (b) represents Dame-de-Monts
subsidiary validation area 1, with b1 and b2 corresponding to the dGPS field sampling location of the validation area and
(c) Dame-de-Monts subsidiary validation area 2. Image from geoportail.gouv.fr.

2.1.3. Description of Typical Vegetation Cover

The layout of the sand dune vegetation is mainly controlled by three variables, namely
wind, salinity, and sediment mobility. They are all decreasing from the beach to the back-
dune. The back part of the dune is mainly defined by its vegetation cover. The wooded
part is mainly occupied by maritime pines under which a low vegetation cover is mainly
composed of mosses and pine needles. Pines are sporadically replaced by deciduous
trees, shrubs and bushy areas. The grey dune, or fixed dune, is mainly composed of a
well-established mix, in various proportions, of grasses (mainly fescues: Festuca vascon-
censi), mosses (e.g., Tortula ruraliformis (brown moss) and Hypnum lutescens (yellow moss)),
a characteristic white lichen (Cladonia rangiformis, Cladonia furcata) locally covered by sparse
laguruses (Lagurus Ovatus) with more punctual plants like sea holly (Erygium maritimum),
immortal (Helichrysum stoechas) and sea grape (Ephedra distachya). The underlying sand is
almost invisible off-trail from the nadir and the spectral variations observed in this area
are mainly controlled by the proportion of more or less stacked mosses (brown or yellow),
lichens and grasses. The white dune, or mobile dune, is characterized by large areas of
nude sand coming off eroded slopes called “caoudeyres” or at the summit along relatively
stable pathways, whereas ordinary slopes are mainly covered by sparse low vegetation.

geoportail.gouv.fr
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In the backward direction, this low vegetation is similar to the grey dune with which it
constitutes a transition area, whereas in the forward direction (toward the sea) there is
sparse burial-tolerant vegetation. Between the white dune and the foredune, the topog-
raphy is locally flattened and this is where we find European marram grass (Ammophila
arenaria).The foredune, which is in contact with the beach, is mainly covered by couch grass
(Elymus farctus) mixed in various proportions with bindweed (Calystegia soldanella) with
sparse sea spurge (Euphrobia paralias) over often exposed underlying dry sand. The beach is
under the influence tide without vegetation. The top is dry and provides good references of
sand reflectance spectra, whereas the low part of the beach is wet and often accompanied
by chlorophyllian biofilms.

2.2. Material

The hyperspectral camera used in this study is a push broom Hyspex VNIR 1600,
from Norsk Elektro Optikk, Skedsmokorset, Norway. It covers a spectral range from 400 to
980 nm with 3.7 nm sampling and 4.2 nm spectral resolution with a field of view (FOV)
of 17◦. This camera was used for both airborne acquisitions and vegetation field spectral
samplings. Airborne images were also processed with PARametric GEocoding (PARGE)
v.3.4 software and the Atmospheric and Topographic Correction (ATCOR-4) v.7.3 software
of ReSe Applications LLC, Langeggweg 3, 9500 Wil, Switzerland.

The LiDAR used in this study, which is managed by the Nantes-Rennes university
platform, is a Titan dual wavelength LiDAR (green 532 nm and infrared 1064 nm) from
Teledyne Optech Incorporated, Vaughan, ON, Canada. A full waveform recorder is plugged
only on the 1064 nm infrared channel, which is the most suitable one for topographic and
vegetation studies. In order to record the trajectory, it is also equipped with a fast inertia
measurement unit (IMU) coupled to the accurate global positioning system (GPS) of POS
AV AP50 OEM (IMU-8) from Applanix, ON, Canada.

The differential GPS (dGPS) used in this study is a Leica Viva GNSS, with a GS15
receptor. Measurements were realized in real time kinematic (RTK), enabling us to obtain
sub-centimetric accuracy in all three dimensions (x, y, and z).

Finally, bright reference field spectra, serving for the last instrumental noise reduction
of the airborne hyperspectral data, were acquired using an ASD FieldSpect3 spectrometer
from Malvern Panalytical Ltd., Royston, UK. They can display 2151 bands, which provides
a spectral range from 350 to 2500 nm with a 3–10 nm resolution resampled at 1 nm.

2.3. Field Measurements
2.3.1. Spectral Field Measurements

In order to demonstrate its ability to extend its application over time, this work reuses
the detailed field sampling campaign performed on 16 June 2017 [54]. In order to better
understand the spectral properties of the different areas of the dune and find a way to
spectrally discriminate their main proxies, a subset of 17 different plants were chosen for
their representativeness. To obtain the best match between hyperspectral images, we used
the same camera for the 2017 spectral field sampling as in the 2017, 2018, and 2019 airborne
campaigns. In the field, the camera was placed on a tripod for panoramic acquisitions
acquisitions, thus providing an incident angle of 50◦ ± 8.5◦ close to the incident angle of
the a sun elevation behind it.

Figure 3 shows a picture taken during an Ammophila arenaria profile of the 2019 dGPS
field campaign. Ammophila arenaria’s tufts are greener and homogeneous in their lower
part, as their leaves display a rectilinear orientation. However, in their upper part, leaves’
extremities fall in all directions showing no preferential orientation and forming a circular
crown of leaves with a bottom–up orientation ranging from 90◦ to 45◦. As both airborne
and field images were taken from above, the bidirectional reflection distribution function
(BRDF) [66] effects are expected to be similar despite the different acquisition angles but a
similar relative angular distribution of leaves. However, the comparison between Figure 3a,
displaying the 90◦ aircraft-acquired Ammophila arenaria mean spectrum taken at 1500 m,
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with Figure 3b, displaying the 50◦ field sampled Ammophila arenaria mean spectrum taken
at 1 m, shows that these two spectra are not rigorously similar. Indeed, the aircraft spectrum
displays a flatter shape than the field one. This is due to the influence of the underlying
dry sand always present in the 1 m2 pixel and masked in the 100 cm2 oblique close view,
which is focuses on the vegetation only. Moreover, as the leaves’ extremities are dryer than
their lower parts, the 50◦ angle of view spectrum contains a bigger proportion of green
leaves than the 90◦ one, which is another factor explaining the differences between these
two spectra.

Figure 3. Ammophila arenaria mean spectra. (a) The light green curve represents the Ammophilia
arenaria mean spectrum, acquired from a 1500 m distance with a 90◦ ± 8.5◦ angle, whereas the yellow
curve represents a dry sand mean spectrum, acquired with the same camera; (b) the dark green
curve represents the Ammophila arenaria field sampled mean spectrum, acquired at a distance of
1 m, following a 50◦ ± 5◦ angle, whereas the yellow curve represents the dry sand mean spectrum
acquired using an ASD field spectrometer.

Figure 4a displays the mean spectra of each of the 17 plants that were extracted from
ground hyperspectral images using ROIs (regions of interest) constituting the spectral
library of the main endmembers of the scene. A few sets of vegetation types are easily
distinguishable from the rest. Pines, bushes, and brambles are different due to their green
peak of reflectance thanks to their healthy leaves in contrast to all the other yellowing
plants. For instance, dry grass, mosses, and lichens display low red-edge. They are
characteristically always inclined near an infrared plateau independently of the soil. This
has been shown by the ground ROI free of sand. In a grey dune context, at a 1 m2 pixel
scale, the sand is hidden by a thick stack of underlying mosses or lichens covered by grasses
and various other plants listed in Figure 4a. They are all intimate mixtures of superposed
layers presenting many light interactions between them leading to the definition of a
limited number of plant associations spectrally distinguishable from each other, which are:
grey dune with an underlying layer dominated by brown and yellow mosses, and grey
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dune with underlying layer dominated by white lichens spectrally distinguishable from
each other.

White dunes and foredunes at a 1 m2 pixel scale always display a sand surface and
appear brighter than grey dunes. Among both foredune proxies, Ammophilia arenaria how-
ever presents denser vegetation, which conceals the sand, leading to potentially confusing
its spectra with grey dunes. However, both of them, including Elymus farctus, are locally
mixed with sedum and other gramineous plants. As a result, the discrimination of these
two species is one of the main challenges of this work. Moreover, the multi-temporal
classification has to take into account the potential spectral variability of these plants as
shown in Figure 4b. Ammophilia arenaria (in magenta) and Elymus farctus (in green) ROIs,
which were sampled from ground images, show a strong potential confusion between both
grass types. Indeed, each mean spectrum is included in the standard deviation area of the
other one, leading to spectral confusion and spectrally-based misclassifications.

Figure 4. Dune vegetation spectral range. (a) Represents the field-acquired mean spectrum of the 17 main plants of the
scene; (b) represents mean spectra (thick lines) plus or minus one standard deviation (colored areas) for Ammophila arenaria
(green) and Elymus farctus (pink). This shows that the major part of their spectral variation ranges overlaps, making a
multi-temporal systematic discrimination based on a spectral argument almost impossible.

Note that in order to remove all remaining defaults after atmospheric correction
(detailed in Section 3.2) and insure a perfect matching between airborne and field spectra,
ground spectra were acquired over dry sandy beach surfaces for each scene using the
ASD field spectroradiometer, as presented in Section 2.2. For each date, the final reference
reflectance spectrum resulted from the average of 100 spectra per sample on 10 samples
calculated with a Spectralon® and measured in the same geometry.

2.3.2. dGPS Field Measurements

A field sampling campaign was performed on the white mobile dune of Tresson’s
training area (Figure 2) in 16 May 2019. A total of 415 position points were recorded
using a dGPS (described in Section 2.2). Among these 415 points, 178 were taken on the
crest of the white mobile dune, which was stable during the 2017–2019 period, where the
ground is nude or only covered by sparse low vegetation. A total of 139 points, which were
divided into eight profiles, were taken at the foot of Ammophila arenaria clumps. The latter
points will be used to verify the validity of Ammophila arenaria classification results over the
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training area. In September 2020, a new field campaign, divided into two different parts,
was performed: the first part was done on the crest of the white dune of Tresson’s training
area, in order to verify its stability from one year to the next by comparing 2019 and 2020
elevation results. A total of 58 points were acquired during this part. However, as the crest
line is thin and bordered by slope failures, only 2019–2020 pairs of points, which were
separated by less than 30 cm, were taken into account for the stability assessment. As a
result, 24 pairs were kept. The second part was performed on Pays-de-Monts validation
area c, where 141 points, divided into 10 profiles, were acquired in order to verify the
validity of Ammophila arenaria classification results. Among these 141 points, 60 points were
on Ammophila arenaria.

2.4. Airborne Acquisitions

Airborne acquisitions were performed in the context of the OR2C project [67], which is
mandated by the region Pays-de-la-Loire to perform an annual coverage of a 250 km-long
narrow coastal band susceptible to fast changes. This was performed in cooperation with
the GEOFIT-expert and PIXAIR companies with a Chieftain PA31-350 aircraft, manufac-
tured by PIPER, Vero Beach, Florida, United States. In 2017, the acquisitions over Tresson
beach were performed on 24 May and both Barbâtre and north Pays-de-Monts dunes were
acquired the following day. All areas were acquired on 20 June 2018 and 17 June 2019.
Flight lines’ optimization on the sunlight direction, which is ideal for BRDF minimization,
were not possible because of budgetary constrains. The orientation of the acquisition flight
lines were performed back and forth in polygons following the orientation of the coastline:
115◦N for one Gueriniere polygon in 2017 and 2018, whereas there were three in 2019 since
they fitted the coastline better. Each year, the Barbâtre polygon is 160◦N and Pays-de-Mont
one is 174◦N. From 2017 to 2019, the airborne above ground level (AGL) was 1500 m at a
speed of 240 km/h with a 30% overlap between swaths in order to minimize the risk of
having gaps between two lines because of wind gust affecting the plane trajectory. The Li-
DAR and the hyperspectral camera were positioned one in front of the other to permit
the alignment of the VNIR sensor matrix with the 1064 nm laser beam along the same
nadir. Despite different incident angles of the light sources (sun and laser), the emergence
angles towards the detectors were the same for both types of recorded signals, allowing
the LiDAR to follow the same light path from target to sensor.

As the hyperspectral camera has a field of view (FOV) of 17◦, it produces a swath
width of 448 m from an AGL of 1500 m. Each of the 1600 pixels of the VNR sensor matrix
displays an across-track length of 0.28 m. Because of the combination between flight speed
and sensor integration time, each row is 0.56 m long along the track. In order to ensure
a perfect coverage of the LiDAR scan (red line in Figure 5) over the hyperspectral image,
its FOV is set to 17◦. Because of this constraint the LiDAR pulse repetition frequency
(PRF) was chosen at 175 Hz (150 in 2019) with a scan frequency of 70 Hz to ensure 0.50 m
across-track and 0.48 m along-track distances between laser ground footprint centers at
the nadir but only a 0.95 m along-track distance on the swath side at plus or minus half of
the FOV angle (Figure 5). Considering both AGL at 1500 m and a laser beam divergence
pulse width at 0.35 mrad, the footprint diameter is 0.52 m on the ground. Therefore, if all
sizes are close to 0.5 m at the nadir, a gap exists on the swath side with a distance of 0.95 m.
Consequently, we have chosen to aggregate all data to the maximum resolution size on
a single regular grid of square pixels with a size of 1 m across- and along-track. Such a
PRF provided a 5.8 pts/m2 mean point density (5.0 in 2019), which is mainly concentrated
along scan lines, as shown in Figure 5, and thus not so well distributed in a 1 m2 pixel.
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Figure 5. (x, y) plane of the scan-line geometry giving an along-track row spacing of 0.5 m at a
nadir to 1 m on the side strip image with a minimum along-track point density of 1 m. At the nadir,
the 0.50 m footprint allows placing two footprints in a pixel in the along-track direction. However,
at the edges, the PRF allows obtaining at least one footprint in the middle of a pixel.

3. Methodology
3.1. LiDAR Processing
3.1.1. Discrete LiDAR

The first and most widely used feature of the LiDAR is the discrete echo. The time of
detection of the first echo returned toward the platform gives the range or straight distance
between platform and target. The GPS and IMU data records give the trajectory of the
plane. The LiDAR Mapping Suite—Professional (LMS) from Teledyne Optech, Vaughan,
ON, Canada, 21 November 2018—provides the geographic (x, y) and altitude (z) position
of the points with the help of boresighting performed on points overlapping between
flight lines [68]. Voids between points are filled by nearest neighbor interpolation in order
to produce a raster called the digital surface model (DSM) corresponding to the surface
envelope of all points, here performed using ENVI-LiDAR [69], which is also used to
classify trees and building to produce the digital terrain model (DTM). These are usually
automatically recognized by using classification and segmentation algorithms [70,71] and
the underlying ground is approximated by interpolation between the nearest known
ground points. However, the vertical accuracy of the LiDAR discrete echo can locally
be affected by the presence of complex topography, truncated by interpolation processes,
and/or unclassified objects on the ground within the laser footprint [72].

3.1.2. FWF LiDAR

At the discrete echo detection time, the full waveform LiDAR records every nanosec-
ond any intensity greater than a detection threshold chosen by the operator. In practice,
the recording of the Titan system starts only at a minimum distance from the predicted
ground called the range gate, when echoes are detected to prevent the accumulation of
useless signals. The whole backscattered signal is therefore accessible on a length de-
pending on the memory capacity. The identification of a record is given by the traveling
time of a laser pulse from its emission to its return time. The energy of a single pulse is
spread along a narrow interval of compact material like a roof or soil and a large distance
of interaction in case of tree crowns, facilitating the recognition/classification of the cor-
responding object [52]. In some cases, the backscattered waveform may display several
echos, due to the vertical architecture of the considered target that interacted with the
laser. In the presence of vegetation, the first one corresponds to the vegetation canopy
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and the last one to the position of the ground if the laser was able to reach it. Conse-
quently, we have to focus on different echoes in function of the object of interest (canopy,
crown or ground/topography). We ensured the perfect coupling of both hyperspectral
and FWF LiDAR data on each pixel by projecting the two types of signals onto the same
DSM with the same incident angle by using a ray-tracing procedure based on the LiDAR’s
GPS and IMU recordings. As discussed by the authors of [54], this procedure permits
keeping the whole FWF LiDAR signal along the oblique light path of the hyperspectral
data without segmenting it on adjacent pixels induced by orthogonal rectification of a
voxelization procedure of orthogonal three-dimensional (3D) cubes [62,73–75]. Therefore
this ray-tracing method produces a 3D pseudo-cube for each type of data. The first one is
the well-known hyperspectral pseudo-cube, containing two spatial dimensions (x and y)
and a third wavelength dimension (w) containing reflectance. The second pseudo-cube
is the FWF LiDAR one, owning the same two spatial dimensions on a map and a third
ranging dimension (r) containing FWF backscattered intensity. Both 3D pseudo-cubes are
attached to a 2D map (x, y) of incident angles (α) and a 2D map of elevation (z) which is
the DSM.

As described in [54], our methodology is based on the relative analysis of slight wave-
form shape variations. At the wavelength of 1064 nm, all of the vegetation presents high
reflectance and the differences are mainly due to chemical compositions, pigment contents
and physiological states. In order to focus the analysis on the structure regardless of other
variations, it is necessary to use few normalization procedures. Altitude variations are
removed by centering the FWF on their first echo (CFWF) allowing to focus the comparison
on the relative intensities only at the top of the tree or grass canopy. In this case tree
and grass are identified by the thickness of the CFWF. Intensity variations, induced by
reflectance and thickness of volume (rising from grass to trees), were removed by normal-
izing the signal to the maximum of its cumulated histogram (NCFWF) sum of the signal,
enabling to focus the analysis on the distribution of the backscattered signal within a given
FWF record. The combination of both normalizations is the NCCFWF, from which it is
possible to analyze the ranging signature of a given vegetation type. Finally, the derivation
of the NCCFWF, called dNCCFWF, permits coming back to the usual pseudo-Gaussian
shape of the FWF signal, without altitude, intensity, and amplitude effects.

In detail, the recording of the FWF signal is activated by the detection of the first
echo of the back-scattered signal, initiating a recording sequence of 60 samples limited
to a sampling period of 1 ns corresponding to a 15 cm range [50,76]. As the footprint
diameter is about 0.5 m with a point density of 5 pts/m2 for a pixel resolution of 1 m2

pixels (Section 2.4), several waveforms are stacked in a given pixel. Figure 6a presents
the 15 cm resolution raw FWF signal of three key surfaces: beach dry sand, Ammophila
arenaria, and white dune steep slope. Figure 6b represents the result (dNCCFWF) after
using a cumulative low pass filter defined by [54], which is necessary for noise reduction.
The corresponding image (Figure 6c) shows that Ammophila arenaria and white dune steep
slope effects remain too close to each other with an aliasing that is well visible in the
image due to the 15 cm bin digitization of the FWF range. Figure 6d shows that the
simple application of a classical median filter [77] to each range channel (along the r
dimension) reveals sub-pixellar information. Subtle variations caused by atmospheric
scattering produce a jagged laser beam path, which induces noise by moving it in a tiny
neighborhood, defocusing the signal. The selection of the best intensity found in a small
neighborhood was efficient to refocus the signal and retrieve the 0.5 m footprint signal
within a 1 m2 pixel. However, as shown in Figure 6e, the following low pass smoothing
procedure tends to erase a part of the sub-pixellar information without removing the
aliasing effect that is also well visible in Figure 6f. Knowing that each FWF record starts at a
distance set for each pulse, two consecutive pulses can fall by ray tracing in the same 1 m2

pixel but at two different lengths of the ground (in the case of sloppy ground for instance)
and not always in the same 15 cm bin of a pseudo-cube.
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Figure 6. Procedures of FWF signal quality improvement: (a) raw 15 cm resolution FWF of beach dry sand (grey), Ammophila
arenaria (magenta) and dune slope (blue); (b) FWF low-pass filtering with red green and blue channel selection of (c) the
corresponding color composite image; (d) same raw FWF signals with a median filter discussed in the text; (e) FWF median
results with low-pass and (f) its color composite display; (g) sketch of the 15 to 5 cm procedure discussed in the text; (h) raw
5 cm resolution FWF; (i) with low-pass and (j) its corresponding color composite display; (k) combination of 5 cm resolution
and median filtering of the FWF; (l) with low-pass filter and (m) its corresponding color composite display.

Figure 6g illustrates the stacking procedure at 5 cm. Dune slope areas are two consec-
utive FWFs recorded with a 15 cm resolution from different initial elevations, resulting in a
vertically offset (not aligned) resampled at the vertical resolution of 5 cm. As shown in the
Figure 6h–j, the vertical resolution set to 5 cm, without range median filtering, only removes
the aliasing effect. The median filter cleaning procedure (Figure 6k) remains necessary to
remove the atmospheric scattering effect and focus the signal (Figure 6l). Thanks to the
5 cm vertical resolution, the filtering can be three times narrower, which leads to a perfect
distinction between both Ammophila arenaria and steep slopes (Figure 6l) enhanced by the
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first echo CFWF procedure, without having the 15 cm aliasing effect with well-contrasted
colors in the color composite image (Figure 6m).

As the dry sand is the best backscattering material of the studied scenes, inducing no
specular reflection as defined by [66,78], the full-waveform resulting from its backscattering
is close but not identical to the emitted waveform, making it perfect to be used as a reference
for a relative comparison procedure [54,79,80]. Figure 7a–c show the relative comparison
between the dry sand dNCCFWF and three major objects of the scene. The deformation
induced by these objects on the FWF signal becomes easier to catch when each dNCCFWF
pixel is subtracted by a dry sand dNCCFWF reference (Figure 7d–f). This permits to simply
define a rule of straightforward classification of low vegetation like Ammophila arenaria
and other grasses presenting the same distribution of leaves scattering the FWF, therefore
requiring some complementary information discussed in the next section. The FWF
analysis is summarized in indices facilitating their combination with hyperspectral ones.
Both indices are areas calculated on a short interval at −0.5 and +2.5 m of the dNCCFWF
centering range set to 22.48 m for the analysis of longer patterns of FWF distortion, such as
trees partially shown here (yellow in Figure 7).

Figure 7. Shape analysis methodology. (a–c) represent the dNCCFWF signal, whereas (d–f) represent the deviation from the
dry sandy surface reference used for surface identification, as it emphasizes the shape variations. The black curve represents
the dry sandy reference signal and the red curve represents the signal of the considered object (Ammophila arenaria for (a,d),
tree for (b,e), and slope effect for (c,f)). The colors represent the main shape variation of the considered signal from the
dry sand reference: blue is the upward damping, corresponding to the FWF marram index measured area, yellow is the
downward damping, corresponding to the FWF down index, and green is the relative intensity difference at the position of
the center of the echo.

The first one, noted as FWF down, is a fraction of the dNCCFWF area (green in
Figure 7d–f), taken in the −0.5 to +2.5 m interval. It is used here to show that the anal-
ysis of the top of the canopy can be sufficient to distinguish trees from bushes without
analyzing the full thickness of that vegetation. The second one, noted as FWF marram, is
the dNCCFWF area departure from the sand (blue in Figure 7d–f), which is conditioned
(Figure 7d) to an intensity greater than −200 at the dNCCFWF center (compared with
Figure 7e,f). Both indices are stored in a map facilitating their combination with hyperspec-
tral data for final classification.

3.2. Hyperspectral Processing

The recording of aircraft attitude, using the GPS and IMU associated with the LiDAR,
allowed the GEOFIT-expert company to calculate the trajectory. From this trajectory,
it was possible to correct the geometry of the hyperspectral raw data by using a ray-
tracing procedure that projects a vector from the aircraft position, using dGPS records,
following the angles recorded by the IMU, which allows to locate the pixel of interest at
the intersection point between the vector and the plan displayed by the LiDAR DSM [81].
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This procedure was performed using PARGE software [82]. A second order of geometric
correction using ground control points (GCPs) is often necessary in order to guaranty
a sub-metric horizontal accuracy. Atmospheric corrections were then performed using
ATCOR software [82]. The latter uses the MODTRAN5 atmospheric model enabling to
estimate for each pixel the water vapor content, based on the 820 nm channel, and the
aerosol diffusion effects [82]. Here we chose to use a maritime (coastline not fully oceanic)
atmospheric aerosols model. The acquisition dates and times (given the sun elevation) were
taken into account as well as recording angles, provided by PARGE output files. After the
geometric and atmospheric corrections, the different acquisition lines were assembled.
Then a minimum noise fraction (MNF) transformation [83] was applied. The first 15 MNF
bands were selected for the MNF inverse transformation. Finally, an adjustment on a
bright target was performed in order to remove any instrument artifacts that could not
be statistically identified by the MNF. This procedure, which insures the best matching
between airborne and field instruments, was performed by using a single bright dry sandy
reference made of 100 spectra collected on the ground with the ASD spectrometer divided
by its ROI in the image.

3.3. Classification of Main Dune Vegetation Proxy
3.3.1. Straightforward Hierarchical Classification of Dune Proxies by Combination of FWF
and HSI Data

In this study we aimed to quickly sort all main components of the image in order
to focus the analysis on the vegetation proxies of the dune dynamics. This is done on a
co-image gathered in a 35-channel image, the collection of maps of indices predetermining
a distance of classification to a class defined either on hyperspectral or LiDAR data. These
are two or three-band hyperspectral indices defined by the authors of [84] as follows: “a
spectral index is a number qualifying the intensity of a phenomenon which is too complex to
be decomposed into known parameters”. Many of them are summarized in [84,85]. The aim
of the famous normalized difference vegetation index (NDVI) [85–88], rewritten at HySpex
VNIR resolution [48], was to minimize the shadowing effect between slopes on relief like
dunes, for example. However, because of common effects of BRDF on leaves, depending
on combinations of sun elevation, flight line direction, and effective local emergent angles,
unexpected variations may occur between images’ sides. Thus, threshold values are only
used for the basic segmentation of large vegetation groups. Following the NDVI model, we
defined other indices, designed for HySpex bands (Table 1), to evaluate the NIR slope of the
vegetation plateau for a grass index (Normalized Difference Grass Index, NDGI), identify
the narrow slope of the reflectance peaks in green (Normalzed Difference Green Leaves
Index, NDGLI) and red (Normalzed Difference Red Leaves Index, NDRLI) leaves’ indices,
and use three bands to fully outline those green (Index of Green Leaves, IdGL) and red
(Index of Red Leaves, IdRL) peaks [89]. The full resolution of hyperspectral images leads
to directly recognizing the chemical components in a reflectance, making more accurate
classifications. However, many vegetation types have the same chemical composition and
one reflectance spectrum may correspond to many different vegetation types. Despite this,
it is possible to use one reflectance spectrum as a descriptor of the information contained
in an image. A perfect match between image and reference spectra never guarantees the
identification of a plant. It can attest to its resemblance and combining this with other
parameters can finally converge toward a solution. Like the NDVI, the spectral angle
mapping (SAM) [46,90] was first defined for shadow effects’ minimization with the help
of the angular distance between reflectance spectra seen as long (bright) or short (dark)
vectors that are insensitive to lighting intensity variations. Like the NDVI [87], SAM angles
are sensitive to seasonal and directional variations between two or more acquisition dates.
It is however possible to minimize the effect by ranking SAM angles within each image,
as discussed in [91]. Instead of trying to define multiple angular thresholds of classification,
which would change from one date to another, a ranking between the SAM angle to
series of reference spectra allows to set a hierarchic classification on moving conditions of
image acquisitions. However, the comparison between parameters varying in too different
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magnitudes would always fall on the boundary between such strong gaps of intensities.
This could be the case when comparing SAM angles with dimensionless hyperspectral
indices. This is avoided by the use of the SAM index (Table 1) ranging from 5 to 1000 for
poor to perfect matching, respectively, instead of SAM angles ranging from 200 to 0 mrad,
respectively, whereas irrelevant data are limited to a range of 0 to 5 instead of 1000 to
200 mrad [48].

First, a well-known NDVI [85–88] rewritten at HySpex VNIR 1600 resolution [48],
enables setting apart non-vegetation pixels in the class C00, which would not be considered
by the classification. The threshold of 0.15 is the value of the NDVI of dry sand without
any vegetation cover. As noticed in Section 3.1.1, all trees (pines, oaks), shrubs, and bushes
displaying green peaks of reflectance with a tight red-edge and a low rising NIR plateau
are easily set apart with the three-band IdGL index (Table 1). Then, they are segmented into
two main classes based on FWF information, presenting a long downward backscattering
(>0.10) for trees (C08) and short one for shrubs and bushes (C09), which will not be further
analyzed in this study. Following the same analysis of field reflectance for the grey dune, all
of the areas dominated by underlying mosses are easily segmented by ranking SAM indices
of mosses with SAM indices of marram and couch grass. Grey dunes were eventually
segmented into C11 (yellow moss) or C12 (brown moss) classes using the internal ranking of
their SAM indices. At this stage, Ammophila arenaria is readily segmented by a threshold of
the FWF marram index. Nevertheless, a SAM index relative comparison procedure allows
to analyze the variable spectral proximity of Ammophila arenaria to grey dune grasses (C03),
itself (C04), fescue (C05), couch grass (C06), and straw mixed with dry sand (C07), which
will be analyzed in the results section. As a permanent sand background characterizes the
foredune proxy, Elymus farctus, its discrimination is possible thanks to the combination
of the Elymus farctus SAM index with the NDGLI and NDGI indices. Once again, a SAM
index relative comparison procedure permits the analysis of the variable spectral proximity
of Elymus farctus to grey dune grasses (C20), Ammophila arenaria (C21), fescue (C22), itself
(C23), and straw mixed with sand (C24), analyzed in the application section. Finally,
remaining pixels correspond to the grey dune vegetation and other foredune vegetation,
which are classified using the direct SAM index ranking, allowing to map grey dune lichens
(C10), other herbaceous plants with lichens (C13), Ammophila arenaria (C14), Festuca (C15)
Elymus farctus, (C18) and straw mixed with sand (C17).

Table 1. Index definitions.

Index Formula FWHM/Sampling Interval (nm) Authors

NDVI (ρNIR − ρRed)/(ρNIR + ρRed) 70–110 Rouse et al. (1974) [86]
NDVI (ρ773 − ρ675)/(ρ773 + ρ675) 4.5/3.7 Launeau et al. (2017) [48]
NDGLI (ρ555 − ρ501)/(ρ555 + ρ501) 4.5/3.7 Kassouk et al. (2010) [89]
NDGI (ρ922 − ρ773)/(ρ922 + ρ773) 4.5/3.7 Kassouk et al. (2010) [89]
IdGL (2.ρ555)/(ρ501 + ρ602) − 1 4.5/3.7 Kassouk et al. (2010) [89]
SAM index (SAM + 0.001)−1 4.5/3.7 Launeau et al. (2017) [48]

Once we obtained the classification results, and in order to reduce the salt and pepper
effect and have more spatially homogeneous classes, we slightly smoothed the classification.
To do this, we applied a majority 3 filter, proposed by ENVI, which consists on a 3 × 3
pixels structural element attributing to the central pixel the value of the majority of the nine
considered ones [77]. In order to verify the quality of the classification results, the latter
will be compared to field measurements. For the working area of Tresson the classification
results will be compared to dGPS field measurements performed over Ammophila arenaria.

In Section 4, only the three main vegetation proxies (Ammophila classes C3–7, Elymus
classes C20–24, and sparse vegetation over dry sand classed as C17) will be presented over
the subset areas presented in Section 2.1. However, the whole classification results are
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available in the Supplementary Materials: S1 and S2 respectively display 2018 and 2019
classification results (2017 displayed no significant differences with the 2018 results).

3.3.2. Classification Validity Assessment

In order to assess how accurate the classification results are, dGPS field measurements,
acquired over the Tresson beach training area and the Notre-Dame-de-Monts validation
area c (see Section 2.3.2), was compared to the polygons resulting from the classification.
Of dGPS points having located Ammophila arenaria on the field, those that correspond
to pixels classified as Ammophila arenaria were used to determine the “perfect matching”
percentage. Another matching percentage, taking into account a one-pixel width buffer
zone around the classification polygons, was calculated to integrate the signal dilution
effects occurring at the edges of the region of interests.

As discussed in 2.3, Ammophila arenaria (class C4) can display spectral signatures
similar to Elymus farctus (class C6), but also to the fescue (Festuca vasconcensi, class C5) and
other types of grasses of the dune (C3). Note that all of these classes (C3–7) are classified as
Ammophila arenarie based on FWF LiDAR telemetric information, but they differ in their
spectral proximity. Considering the spectral variability of these plants and a spectral library
of reference spectra acquired on the field in 2017, a dune vegetation proxy classification
only based on spectral information would not be possible. This is the reason why we also
used the FWF LiDAR ranging information. As a validation, a spectral proximity test was
performed on pixels classified as Ammophila arenaria (C3–7) to assess the percentage of
spectrally closest pixels to other reference spectra. The same test was also performed on
Elymus farctus classified pixels (C20–24). The results are available in the Supplementary
Materials (see S3) but not discussed in this article, as these classes were not discriminated
from FWF LiDAR information.

3.4. Topographic Analysis Methodology

The comparison between airborne LiDAR and ground dGPS elevation values was
performed over different areas. The white dune crests are sand paths only covered by sparse
vegetation and morphodynamically one of the most stable areas, which is convenient for
local high precision calibration.

In 2003, the French Institut Geographique National (IGN) and Service Hydrographique
et Oceanographique de la Marine (SHOM) were instructed by the French authorities to
produce together a topographic and bathymetric model of French coasts [92]. This idea
aimed to create a unique database available for all coastal managers. These data are mainly
LiDAR DTMs, acquired every 10 years along all French coastlines with a standard spatial
resolution of 1 m [93,94]. OR2C permits an annual sampling of the different processes
impacting the coastal morphodynamics, in complementarity with the decennial IGN’s
Litto3D studies. In Pays-de-la-Loire, Litto3D data are available in 2010 and 2019 for the
closest comparison with our 2017 to 2019 data. The closest 2019 Litto3D data were acquired
between the 2nd and the 3rd of February 2019. The 2010 data, containing significant tracks
of the Xynthia storm [95], were also included in this work.

According to [96], the overall morphodynamics of regional sandy beach foredunes
can be performed in a 150 to 300 m buffer zone from the altitude zero line, which explains
the restriction of the analysis to this area. The areas covered by dense Ammophila arenaria
(C4) clumps being investigated for their impact on airborne LiDAR topography and
the polygons of the classes C3 to C7 (Figure 8) were used to define a more restrictive area
of analysis.
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Figure 8. Decision tree used for the classification. The ellipses are the resulting vegetation groups with the color code used
in Figures 11, 13a,b, 14a, 15a,b and 16a,b.

As for the classification results, topographic results will be presented in Section 4
over the subset areas presented in Section 2.1. However, applications to the whole areas
are available in the Supplementary Materials as S4 and S5 respectively for the 2018 and
2019 acquisition years (2017 is not provided as it displays no significant differences to the
2018 results).

4. Results
4.1. Topographic Analysis: Comparison between LiDAR Data and dGPS Field Measurements

The comparison between the 2019 and 2020 white dune crest dGPS field samplings
shows a 0.01 m mean deviation and a 0.028 m RMSE, showing that the dune is stable
enough to be taken as a calibration reference for the 2017–2019 data.

The analysis of the LiDAR signal deviation over the points located on the reference
white dune crest (brown areas in Figure 9) shows a mean underestimation of the elevation of
−0.22 m with a 0.10 m standard deviation in 2018 (like in 2017). In 2019, after a new factory
calibration, the average deviation was reduced to −0.04 m with a 0.10 m standard deviation.

At the locations of Ammophila arenaria clumps (green areas in Figure 9), the mean
deviation was 0.20 m ± 0.27 m for both 2017–2018 and 0.06 m ± 0.15 m in 2019. The period
of 2017–2018 displayed better apparent results because of height compensation of their
ground elevation evidenced on the white dune crest. It was therefore necessary to first
calibrate the airborne LiDAR signal in order to focus the analysis on the Ammophila arenaria
clumps’ effect alone, which is done in Figure 10. The first echoes of the d3NCFWF of
Figures 9a are more scattered than the pixels of the discrete DTM in Figure 9b but both
show the same trend of elevation underestimation compensated in marram grass areas.
The embryo dune bottom and beach top (yellow areas in Figure 9) were not used in the
calibration because of strong variation between dates.
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Figure 9. Deviation between the dGPS data and (a) the d3NCFWF’s first echo and (b) DTM data for 2017 (green points),
2018 (red points), and 2019 (blue points), as a function of the field sampling point number. The colored areas represent the
different types of environments: crest sand paths (brown), beach top (yellow) and Ammophila arenaria (green).

For high precision analysis on local dGPS GCP, the mean deviations giving the cal-
ibration factors were calculated over crest areas and were +0.177, +0.216, and +0.038 m,
respectively, for 2017, 2018, and 2019 airborne LiDAR elevations (Figure 10). Beach top val-
ues, located under 7 m elevation, have been removed. Moreover, 13 points were removed
from the 178 calibration crest points dataset because of inducing second echos, meaning
that they were located on sloppy pixels, which is not acceptable for a calibration reference
area. Airborne LiDAR mean deviation has been reduced almost to zero on the ground,
which emphasizes the idea that both d3NCFWF signals and discrete echoes show a positive
deviation over Ammophila arenaria areas. This confirms that Ammophila arenaria clumps
do not allow the LiDAR signal to fully penetrate the vegetation width to the underlying
ground. This overestimation of the ground elevation reached its maximum around 25 cm
in the middle of marram grass spots and decreased at edges, where it became negligible.
Surprisingly, in top crests free of marram grass, the RMSE of d3NCFWF ground elevations
were 0.10, 0.13, and 0.10 m, respectively, for 2017, 2018, and 2019. These RMSE are smaller
than those of the discrete DTM with 0.17, 0.14, and 0.12 m, respectively, for 2017, 2018, and
2019. This effect, which reached 0.3 m in narrow locations, was induced by the discrete
echo neighboring interpolation process used to build the DTM while d3NCFWF echoes
are always processed at the pixel size. The 1 m2 pixel-based calculation of d3NCFWF is
therefore suitable to better follow the detailed morphology of the ground.
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Figure 10. Deviation between the dGPS data and corrected data: (a) d3NCFWF’s first echo and (b) DTM data for 2017
(green points), 2018 (red points), and 2019 (blue points), as a function of the field sampling point number. Years’ and
environments’ color codes are identical to Figure 9.

In order to guarantee an optimal elevation model quality, it was necessary to isolate
Ammophila arenaria’s areas to correct them independently from the rest of the scene.

4.2. Training Area
4.2.1. Ammophila arenaria Selection by FWF

The polygons corresponding to the Ammophila arenaria classification in Figure 8 are
represented in magenta areas with dGPS field measurements in red points in Figure 11;
green areas are couch grass and blue points are other vegetation covers including Elymus
farctus. A total of 73.3% of Ammophila arenaria field sample points corresponded to pixels.
They have been successfully classified as Ammophila arenaria (magenta areas/red points
in Figure 11). However, considering a 1-pixel uncertainty width buffer zone around the
resulting polygon, because of the use of a majority filter of classification results, the score
reached 90.9%. As Elymus farctus is an important proxy of the foredune it was important to
select it but this has no impact on topography.
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Figure 11. dGPS field measurements versus classified foredune proxies. The extension of the classes
3 to 7 is shown in magenta, containing Ammophila arenaria classified using the FWF argument; the
extension of classes 20 to 24 is shown in green, containing Elymus farctus. Sparse vegetation over dry
sand, which corresponds to class 17, is represented by light yellow. Yellow points represent dGPS
points acquired over the white dune crest, and red points correspond to those sampled on Ammophila
arenaria, making 8 different numerated profiles oriented perpendicularly to the coastline; blue points
correspond to other dGPS points.

In detail, Table 2 shows that only a fraction of the marram grass observed in the
field spectrally matched with Ammophila arenaria (class C4) and that it was often spectrally
closer to Elymus farctus (class C6). C7 is a class of sparsely vegetated over-exposed dry
sand that could belong to both of them. C5 is festuca and C3 is other grass types on
the dune. As stated in Figure 4b, a pure hyperspectral classification could not segment
both vegetation proxies and FWF data are absolutely necessary in this case. However,
the hyperspectral data confirmed the domination of the spectra by marram and couch
grass, which could not be done by FWF alone, which confirms the complementarity of both
techniques. All other vegetation types presenting too small SAM indices were not studied
in both vegetation proxies, which also confirms that hyperspectral methods can provide
standalone diagnostics of vegetation groups.

Table 2. Classified Ammophila arenaria spectral proximities.

Year 2018 2019

pixels 18,489 17,779
C3: grey dune grasses 2% 1%
C4: Ammophila arenaria 45% 35%
C5: festuca 6% 4%
C6: Elymus farctus 35% 48%
C7: sparsed vegetation over exposed dry sand 11% 11%

4.2.2. Ammophila arenaria Topographic Correction

Unfortunately, we could not find a valid estimation of the vegetation height in each
pixel. It seems that the dNCCFWF (Figure 7a) can only detect a bulk deviation of 0.25 m
from the topography without any probative correlation to the effective length of the leaves
measured in the field. This would require the analysis of higher vegetation occupying more
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than one or two bins of the FWF record. Consequently, we decided to apply a correction
factor of 0.25 m, corresponding to the average deviation induced by Ammophila arenaria
evidenced in Figure 10. The application of a 5 by 5 pixels low-pass filter to this constant
correction factor allows simulating its decreasing effect on the edges. Figure 12 presents
the topographic profile 4 (Figure 11) as an example. While the black line corresponds
to the ground dGPS reference, the blue line corresponds to the original 2019 FWF echo
topography, and the green one is corrected with the 0.25 m plus 5 × 5 low-pass procedure
applied on Ammophila areas only. The 2019 Litto3D IGN reference, which is also aligned
with dGPS data for local high precision analysis, is grey, and the red line corresponds to
the discrete last echo. Ammophila arenaria did not induce several echoes and the signal was
not able to fully penetrate the vegetation width to the ground. Consequently, first or last
echoes would provide the same results. The analysis of the deviation from the dGPS field
measurements over Ammophila arenaria sites showed a reduction of the RMSE from 0.24
to 0.13 m for 2019 and from 0.20 to 0.12 m for 2018 data. In comparison, the IGN Litto3D
displayed, without marram grass correction, an average error of 0.20 m over these points.

Note that all elevations, including IGN ones, are provided on a kilometric map with a
precision of 0.30 m. Any local high precision requires alignment on GCPs. In absence of
close standard GCPs, refining procedures with dGPS acquisition are required.

Figure 12. LiDAR elevation profiles of the fourth profile of Figure 11. The black line represents field dGPS, the red line is
the 2019 discrete echo, the blue one is the 2019 FWF single echo without Ammophila arenaria correction, and the green one is
the 2019 FWF single echo with Ammophila arenaria correction. The grey line represents IGN Litto3D DTM.

Figure 13 presents the full Tresson’s training area with the application in the coastline
buffer. It combines topographic and classification results for both 2018 and 2019 (2017 is
not presented because of no noticeable difference with 2018). In 2018 (and by extension, in
2017, which not presented here), both the Ammophila arenaria and Elymus farctus classes’
surface increased from the NW to the SE. In the NW, Elymus farctus presents a local
inland extension that is reduced to a narrow foredune edge along sparse marram grass



Remote Sens. 2021, 13, 29 22 of 30

implantation. Note the presence, in 2018, of an Elymus farctus patch in the NW extremity
of the white dune crest, which almost disappeared in 2019, indicating the digging of a
blowout basin during this period. In the SW, both proxies are well implanted in large
and compact bands, testifying to feeding dynamics in contrast with narrow bands of the
NW in erosion. This observation is in agreement with the SE-ward sediment drift. In 2019,
the extension of the Elymus farctus implantation shows that the foredune, which was not
there in 2018, is rebuilding. Moreover, the southern area followed the same dynamics with
increasing widths of both Ammophila arenaria and Elymus farctus.

The topographic profile, presented in Figure 13c, has been chosen on the northern part
of Tresson beach and the white dune. The OR2C data, either from FWF or discrete echo
detection, show a beach-top accretion from 2018 to 2019. The foredune has been remarkably
stable and a slight erosion has affected the white dune crest. The 2010 Litto3D shows the
level of the beach after Xynthia, which led to an important erosion of the beach and the
foredune. The comparison between 2010 Litto3D and 2017–2019 elevations highlights the
resilience that occurred in this amount of time.

Figure 13. Tresson training area of d3NCFWF 1st echoes DSM with marram height correction in (a) 2018 and (b) 2019 with
maps of Ammophila arenaria (magenta), Elymus farctus (green), and sparse vegetation over dry sand (light yellow). Light
blue dotted lines represent the position of the profile represented in (c), which are corrected FWF last echoes of 2018 (dark
red) and 2019 (light red), discrete echoes DTM of 2018 (dark blue) and 2019 (light blue), and IGN Litto3D data of 2010
(grey) and 2019 (black).
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4.3. Validation Area
4.3.1. Notre-Dame-de-Monts

The full area is presented in the Appendix (see location in Figure 2); only two sub-
sidiary areas, b and c, are presented at a printable magnification. The classification im-
plemented on the Tresson training area was directly applied to north Pays-de-Monts (see
location in Figure 2) without any prior knowledge of Ammophila arenaria (magenta in
Figure 14a) and Elymus farctus (green in Figure 14a) locations. Figure 14 shows field dGPS
points acquired on Ammophila arenaria areas in red, other foredune vegetations in blue, and
beach-top sand in yellow. The profiles acquired in 2020 cutting 2019 Ammophila arenaria
(magenta) polygons larger than 3 pixels (Figure 14a) display a perfect matching percentage
of 63% reaching 80% with a one-pixel width buffer area of partial pixel coverage, which is
correct for a time gap of a year between datasets. Conversely, profiles 8 and 10 (Figure 14b)
cutting 2019 Ammophila arenaria polygons thinner than 3 pixels display a perfect matching
percentage of 20% to 60% with a one-pixel buffer going down to 0% when reduced to
one pixel.

Figure 14. Pays-de-Monts validation area (b in Figure 2) of true color hyperspectral display with maps of Ammophila
arenaria (magenta), Elymus farctus (green), and sparse vegetation over dry sand (light yellow). Locations of dGPS foot
points of Ammophila arenaria are shown in red, Elymus farctus in addition to those classified as sparse vegetation over dry
sand are shown in blue, and the yellow ones are beach-top samples; (a) displays the 6 first profiles (b1 Figure 2) cutting
Ammophila arenaria polygons larger than 3 pixels; (b) displays the last 4 profiles (b2 Figure 2) cutting narrower Ammophila
arenaria polygons.

Figure 15 shows a morphodynamic inversion from the north (see also Figure 14a)
in erosion with Ammophila arenaria (magenta) in direct contact with the shore line, to the
south (see also Figure 14b) in accretion, where the Ammophila arenaria area is at the back of
an Elymus farctus (green) and sparse vegetation over a dry sand area (light yellow). Since
only marram grass were corrected, the trees remain visible on the DSM of the Figure 15.
The topographic profile (Figure 15c) was chosen on the southern part and shows a feeding
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since the 2010 IGN data. This important feeding of the foredune indicates a post-Xynthia
resilience. The 2018 to 2019 comparison for both FWF and discrete echoes indicates an
erosion of the backshore and the white dune slope. However, Litto3D-2019 displays closer
elevations to OR2C-2018 than to OR2C-2019. As the Litto3D data were acquired more
than five months before the OR2C data, it is likely that the erosion event happened in the
amount of time separating the two acquisitions. As trees are not processed, and out of
the scope of this work even if the classification of Figure 8 can detect them, their envelope
appears in Figure 15 as in a DSM, since only marram grass were corrected.

Figure 15. Notre-Dame-de-Monts validation area with the same caption as Figure 13. See location b in Figure 2.

4.3.2. Barre-de-Monts

Located on the south border of the Goulet de Fromentine, the Barre-de-Monts (area c
in Figure 2) is the most dynamic part of the Pays-de-Mont beach system. It is a contrasted
study case in comparison with the Tresson training area. Figure 16a,b presents the com-
bined FWF–DSM and classification results of area c (Figure 2). The topographic profiles
(Figure 16c) show that Barre-de-Monts presents a double-dune system. The comparison
between 2010 Litto3D and 2018–2019 elevation values shows that the inner dune on the
east side is quite stable, whereas the outer one was also eroded by the Xynthia storm. Then,
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the erosion was fueled by a resilience process. The comparison between 2018 and 2019
shows a new erosion that appears on the most frontal dune in the west side. The imbrica-
tion of the vegetation proxy in 2018 (Figure 16a) and 2019 (Figure 16b) confirms a potential
erosion of the western dune as the implantation of Elymus farctus decreased and Ammophila
arenaria almost disappeared in the western dune and decreased in the old eastern one.

Figure 16. Barre-de-Monts validation area with the same caption as Figure 13. See location c in Figure 2.

5. Discussion

The normalization of the dNCCFWF range signal to a single sand reference facili-
tates the analysis of low vegetation by a specific signature, illustrated in blue in Figure 7.
The need for more complete study including other dune proxies like Elymus farctus required
hyperspectral data. Two types of parameters were used: (i) indices quantifying the narrow
spectral absorption features, and (ii) SAM index using the full reflectance VNIR spectra
allowing the detection of weak differences between similar vegetation not detectable with
a low number of bands. Despite this, Ammophila arenaria and Elymus farctus remained too
close to each other (Figure 4b) because of the combination of healthy green leaves with yel-
lowish dry ones. Hyperspectral data alone would require systematic yearly field sampling
of their reflectance. Their combination with LiDAR FWF, providing morphological parame-
ters, allows to overcome this drawback and to permit multi-temporal studies of Ammophila
arenaria. Despite of a better distinction of the FWF signature of Ammophila arenaria from
the slope one, micro-topographies may display local similar FWF signatures in narrow
areas. It is then expected to remove the last misclassified Ammophila arenaria by using
object-oriented base classification, which is also useful to minimize salt and pepper effects.
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The Ammophila arenaria topographic correction was restricted to a bulk thickness of
0.25 m. We are also expecting to achieve a better estimation of the FWF signature of grass
types through the study of other species with heights rising up to a few meters. A larger
sample of dNCCFWF distortions is currently under investigation.

Finally, we provided a tool allowing access to a snapshot view of the coastline morpho-
dynamics via a direct inspection of the imbrication between vegetation proxies. The analy-
sis of the imbrication of marram grass (settling white dune) and couch grass (foredune)
proxies revealed that Tresson and Barbâtre are subject to a southeastward along-shore
sediment drift, interacting on the Barbâtre southern part with the westward one induced
by the Fromentine gully. Barre-de-Mont displays a double-dune morphology, attesting
to the progression of the coastline, despite erosion dynamics observed between 2018 and
2019. Thanks to the foredune vegetation proxies, it is possible to see that the northern
part of Notre-Dame-de-Mont, where Ammophila arenaria is in front of the foredune, is
eroding, whereas the southern part, where Ammophila arenaria is behind Elymus farctus, is
in accretion. However, a lot more remains to be done on the rest of the 250 km of coastline
acquired yearly since 2017 by the OR2C observatory.

The 250 km were monitored in topo-bathymetric FWF at 532 and 1064 nm with
synchronized hyperspectral images from 400 to 2450 nm at a cost of 440 e/km2, which is
identical to the previous study collecting only discrete infrared echoes. The present work is
part of the broader framework of the Regional Observatory of Coastal Risks (OR2C), which
brings together various partners, including state services and local authorities. The cost
per km2 is pooled between these various partners for the plane overflight of the various
observation sites (with optimization of the aircraft trajectory according to the observation
objectives), ranging from monitoring vegetation, beach–dune contact, sand surfaces, coastal
defenses, cliffs, and various issues requiring the use of this type of accurate data. It goes
without saying that by pooling costs (aircraft rental, equipment depreciation) the price to
be paid for one site or one partner is greatly reduced. It is this economic model that we
are promoting within the framework of the OR2C. All OR2C data are downloadable for
free via the https://ids.osuna.univ-nantes.fr/ website in accordance with the European
directive INSPIRE. Only the DTMs and DSMs are currently online. New data, including
current work, will be available soon.

6. Conclusions

This study demonstrated the interest of the hyperspectral and full-waveform LiDAR
synchronization on a section of the French Pays-de-la-Loire coastline, which is easily
transferable worldwide to other similar sandy shorelines with marram grass. The objectives
were (i) providing a tool allowing a rapid snapshot of the coastline morphodynamic state
via vegetation proxies given by a straightforward fast hierarchical classification combining
hyperspectral and FWF LiDAR and (ii) improving the DTM quality by using the FWF
signal correction of the topographic deviations induced by Ammophila arenaria. The key
improvement was the FWF stacking at the 1 m pixel scale of range (r) bin with a size of
5 cm, refocusing the 0.5 m footprint laser beam and leading to the distinction between
slope double-echoes and marram grass single echoes exhibiting upwards characteristic
FWF signatures. The recycling of 2017 hyperspectral field samples performed using the
same camera proved that a combination between 2017 to 2019 airborne data that are
mainly sensitive to pigment and water contents with synchronized FWF LiDAR data
that are sensitive to foliage structure was efficient to compensate for the ever-changing
physiological states of vegetation under conditions of climate change. Finally the pixel-
by-pixel direct extraction of DTM, without neighborhood interpolation, by FWF LiDAR
analysis with Ammophila arenaria height correction led to a key topographical accuracy
improvement useful for sediment balance studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/1/29/s1. Figure S1: 2018 classification results for the whole coastline presented in Figure 2, the
color are those presented in Figure 8; S2: 2019 classification results for the whole coastline presented

https://ids.osuna.univ-nantes.fr/
https://www.mdpi.com/2072-4292/13/1/29/s1
https://www.mdpi.com/2072-4292/13/1/29/s1
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in Figure 2, the color are those presented in Figure 8; S3: Table presenting the spectral proximities to
Elymus farctus for both 2018 and 2019; S4: 2018 topographical results applied to the whole coastline
presented in Figure 2; S5: 2019 topographical results applied to the whole coastline presented in
Figure 2.
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