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Appendix S1. LiDAR metrics description 

 

Table S1. Summary of the tree- and plot-level metrics derived from unmanned aerial vehicle light 

detection and ranging (UAVLS) point clouds that were used for the DBH estimation. 

Metrics Definition Reference 

   
Tree-level   

   
𝐻1 

The height of the highest point within individual tree point 

clouds 
‒ 

𝐶𝐴 
The area of the 2D convex hull of projected individual tree 

points on the x-y plane 
[1] 

𝐶𝐷 Crown diameter calculated by 2 × √𝐶𝐴/𝜋 [2] 

𝐶𝑅𝑚𝑎𝑥 , 𝐶𝑅𝑚𝑒𝑑𝑖𝑢𝑚 The maximum and medium values of crown radius ‒ 

𝐶𝑤𝑉 , 𝐶𝑤𝑆 
Crown volume and surface area calculated from the 3D 

convex hull of crown points 
[3] 

𝐻5
𝑇 , 𝐻10

𝑇 , 𝐻20
𝑇 , 𝐻25

𝑇 , 𝐻30
𝑇 , 𝐻40

𝑇 , 𝐻50
𝑇 , 

𝐻60
𝑇 , 𝐻70

𝑇 , 𝐻75
𝑇 , 𝐻80

𝑇 , 𝐻90
𝑇 , 𝐻95

𝑇 , 𝐻99
𝑇  

The percentiles of the individual tree point height 

distributions (5th, 10th, …, 95th and 99th). 
[4] 

𝐻𝑚𝑒𝑎𝑛
𝑇  The mean height of the individual tree points [4] 

𝐻𝑣𝑎𝑟
𝑇 , 𝐻𝑠𝑡𝑑

𝑇 , 𝐻𝑐𝑣
𝑇 , 𝐻𝑠𝑘𝑒

𝑇 , 𝐻𝑘𝑢𝑟
𝑇  

The variance, standard deviations, coefficient of variation, 

skewness, and kurtosis values of heights 
[4] 

𝐷5
𝑇 , 𝐷10

𝑇 , 𝐷20
𝑇 , 𝐷25

𝑇 , 𝐷30
𝑇 , 𝐷40

𝑇 , 𝐷50
𝑇 , 

𝐷60
𝑇 , 𝐷70

𝑇 , 𝐷75
𝑇 , 𝐷80

𝑇 , 𝐷90
𝑇 , 𝐷95

𝑇 , 𝐷99
𝑇  

The proportion of points above the percentiles (𝐻5
𝑇 , 𝐻10

𝑇 , … 𝐻99
𝑇 ) 

to total number of points within a subject tree 
[4] 

𝐷𝑚𝑒𝑎𝑛
𝑇  

The proportion of points above the mean height to the total 

number of points 
[4] 

𝑅𝐻𝑚𝑎𝑥 , 𝑅𝐻𝑚𝑒𝑎𝑛 
The ratios of a target tree’s height to the maximum and mean 

tree height 
[5] 

𝑅𝐶𝐴𝑚𝑎𝑥 , 𝑅𝐶𝐴𝑚𝑒𝑎𝑛 , 𝑅𝐶𝐴𝑡𝑜𝑡𝑎𝑙 
The ratios of a target tree’s crown area to the maximum and 

mean crown area and total crown area 
[5] 

𝐶𝐶𝑝25, 𝐶𝐶𝑝50, 𝐶𝐶𝑝75,  𝐶𝐶𝑝100 

The ratio between crown areas computed at a reference 

height equal to 𝑝% of the height of the subject tree (ℎ𝑝) and 

the total crown areas 2 

[5] 

   
Plot-level   

   
𝐻5

𝑃 , 𝐻10
𝑃 , 𝐻20

𝑃 , 𝐻25
𝑃 , 𝐻30

𝑃 , 𝐻40
𝑃 , 𝐻50

𝑃 , 
𝐻60

𝑃 , 𝐻70
𝑃 , 𝐻75

𝑃 , 𝐻80
𝑃 , 𝐻90

𝑃 , 𝐻95
𝑃 , 𝐻99

𝑃  

The percentiles of the points’ height distributions (1th, 5th, …, 

95th and 99th) of all returns within a plot 
[6] 

𝐻𝑚𝑎𝑥
𝑃 , 𝐻𝑚𝑒𝑎𝑛

𝑃  
The maximum and mean values of points’ height within a 

plot 
[6] 



𝐻𝑣𝑎𝑟
𝑃 , 𝐻𝑠𝑡𝑑

𝑃 , 𝐻𝑐𝑣
𝑃 , 𝐻𝑠𝑘𝑒

𝑃 , 𝐻𝑘𝑢𝑟
𝑃  

The variance, standard deviations, coefficient of variation, 

skewness, and kurtosis values of heights 
[6] 

𝐷5
𝑃 , 𝐷10

𝑃 , 𝐷20
𝑃 , 𝐷25

𝑃 , 𝐷30
𝑃 , 𝐷40

𝑃 , 𝐷50
𝑃 , 

𝐷60
𝑃 , 𝐷70

𝑃 , 𝐷75
𝑃 , 𝐷80

𝑃 , 𝐷90
𝑃 , 𝐷95

𝑃 , 𝐷99
𝑃  

The proportion of points above the percentiles 

(𝐻5
𝑃 , 𝐻10

𝑃 , … 𝐻99
𝑃 ) to total number of points within a plot 

[7] 

𝐷𝑚𝑒𝑎𝑛
𝑃  

The proportion of points above the mean height (𝐻𝑚𝑒𝑎𝑛
𝑃 ) to 

total number of points within a plot 
[7] 

𝐷𝑎𝑏𝑜𝑣𝑒3
𝑃  

The proportion of points above 3m to the total number of 

points representing the canopy fraction in a plot 
[7] 

𝐶𝑛𝑝𝐻 , 𝐶𝑛𝑝𝐶 , 𝐶𝑛𝑝𝑅 The canopy height, canopy cover, and canopy rugosity 3 [8] 

𝐴𝑠𝑝𝑒𝑐𝑡 Aspect [9] 

𝐶𝑢𝑟𝑝𝑙𝑎𝑛 , 𝐶𝑢𝑟𝑝𝑟𝑜𝑓𝑖𝑙𝑒 , 𝐶𝑢𝑟𝑚𝑒𝑎𝑛  Plan, profile and mean curvature [9] 

𝐴𝑙𝑡𝑚𝑒𝑎𝑛 , 𝐴𝑙𝑡𝑚𝑒𝑎𝑛 , 𝐴𝑙𝑡𝑠𝑡𝑑 The mean, range, and standard deviations of altitude [9] 

𝑆𝑙𝑜𝑝𝑒 Slope [9] 

𝑊𝑒𝑡𝑛𝑒𝑠𝑠 Wetness index [9] 
1In our study, LiDAR-derived tree height (𝐻) were applied as a sole predictor for DBH modeling. The 

relationship between field-measured and LiDAR-derived tree height was shown in Figure S1. The 

coefficient of determination (R2) of linear regression was 0.9570 and the slope of regression line is 

0.9466, which showed the relatively high goodness-of-fit. The relative root mean square error 

(RMSE%) between LiDAR-derived and field-measured tree height was  was about 7%, which 

calculated by 𝑅𝑀𝑆𝐸% =  √
1

𝑛
∑ (𝐻𝑓𝑖𝑒𝑙𝑑 − 𝐻𝐿𝑖𝐷𝐴𝑅)2𝑛

𝑖=1 /𝐻𝑓𝑖𝑒𝑙𝑑
̅̅ ̅̅ ̅̅ ̅  where 𝑛 , 𝐻𝑓𝑖𝑒𝑙𝑑 , 𝐻𝐿𝑖𝐷𝐴𝑅  , and 𝐻𝑓𝑖𝑒𝑙𝑑

̅̅ ̅̅ ̅̅ ̅ 

represent the observations, LiDAR-derived, field-measured and the mean value of field-measured 

tree height, respectively.  

 

Figure S1. A linear fit between field-measured and LiDAR-derived tree height. 

 

2The measures based on crown projection area evaluated at a certain percentage of the height of the 

subject tree could be calculated as Eq. (S1) and Figure S2.  

𝐶𝐶𝑝 =
1

𝑆𝑎

∑ 𝐶𝐴𝑝𝑖

𝑛

𝑖=1

 
(S1) 

where 𝐶𝐶𝑝 is crown cover computed at ℎ𝑝, 𝑆𝑎 is plot area, 𝐶𝐴𝑝𝑖
 is the crown cross-sectional area 

of one tree at the same height. As shown in Figure S2, if the base of the crown of a competitor is above 

this height, the full crown area is used instead (𝑇𝑟𝑒𝑒1); whereas if the tree height is below the reference 

height the tree is not considered (𝑇𝑟𝑒𝑒3). In practice, we easily calculated the area based on LiDAR-

driven CHMs. 



 

Figure S2. Computation of the competition index based on crown cross-sectional areas calculated at 

a reference height equal to a certain percentage of the height of the subject tree. 

3The canopy height, canopy rugosity, and canopy cover were calculated by the mean, standard 

deviation values, and proportion of pixels above 3m on pit-free CHM in our study, which is a little 

different from the calculation of Almeida et al. (2019) that used the local maximum points within 2m-

intervals to represent the canopy surface attributes.  

Appendix S2. Base model selection 

In this study, we applied LiDAR-derived tree height (𝐻) as the single predictor for developing the 

base model. Over the last 60 years, more than 30 𝐻-DBH equation forms have been developed for 

various species across several types of forest. The inverse functions of these equations can be applied 

for the LiDAR-derived DBH- 𝐻 estimations [10]. According to the recommendation from Bi et al. 

(2012) and the characteristics of our data, six models were selected as candidates and listed in Table 

S2. Model 1-5 are the inverse functions of commonly used height-DBH models, the Original H-DBH 

function forms are also presented. A logical constraint was incorporated to ensure a zero DBH when 

tree height equals breast height (1.3 m). Besides, the parameter of the asymptotic tree height needs to 

be previously set to ensure the transferability of the models. Therefore, parameter a in both Model (4) 

and (5) was set as 33.7 m (maximum total tree height of 35 m), referring to the historical data 

observation (i.e., tree height curve, etc.) in the larch plantation sites. The functions were fitted 

independently to all observations using weighted nonlinear least square regressions in R software 

(www.r-project.org). As a result, Model (6) was selected as the base model for DBH estimation due 

to lower the mean difference (BIAS), root mean square error (RMSE), Akaike information criterion 

(AIC), and higher coefficient of determination (𝑅𝑎
2) than others. 

 

Table S2. The basic equation forms considered for the base model selection. 

Model Equation form 
Original H-DBH 

functions 
Bias RMSE 𝑹𝒂

𝟐 AIC 

(1) 𝐷 = (𝑎−1(𝐻 − 1.3))
1/𝑏

 𝐻 = 1.3 + 𝑎𝐷𝑏  0.0032 2.7399 0.7959 40598.39 

(2) 𝐷 = 𝑎(𝐻 − 1.3)1/2/(1 − 𝑏(𝐻 − 1.3)1/2) 
𝐻 = 1.3 + 𝐷2/(𝑎

+ 𝑏𝐷)2 
-0.0109 2.6468 0.8095 40020.05 

(3) 
𝐷 = 𝑎−1(𝐻 − 1.3)1/𝑏/(1

− (𝑎−1(𝐻 − 1.3))1/𝑏) 
𝐻 = 1.3 + 𝑎(𝐷/(1

+ 𝐷))𝑏 
0.0220 2.6498 0.8091 40038.87 

(4) 𝐷 = −𝑏−1𝑙𝑛 (1 − (𝑎−1(𝐻 − 1.3))1/𝑐) 𝐻 = 1.3 + 𝑎(1 − 𝑒−𝑏𝐷)𝑐 -0.0053 2.6479 0.8094 40026.90 

(5) 𝐷 = (−𝑏−1𝑙𝑛 (1 − (𝑎−1(𝐻 − 1.3)))1/𝑐 𝐻 = 1.3 + 𝑎(1 − 𝑒−𝑏𝐷𝑐
) -0.0075 2.6600 0.8076 40103.67 

(6) 𝐷 = 𝑎(𝐻 − 1.3)𝑏𝑒𝑐(𝐻−1.3) − -0.0005 2.6400 0.8105 39976.27 

Note: 𝐷 and 𝐻 in the equations represent DBH (in cm) and tree total height (in m), respectively; 𝑎, 

𝑏, and 𝑐 are model parameters, 𝑎 = 33.7 in Model (4) and (5). 



 

Appendix S3. Random forests variable selection 

Out-of-bag error (mean square error of the out-of-bag samples) in a backward stepwise variable 

selection of random forests was presented in Figure S3. When 85 predictors were removed, the 

continued variable reduction will cause significantly increased OOB error. So the remained 15 

variables (𝐻95
𝑇  , 𝐻 , 𝐻99

𝑇  , 𝑅𝐶𝐴𝑡𝑜𝑡𝑎𝑙 , 𝐻90
𝑇  , 𝐶𝑤𝑉 , 𝐻80

𝑇  , 𝐶𝐷 , 𝐻75
𝑇  , 𝐶𝐴 , 𝐻70

𝑇  , 𝐶𝑤𝑆 , 𝐶𝐶𝑝75 , 𝐻75
𝑃   and 𝐶𝑛𝑝𝑅 ) 

were selected by the variable selection method.  

 

Figure S3. Out-of-bag (OOB) error with variables being removed by a backward stepwise variable 

selection of random forests. The dash line represents the number of variables equal to 85. 
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