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Abstract: Unmanned aerial vehicle laser scanning (UAVLS) systems present a relatively new means 
of remote sensing and are increasingly applied in the field of forest ecology and management. How-
ever, one of the most essential parameters in forest inventory, tree diameter at breast height (DBH), 
cannot be directly extracted from aerial point cloud data due to the limitations of scanning angle 
and canopy obstruction. Therefore, in this study DBH-UAVLS point cloud estimation models were 
established using a generalized nonlinear mixed-effects (NLME) model. The experiments were con-
ducted using Larix olgensis as the subject species, and a total of 8364 correctly delineated trees from 
UAVLS data within 118 plots across 11 sites were used for DBH modeling. Both tree- and plot-level 
metrics were obtained using light detection and ranging (LiDAR) and were used as the models’ 
independent predictors. The results indicated that the addition of site-level random effects signifi-
cantly improved the model fitting. Compared with nonparametric modeling approaches (random 
forest and k-nearest neighbors) and uni- or multivariable weighted nonlinear least square regression 
through leave-one-site-out cross-validation, the NLME model with local calibration achieved the 
lowest root mean square error (RMSE) values (1.94 cm) and the most stable prediction across dif-
ferent sites. Using the site in a random-effects model improved the transferability of LiDAR-based 
DBH estimation. The best linear unbiased predictor (BLUP), used to conduct local model calibra-
tion, led to an improvement in the models’ performance as the number of field measurements in-
creased. The research provides a baseline for unmanned aerial vehicle (UAV) small-scale forest in-
ventories and might be a reasonable alternative for operational forestry. 

Keywords: unmanned aerial vehicle laser scanning (UAVLS); diameter at breast height (DBH); non-
linear mixed-effects model; calibration; best linear unbiased predictor (BLUP) 
 

1. Introduction 
Forests, as one of the essential elements of a terrestrial ecosystem, have a crucial role 

in terms of regulating fluxes and stores of carbon and water, contributing to biodiversity 
conservation, and regulating the global climate system [1,2]. To quantitatively assess the 
amount and map the distribution of forest and its changes, a timely and accurate forest 
resource inventory is needed [2]. 

Traditionally, forest inventories depend on the sampling of the ground truth (in situ 
measurements), where each selected individual’s attributes are obtained through tree-by-
tree measurements [3,4]. Such inventories are not cost-effective since the field measure-
ments are often labor-intensive and time-consuming, consequently limiting the sampling 
intensity and number of tree attributes measured [4]. Developments in remote sensing 
technologies have brought about massive breakthroughs in terms of improving the per-
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formance of forest inventory, specifically with respect to the measurement scale and effi-
ciency [5]. Airborne LiDAR is capable of reconstructing the detailed 3D structure of the 
entire forest landscape using airplane-mounted high-frequency laser scanners, which 
might potentially overtake traditional in situ forest inventory since they can collect more 
information at a high resolution and accuracy in a relatively brief period [6–8]. Further-
more, advanced sensors and computational technology are able to accurately detect and 
quantify the crown dimensions of a single tree depending on the crown delineation algo-
rithms utilized [9]. The detailed single tree-level attributes can now be directly measured, 
which may fundamentally shift our way of censusing forests [9,10]. 

In the last few years, unmanned aerial vehicles (UAVs), as a small-scale, low-cost, 
remote sensing alternative to satellite and airborne platforms, have provided a unique 
combination of high temporal and spatial resolution and have gradually become one of 
the most powerful tools for 3D forest mapping [11,12]. The miniaturized laser scanning 
sensors on UAV platforms have earned a good reputation in the field of forest inventory 
and surveying due to their various benefits, such as increased point densities, lower cost, 
flight route flexibility, and simple operation [13,14]. Compared with airborne laser scan-
ning, UAVLS systems can obtain higher-density point cloud data at a local scale with a 
smaller bias and standard deviation when quantifying the crown structures, and thus 
have been increasingly applied for monitoring and estimating forest attributes [15–17]. 

Tree diameter at breast height (DBH) is universally known as one of the most crucial 
elements in forest inventories. DBH is important both ecologically and economically, in 
that its distribution characterizes the growth, structure, and economic merit of the stand 
and plays a critical role in forestry practitioners’ decision-making [18,19]. However, the 
utilization of aerial point clouds to measure DBH is still inadequate in terms of accuracy, 
since tree stems are normally occluded by canopy obstruction [20]. Without DBH meas-
urements, established models such as tree height, taper, stem volume, biomass, and car-
bon storage equations can no longer be used, since DBH mostly acts as the key predictor 
[21,22]. Thus, estimating individual tree diameter has been a key concern in the field of 
forestry remote sensing [23]. 

Recently, an increasing number of studies have applied LiDAR data to estimate DBH 
[24,25]. LiDAR-derived tree height is often utilized as the preferred predictor for DBH 
estimation due to the strong relationship between DBH and tree height and the robustness 
of LiDAR height measurements [23,26]. However, using tree height as the sole predictor 
was found to be unreliable in predicting the DBH of large trees, since trees with a similar 
height might vary highly in terms of diameter [21,22]. This might be caused by the tree’s 
natural traits: a tree rapidly gains height to escape the understory position but then re-
sumes expanding in diameter throughout its whole life after reaching its maximum height 
[27]. Thus, some researchers have suggested using crown metrics as an additional predic-
tor for LiDAR-derived DBH estimation [22,28,29]. Furthermore, Lo and Lin (2013) pro-
posed competition indices for evaluating whether the surrounding trees (i.e., competitors) 
had a significant effect on the DBH growth in an old-growth stand [25]. The environment 
and competition of trees indeed play vital roles in the size of an individual tree’s DBH, 
which should be considered when developing a DBH model [24,30,31]. 

With respect to LiDAR-based DBH modeling approaches, linear equations or equa-
tions that are transferable into linear forms such as exponential or power functions are 
often applied as regression models [21]. However, these equations may be simplistic and 
applicable to only a limited range of tree sizes and stand conditions [21]. Furthermore, 
ordinary least squares (OLS) approaches are often used to estimate parameters in these 
equations. Modeling data are often hierarchically/longitudinally structured, and individ-
ual trees are nested within the block level. It is difficult to satisfactorily regress the error 
hypothesis simultaneously, which may cause significantly biased variance estimates 
[32,33]. In addition, many studies have focused on using nonparametric approaches for 
DBH estimation. Vauhkonen et al. (2010) applied k-most similar neighbors (MSN) impu-
tation and random forest methods to predict DBH and other attributes in Finland [34]. Yu 
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et al. (2011) predicted tree-level attributes from airborne LiDAR point clouds using ran-
dom forest approaches and achieved a similar performance with a linear regression 
method [35]. Although nonparametric approaches involve fewer assumptions and could 
achieve a higher prediction accuracy, they are not a suitable tool to understand the rela-
tionship between LiDAR metrics and forest inventory attributes [36]. 

One of the inherent problems with using remote sensing data as predictors is the 
calibration and transferability of the established equations [37,38]. Models generally per-
form well in regions where the modeling data are located [39]. However, practical inven-
tories are mostly performed using different sensors or imaging parameters, and the struc-
ture of the stand- and tree-level attributes can be remarkably varied between sites [38]. 
Different laser scanning devices, modes, and operational parameters may generate nota-
bly distinctive point clouds [40–42]. Point cloud-based estimations produced by a partic-
ular device or parameter might have a higher accuracy in some sites than in others [39]. 
Thus, the utilization of established equations often leads to bias and is less accurate; on 
some occasions, the decrease is trivial and still acceptable [39]. Furthermore, forest struc-
ture can also be a source of transferability problems, mainly if there is a considerable dif-
ference between the source and the target locations, or if the model fitting data do not 
properly cover the variations in the data used for model validation [38,39]. 

In UAVLS-based forest inventories, more attention should be paid to the transfera-
bility of the model, since UAVLS acquisition is primarily affected by several environmen-
tal factors. Moreover, UAVLS is more suitable for inventorying small forest areas with a 
high accuracy, and it is practical to use the existing models and the new UAVLS acquisi-
tion for predicting certain variables. Our study thus focuses on developing a DBH estima-
tion model for UAVLS-based forest inventories. The aims of the present research were to 
(1) delineate individual trees and extract various tree- and plot-level metrics derived from 
UAVLS data, (2) present a nonlinear mixed-effects (NLME) modeling framework for esti-
mating individual tree DBH using UAVLS-derived metrics and random effects, (3) cali-
brate and assess the established NLME model using the field data from a different region, 
and (4) compare the accuracies and transferability of the DBH estimation with alternative 
modeling approaches. This study could provide a baseline and new perspective for DBH 
modeling using UAVLS for small forest inventories. 

2. Materials and Methods 
2.1. Study Area and UAVLS Data Acquisition 

This research was conducted in Mengjiagang Forest Farm (130°32′0″–130°52′6″ E, 
46°20′20″–45°30′16″ N), which is located along the western fringes of Wanda mountain in 
the northeastern part of Huanan County, Heilongjiang province, China. The terrain 
mainly features gentle slopes and low-elevation hills, with an average elevation of ap-
proximately 250 m a.s.l. [43]. The forest vegetation in the area is dominated by coniferous 
plantations, predominantly Pinus sylvestris var. mongolica, Pinus koraiensis, Larix olgensis, 
and Picea asperata. 

In the present study, we used larch, one of the most abundant and economically im-
portant species in northeast China, for DBH modeling. A total of 11 sites of larch planta-
tions of different age groups, stand densities, and forest conditions were selected to rep-
resent all larch stands in the study area (Figure 1). All the sites were dominantly covered 
by Larix olgensis plantations with an initial planting spacing of 2 × 1.5 m (3300 stems/ha). 
The stand densities were adjusted by thinning practice depending on the growth stage 
and site quality, which were about 3000, 2000, 1000, 700, and 500 stems/ha for young, mid-
dle-aged, near-mature, mature, and over-mature forests, respectively. 
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Figure 1. The site locations in the study area (coordinate system: WGS 1984 UTM Zone 52N). 

UAVLS data were acquired for these 11 sites from 10 to 12 July 2019, using a RIEGL 
mini VUX-1UAV LiDAR scanner (www.riegl.com/products/unmanned-scanning/riegl-
minivux-1uav) carried by a Feima D200 UAV platform. The LiDAR sensor operated at a 
100 kHz pulse repetition rate with a maximum scan speed of 100 scans per second. The 
scanner’s maximum measurement range was 250 m with an accuracy of 15 mm. All the 
flights were designed as crossed transects with 80 m swath overlaps at 80 m altitude and 5.0 
m/s speed, conditions which are commonly used in UAVLS data collection [13,15]. The sen-
sor provides a 360° field of view. In interpreting the point cloud data, the scanning angle 
was specifically set to different sites depending on the trajectory and overlaps, but all were 
within ±60° to avoid measurement errors caused by excessive angle. The average pulse den-
sities for each site ranged from about 120 to 220 pulses/m2, and the final point densities were 
about 150 to 270 pt/m2, with up to five echoes. The descriptions of forest characteristics and 
UAVLS point densities are listed in Table 1 for each site. 

Table 1. Description of the forest characteristics and unmanned aerial vehicle laser scanning (UAVLS) data for a total of 
11 sites. 

Site Number 
of Plots 

Area 
(ha) 

Structure DBH Range 
(cm) 

DBH Mean 
(cm) 

CD Range 
(m) 

CD Mean 
(m) 

H Range 
(m) 

H Mean 
(m) 

Point Density 
(pt/m2) 

1 8 9.8 Mid 5.0‒23.5 11.4 1.1‒6.2 2.6 5.0‒19.7 12.9 155.2 
2 10 9.4 Ma 18.4‒40.2 27.1 1.5‒8.7 4.1 18.5‒30.5 25.4 187.3 
3 6 6.4 Mid, Y 5.1‒29.6 11.8 0.7‒6.6 2.7 7.0‒21.3 13.4 165.8 
4 9 9.5 NM 10.5‒35.2 20.8 1.2‒8.5 3.4 12.0‒26.3 20.3 202.1 
5 14 16.3 Ma, Y 5.0‒37.8 12.4 0.6‒7.8 3.3 6.0‒32.5 20.4 214.6 
6 10 9.7 OM, Y 5.0‒37.4 18.0 0.7‒8.6 3.4 5.2‒33.3 22.3 267.0 
7 9 10.0 Ma, Mid 7.8‒34.8 20.4 1.2‒7.2 3.3 5.5‒28.9 21.1 221.3 
8 6 8.9 Ma 8.1‒39.4 18.8 1.3‒8.3 3.6 10.2‒26.6 21.5 165.7 
9 13 11.9 Nm 10.2‒35.1 18.4 1.1‒6.0 2.8 11.3‒28.0 22.2 200.6 

10 14 9.6 Y, Mid 5.0‒26.1 10.6 0.7‒5.0 2.4 5.1‒23.6 11.5 189.9 
11 19 22.4 Mid, Y 5.1‒25.0 12.0 0.8‒5.2 2.4 5.5‒21.7 14.9 222.0 

Total 118 123.7 
Y, Mid, NM, 

Ma, OM  
5.0‒39.4 14.9 0.6‒8.7 2.7 5.0‒33.3 14.7 203.6 

Note: DBH: tree diameter at breast height; CD: crown diameter; H: total tree height; Y, Mid, NM, Ma, and OM present 
young, middle-aged, near-mature, mature, and over-mature forests, respectively. 
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2.2. In Situ Measurements 
A total of 118 plots (30 m × 30 m) across 11 experimental sites were established in July 

2019. The sample plots were evenly distributed in each site, excluding the edge of the 
stand and large forest gaps. The distance between plots was larger than twice each site’s 
average tree height. The number of plots for each site is listed in Table 1. DBH and crown 
width measurements were conducted for all trees with DBH more than 5 cm using a di-
ameter tape. Meanwhile, the height of the first live branch position (at crown base) and 
the total tree height were measured using a Vertex IV instrument with a height resolution 
of 0.1 m (Haglöfs, Sweden). The trees’ coordinates were recorded by measuring their rel-
ative position to the corner of plots. Furthermore, the geographical coordinates of the in-
dividual trees and four corners of each plot were determined with a real-time kinetic 
(RTK) global navigation satellite system (GNSS) (UniStrong G10A, Beijing, China) with a 
positioning error of approximately 0.1 m. Trees under poor GNSS signals were georefer-
enced by their relative coordinates, the positioning accuracy of which was estimated to be 
about 0.3‒0.5 m. 

2.3. LiDAR Metrics Extraction 
In this study, both tree- and plot-level metrics were extracted from the UAVLS data. 

The tree-level metrics include the basic characteristics of each individual and their com-
petitive status within the sample plot. In addition, stand conditions also affect individual 
stem diameter growth and size distribution. The plot-level metrics were used to describe 
the crown structural and topography characteristics that were introduced as auxiliary in-
formation. 

2.3.1. UAVLS Data Preprocessing 
Firstly, the noise points were manually removed from the raw LiDAR point clouds. 

The cloth simulation filtering was utilized to categorize the remaining points into 
nonground and ground points [44]. Due to the dense canopy cover, the ground point 
cloud density is about 10 pt/m2 on average. Then, the Kriging method with a 0.5 m pixel 
size was used to interpolate the ground points into digital terrain models (DTMs) [45]. 
DTM values were subtracted to obtain the normalized height of each point [46,47]. As 
mentioned in early studies, data pits in the canopy height models (CHMs) disrupt the 
crowns’ integrity and smoothness (Figure a), which negatively affects the individual 
crown delineation and parameter extraction [47,48]. We therefore applied graph-based 
progressive morphological filtering (GPMF), a canopy filtering technique, to generate 
CHMs from the UAVLS data [47]. This algorithm employs an adaptive morphological 
operation to eliminate depression points from all returns in progressive filtering. All the 
remaining surface points were then interpolated by triangulated irregular networks. 
Many studies have generated CHM from UAVLS data with various spatial resolutions, 
ranging 0.1 to 1 m [10,16,49,50]. Yin and Wang (2019) have recommended that spatial res-
olution should be finer than one fourth of the crown diameter to correctly delineate crown 
boundaries and characterize the crown shapes. The grid cell should also not be much 
smaller than the average pulse spacing [51]. In our study, the CHMs were therefore gen-
erated at a resolution of 0.1 m, which could recognize the minimum crown diameter of 0.6 
m recorded in the field survey (Table 1) and was sufficiently supported by the lowest 
pulse spacing of 0.09 m. As shown in Figure 2b, canopy surfaces could be characterized 
clearly and with few data pits. 
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Figure 2. The comparison of canopy height models generated by (A) traditional first-echoes interpolation and (B) a graph-
based progressive morphological filtering method. 

2.3.2. Individual Tree Delineation 
In recent years, two main categories of individual tree delineation methods (point 

cloud- and CHM-based) have been developed for ALS data [9]. Although point cloud-
based algorithms are capable of capturing the understory trees under main canopies, a 
huge amount of computation and complex parameters limit the application’s efficiency, 
especially for high-density UAVLS point clouds. CHM-based individual tree delineation 
methods were applied in this study since, in a larch plantation, there are only a few un-
derstory trees. Zhao et al. (2017) constructed a single-tree automatic detection algorithm 
called region-based hierarchical cross-section analysis [52]. This particular algorithm used 
horizontal relationships between the crown within the vertical direction, and the CHM 
was considered as a mountain-like topographic surface for detecting an individual tree. 
In order to avoid the influence of shrubs in the segmentation process, the height of the 
crown for automatic segmentation was limited to 3 m. 

2.3.3. Tree-to-Tree Matching 
All the sample trees that met the modeling’s requirements were screened using a 

tree-to-tree matching procedure, harmonizing the field-measured data and the segmented 
trees based on spatial locations and height differences [53]. The segmented trees were as-
signed as candidates of a reference tree if the horizontal distance from the reference was 
less than the corresponding crown radius (with an upper limit of 3 m); meanwhile, the 
height difference from the reference was less than 20% of the top height of the plot [54]. A 
unique candidate or the closest one among multiple candidates was selected as a match 
with the reference tree [47]. Segmented trees without a link to references were considered 
commission errors (Figure 3). Conversely, reference trees that were not matched to any 
segmented trees were classified as omission errors (Figure 3). In total, 8785 trees were 
correctly matched with the field measurements; 56–100% (mean 76%) of the trees were 
detected among a total of 118 plots with commission errors of 17–45% (mean 28%). As 
shown in Figure 3, the relatively high commission errors in our study were mainly due to 
the trees outside the plot, but their crowns extending into plot boundaries were mistaken 
as individual trees. After the matching was completed, all irrelevant trees, such as dead 
trees, miscellaneous trees, and incomplete segmented crowns along plot boundaries, were 
manually removed from the matching tree datasets. Overall, 8364 trees were selected for 
further modeling. 
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Figure 3. Examples of tree-to-tree matching. (A) Young forests with a stand density of about 3000 stems/ha; (B) mature 
forests with a stand density of about 700 stems/ha. 

2.3.4. Tree- and Plot-Level Metrics Generation 
In this study, a total of 100 UAVLS-based tree- and plot-level variables were calcu-

lated as potential predictors for future modeling. The laser returns falling within each 
segment were masked to clip out an individual tree and utilized to determine a set of tree-
level metrics. The total height (𝐻𝐻) of each individual tree was defined as the maximum 
height of all LiDAR pulses. The relative root mean square error between the LiDAR-de-
rived and field-measured height was about 7% (Supplementary Materials Figure S1). A 
2D convex hull of projected individuals’ points on the x‒y plane was constructed as a 
crown polygon [55]. Crown diameter (𝐶𝐶𝐶𝐶) was calculated by 2 × �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎/𝜋𝜋, where 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 was the area of the individual convex hull [56]. Moreover, the crown volume 
and surface area [26,47] and a series of point distribution and density metrics were also 
applied as candidates to characterize the structure of the detected trees [35,38,57]. 

The DBH growth of a tree at a particular site is generally influenced by its competitive 
status. A crown area competition-based measure was evaluated at a certain percentage of 
crown length to be expanded and calculated using LiDAR data [58]. In this study, the ratio 
between the crown area and the computed reference height, equal to 𝑝𝑝% (25%, 50%, 75%, 
and 100%) of the tree’s height and the total crown area, was calculated as a competition 
index and marked as 𝐶𝐶𝐶𝐶𝑝𝑝25, 𝐶𝐶𝐶𝐶𝑝𝑝50, 𝐶𝐶𝐶𝐶𝑝𝑝75,  𝐶𝐶𝐶𝐶𝑝𝑝100 (see Supplementary Material Table S1 
for a detailed description). Other relative dimensions of the crown projection area and tree 
height derived from the LiDAR data were also generated as potential competitive indica-
tors. 

The plot-level metrics were extracted and coded using FUSION and MATLAB 2016a, 
respectively. The canopy surface height distribution (canopy rugosity (𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅), mean can-
opy height (𝐶𝐶𝑐𝑐𝑝𝑝𝐻𝐻), and canopy openness (𝐶𝐶𝑐𝑐𝑝𝑝𝑂𝑂)) was imputed from pit-free CHMs to pre-
sent the canopy structural heterogeneity [59]. The commonly used point cloud metrics 
such as height and distribution statistics were also calculated as candidates [35]. Addi-
tionally, nine topographic parameters were applied to reflect the variations in topographic 
conditions [24,30]. A detailed description of all tree- and plot-level metrics, along with the 
corresponding references in the literature, is given in Supplementary Material Table S1. 
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2.4. NLME Modeling 
2.4.1. Base Model Selection 

The most common approach to predicting diameter from LiDAR data is using Li-
DAR-derived tree height (𝐻𝐻) as a sole predictor or adding delineated crown attributes as 
other predictors [60,61]. Thus, we first fitted the DBH-𝐻𝐻 function as the base model. Six 
candidate equation forms were evaluated and the combination of power and exponential 
function (Equation (1)) was chosen as the base model for future NLME modeling. The 
detailed selection and evaluation of the candidate base models are presented in Supple-
mentary Material Figure S2. A logical constraint was incorporated to ensure a zero DBH 
when the tree height equals the breast height (1.3 m). 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝐻𝐻𝑖𝑖𝑖𝑖 − 1.3)𝑏𝑏𝑎𝑎𝑐𝑐(𝐻𝐻𝑖𝑖𝑖𝑖−1.3) + 𝜀𝜀𝑖𝑖𝑖𝑖. (1) 

Here, 𝐶𝐶𝑖𝑖𝑖𝑖 and 𝐻𝐻𝑖𝑖𝑖𝑖 represent the DBH and LiDAR-derived tree heights, respectively, 
for the 𝑗𝑗th tree in the 𝑖𝑖th site. 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 are the parameters to be estimated. 𝜀𝜀𝑖𝑖𝑖𝑖 is the 
error term. Due to the residual variance increasing with respect to the prediction, a power-
type variance function (Equation (2)) was applied for correcting the variance heterogene-
ity [62,63]: 

𝑣𝑣𝑎𝑎𝑐𝑐(𝜀𝜀𝑖𝑖𝑖𝑖) = 𝜎𝜎2𝐻𝐻𝑖𝑖𝑖𝑖2𝛿𝛿, (2) 

where 𝜎𝜎2 is a scaling factor for error dispersion and 𝛿𝛿 is the estimated parameter in 
model fitting. The model was fitted using all observations (8364 correctly detected indi-
vidual trees) and nonlinear weighted least-square regressions in the R software (www.r-
project.org). 

2.4.2. Extension of a Base Model 
Then, the selected base model was expanded as a generalized model through the in-

clusion of various covariate predictors. Besides tree height, DBH is also influenced by the 
tree’s size, competition status, and stand characteristics [24,25,63]. We assessed the influ-
ence of other LiDAR-derived parameters on DBH by a two-step covariate selection ap-
proach for the generalized DBH estimation modeling. First, each plot data was fitted using 
the selected base model (Equation (1)) to obtain the corresponding parameter estimation 
values [31,64,65]. The relationships between model coefficients and the extracted LiDAR 
metrics (see Section 2.3.4) and their logarithmic transformations were then scrutinized by 
graphical and correlation analyses [64,66]. As with many studies of LiDAR-derived DBH 
modeling, crown diameter (𝐶𝐶𝐶𝐶) was introduced as a predictor to explain the DBH size 
variation under the same tree height. In addition, the correlation analysis indicated that 
the competition and site condition had a relatively large impact on the model parameters. 
To stabilize the overparameterization and collinearity effects, we selected one competition 
index (𝐶𝐶𝐶𝐶𝑝𝑝75) and one plot-level metric (𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅) as predictors to construct the generalized 
DBH estimation model. These three variables (𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝑝𝑝75, and 𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅) were applied for the 
parameterization of 𝑎𝑎  in the base model as 𝑎𝑎 = 𝑓𝑓(𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝑝𝑝75,𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅) . The generalized 
model can be expanded and rewritten as Equation (3): 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑎𝑎�𝐻𝐻𝑖𝑖𝑖𝑖 − 1.3�𝑏𝑏𝑎𝑎𝑐𝑐�𝐻𝐻𝑖𝑖𝑖𝑖−1.3� + 𝜀𝜀𝑖𝑖𝑖𝑖 ,𝑐𝑐ℎ𝑎𝑎𝑐𝑐𝑎𝑎 𝑎𝑎 = 𝑎𝑎0𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑎𝑎1𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅𝑖𝑖𝑖𝑖
𝑎𝑎2𝑎𝑎𝑎𝑎3𝐶𝐶𝐶𝐶𝑝𝑝75𝑖𝑖𝑖𝑖, (3) 

where 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 is the crown diameter of 𝑗𝑗th tree in the 𝑖𝑖th site; 𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅𝑖𝑖𝑖𝑖 is the canopy rugosity 
of the plot where the 𝑗𝑗th tree in the 𝑖𝑖th site is located; and 𝐶𝐶𝐶𝐶𝑝𝑝75𝑖𝑖𝑖𝑖 is the competition in-
dex of the 𝑗𝑗th tree in the 𝑖𝑖th site. 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, and 𝑎𝑎3 are the parameters to be estimated; 
other parameters were the same as those defined in Equation (1). This expanded general-
ized model was also fitted by weighted nonlinear least-square regressions and with the 
variance function in Equation (2). 
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2.4.3. Nonlinear Mixed-Effects Modeling 
The entire dataset contained 11 UAVLS sampling sites; the tree-level attributes were 

nested in the site-level ones, which could be considered longitudinal data for DBH mod-
eling. We therefore set the sample sites as random effects to account for the DBH variation. 
For the six parameters (𝑎𝑎0-𝑎𝑎3, 𝑏𝑏, 𝑐𝑐) in Equation (3), there are 63 combinations to construct 
a structural model with site-level random effects. Considering the largest logarithm like-
lihood values (LL) and the smallest Akaike information criterion (AIC) among the con-
verged models, the generalized model (Equation (3)) was expanded by adding in 𝑎𝑎0, 𝑎𝑎1, 
and 𝑎𝑎3 to represent the site-level random effects. The final NLME model was: 

𝐶𝐶𝑖𝑖𝑖𝑖 = (𝑎𝑎0 + 𝑢𝑢𝑖𝑖0)𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
(𝑎𝑎1+𝑢𝑢𝑖𝑖1) 𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅𝑖𝑖𝑖𝑖

𝑎𝑎2  �𝐻𝐻𝑖𝑖𝑖𝑖 − 1.3�𝑏𝑏𝑎𝑎𝑐𝑐�𝐻𝐻𝑖𝑖𝑖𝑖−1.3�+(𝑎𝑎3+𝑢𝑢𝑖𝑖3)𝐶𝐶𝐶𝐶𝑝𝑝75𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖, 

𝑢𝑢𝑖𝑖~𝑁𝑁(0,𝛹𝛹),𝛹𝛹 = �
𝜎𝜎𝑢𝑢𝑖𝑖0
2 𝜎𝜎𝑢𝑢𝑖𝑖0,𝑢𝑢𝑖𝑖1 𝜎𝜎𝑢𝑢𝑖𝑖0,𝑢𝑢𝑖𝑖3

𝜎𝜎𝑢𝑢𝑖𝑖1,𝑢𝑢𝑖𝑖0 𝜎𝜎𝑢𝑢𝑖𝑖1
2 𝜎𝜎𝑢𝑢𝑖𝑖1,𝑢𝑢𝑖𝑖3

𝜎𝜎𝑢𝑢𝑖𝑖3,𝑢𝑢𝑖𝑖0 𝜎𝜎𝑢𝑢𝑖𝑖3,𝑢𝑢𝑖𝑖1 𝜎𝜎𝑢𝑢𝑖𝑖3
2

�, 

𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝑅𝑅𝑖𝑖),𝑅𝑅𝑖𝑖 = σ2𝐺𝐺𝑖𝑖1/2𝛤𝛤𝑖𝑖𝐺𝐺𝑖𝑖1/2, 

(4) 

where 𝑎𝑎0‒𝑎𝑎3,𝑏𝑏, 𝑐𝑐 are the fixed-effects parameters and 𝑢𝑢𝑖𝑖0, 𝑢𝑢𝑖𝑖1, and 𝑢𝑢𝑖𝑖3 are the site-level 
random-effects parameters. 𝑢𝑢𝑖𝑖  is the random-effects parameter vector of the 𝑖𝑖 th site, 
which is assumed to be normally distributed with zero mean and an unstructured vari-
ance-covariance matrix of 𝛹𝛹, where 𝜎𝜎𝑢𝑢𝑖𝑖0

2  and 𝜎𝜎𝑢𝑢𝑖𝑖0,𝑢𝑢𝑖𝑖1 represent the variance-covariance 
components of the site-level random effects [62,67]. 𝜀𝜀𝑖𝑖 is the within-group error, follow-
ing a normal distribution with an average value vector of zero and a variance‒covariance 
matrix 𝑅𝑅𝑖𝑖 [32]. 𝜎𝜎2 is the scaling factor for residual dispersion common to all sites; 𝐺𝐺𝑖𝑖 is 
a diagonal matrix of within-sample site heteroskedasticity variances in which diagonal 
elements were provided by the variance function Equation (2); 𝛤𝛤𝑖𝑖 is simplified as an iden-
tity matrix, considering no correlation patterns within the same sample site [63]. The 
NLME models were fitted to all observations using the NLME package [68] in the R envi-
ronment (www.r-project.org) by the method of restricted maximum likelihood (REML). 

2.4.4. Prediction and Calibration of the NLME Model 
In the prediction phase of the mixed-effects model, two different situations—fixed-

effects or a combination of fixed and random effects—can be considered for DBH estima-
tion [69,70]. The model without estimated random effects is known as the mean response 
or uncalibrated prediction. Conversely, the model with estimated random effects from the 
measurement of a response variable is known as a subject-specific or calibrated prediction 
[69,71,72]. 
• Prediction of mean response: 

For the prediction of mean response, there is no need to conduct new in situ field 
measurements of response variables. The prediction only utilizes fixed values of the 
mixed-effects model [63,64]. 
• Prediction with local calibration: 

For subject-specific prediction, the tree-level attributes measured from validation 
sites were used to predict the site effects in the model calibration process. The best linear 
unbiased predictions (BLUPs) method was then used to calculate the parameter of ran-
dom effects [73]. A vector of random effects parameters of sampled plot 𝑖𝑖 was calculated 
with Equation (5): 

𝑢𝑢�𝑖𝑖 = 𝛹𝛹�𝑍𝑍𝑖𝑖𝑇𝑇�𝑅𝑅�𝑖𝑖 + 𝑍𝑍𝑖𝑖𝛹𝛹�𝑍𝑍𝑖𝑖𝑇𝑇�
−1𝑎𝑎𝑖𝑖 = 𝛹𝛹�𝑍𝑍𝑖𝑖𝑇𝑇�𝑅𝑅�𝑖𝑖 + 𝑍𝑍𝑖𝑖𝛹𝛹�𝑍𝑍𝑖𝑖𝑇𝑇�

−1(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓), (5) 

where 𝑢𝑢�𝑖𝑖 is a vector of the random-effects of the 𝑖𝑖th sampled site, 𝛹𝛹�  is the estimated 
variance-covariance matrix for the random effects, 𝑅𝑅�𝑖𝑖 is the variance-covariance matrix 
of within-group errors, 𝑍𝑍𝑖𝑖 is the design matrix of the partial derivatives of the nonlinear 
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function corresponding to the random parameters, and 𝑍𝑍𝑖𝑖𝑇𝑇 represents the transposition 
of 𝑍𝑍𝑖𝑖. 𝑎𝑎𝑖𝑖 is the dimensional error terms of the 𝑖𝑖th sampled site predicted by the fixed ef-
fects parameters of the mixed-effects model. 

Generally, the more measured trees are used for estimating the random-effects pa-
rameters, the higher the prediction accuracy [70]. Thus, we had two strategies for 
resampling calibration, considering both measurement costs and estimation accuracy: 
(1) Random selection of 1‒50 individual sample trees across a validation site. 
(2) Random selection of 1‒5 square subsample plots with various sizes (length of 5‒30 

m) within a validation site. Furthermore, all trees located in the subsample plots were 
selected for calibration. 

2.5. Benchmarking with Nonparametric Models 
Nonparametric modeling methods have been used to estimate forest attributes from 

LiDAR-derived data which involve fewer assumptions and could achieve higher predic-
tion accuracy [36,74]. In the present study, the two most common nonparametric model-
ing methods (random forest and k-Nearest Neighbors) were applied for further compari-
son with the NLME models. 

2.5.1. Random Forest 
Random forest (RF) is a technique that creates a set of decision trees and then aggre-

gates the results for classification and regression [75]. Each tree is generated inde-
pendently using bootstrap samples from the training dataset called “in-bag samples” 
(usually two-thirds of the data). Meanwhile, the remaining “out-of-bag” (OOB) samples 
are used for internal cross-validation. The relative importance of each metric was ranked 
by quantifying the mean square error increase when each variable of the OOB samples is 
randomly permuted [75]. Depending on the variable importance ranking, an iterative 
backward elimination procedure is used for stepwise variable selection [76]. All the vari-
ables were first added in an RF, and the less important variable was eliminated; the vari-
able importance was then recalculated using the remaining variables. This procedure was 
iteratively repeated until a given number of variables was obtained. Herein, 15 predictors 
were selected from all extracted variables for RF modeling since some additional variables 
could not significantly decrease the OOB error (mean square error of the OOB samples); 
see Supplementary Materials Figure S3. Two parameters in the RF modeling, 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 
𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡, were set as 400 and 1/3, respectively. 

2.5.2. k-Nearest Neighbors 
The k-Nearest Neighbors (k-NN) algorithm is a nonparametric estimation method 

based on the statistical difference between the predictor values and the reference samples. 
The nearest neighbors used for prediction have been widely applied and discussed for 
forest applications [77,78]. Variable selection strategies and parameter optimization meth-
ods for nearest neighbor imputation have been discussed in detail in [76,78]. In this study, 
the variables obtained from the RF method were also applied for the k-NN method, as in 
[76]. For the k-NN computation, the most similar neighbor (MSN) distance metric was 
used with a canonical correlation analysis based weighting matrix to choose the most sim-
ilar neighbors [79]. The neighbor number was set to five. 

2.6. Model Evaluation and Validation 
The extrapolation and transferability of the DBH estimation (via the base, general-

ized, NLME, RF, and k-NN models) were assessed using the observed data from inde-
pendent regions (outside the scope of the modeling data). The leave-one-out cross-valida-
tion (LOOCV) was employed to avoid overestimations [80,81]. In particular, we adapted 
the site-level LOOCV method (named leave-one-site-out cross-validations) instead of the 
commonly used tree- and plot-level. It was run by iteratively leaving out one site (N − 1) 
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from the full dataset, aiming to simulate the estimations’ expansibility bias across different 
sites [39]. The mean error (BIAS, in cm) and root mean square error (RMSE, in cm) were 
computed using the predicted and observed DBH in the site-level LOOCV as follows: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
∑ ∑ (𝐷𝐷𝑖𝑖𝑖𝑖−𝐷𝐷�𝑖𝑖𝑖𝑖,−𝑖𝑖)

𝑛𝑛𝑖𝑖
𝑖𝑖

𝑚𝑚
𝑖𝑖=1

∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=1

, (6) 

𝑅𝑅𝑅𝑅𝐵𝐵𝑅𝑅 = �
∑ ∑ (𝐷𝐷𝑖𝑖𝑖𝑖−𝐷𝐷�𝑖𝑖𝑖𝑖,−𝑖𝑖)2

𝑛𝑛𝑖𝑖
𝑖𝑖

𝑚𝑚
𝑖𝑖=1

∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=1

, (7) 

where 𝐶𝐶𝑖𝑖𝑖𝑖 is the observed DBH value of the 𝑗𝑗th tree in the 𝑖𝑖th sample site; 𝐶𝐶�𝑖𝑖𝑖𝑖,−𝑖𝑖 is the 
predicted value of the model, which was fitted using all observations without the 𝑖𝑖th sam-
ple site; 𝑚𝑚 is the number of sample sites; and 𝑐𝑐𝑖𝑖 is the number of observations in the 𝑖𝑖th 
sample sites. Simultaneously, relative BIAS and RMSE (BIAS% and RMSE%) were also 
applied for evaluation. 

Both estimation types (with and without local calibration) were included for validat-
ing the NLME prediction. The single- or multivariable (base and generalized model in the 
NLME modeling) weighted nonlinear least square regression and nonparametric methods 
(RF and k-NN) were compared with the NLME model for DBH estimation. 

3. Results 
3.1. Model Fitting 

The parameter estimates and fitting performances of the one-variable base model 
(Equation (1)), multivariable generalized model (Equation (3)) and NLME model (Equa-
tion (4)) are presented in Table 2. The base model described about 81% of variation while 
applying tree height as a sole predictor. After adding covariates (𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝑝𝑝75, and 𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅) 
into the univariable base model, there was a considerable enhancement in model fitting; 
the RMSE decreased by about 30% (from 2.6397 to 1.8926) and the 𝑅𝑅𝑎𝑎2 increased by about 
10% (from 0.8105 to 0.9026). Meanwhile, both the AIC and LL in Equation (3) had a 14% 
decrease and increase, respectively. These results show that the fitting performance of 
Equation (3) is more generalized than that of the base model. Furthermore, there was a 
further improvement in the model fitting after introducing site random effect parameters 
of 𝑢𝑢0, 𝑢𝑢1, and 𝑢𝑢5; the NLME model achieved a higher 𝑅𝑅𝑎𝑎2 and LL and a lower RMSE and 
AIC than the generalized model. In addition, the result of LRT between the generalized 
and NLME models was statistically significant (p < 0.0001), which implied that there were 
significant site-level random effects on the variation in DBH. 
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Table 2. Parameter estimates and fitting statistics for the base, generalized, and nonlinear mixed-
effects (NLME) models. 

 Parameter Base Generalized NLME 

Fixed Parame-
ters 

𝑎𝑎0 (𝑎𝑎 in base model) 3.0560 2.8457 2.0063 
𝑎𝑎1  0.3337 0.3289 
𝑎𝑎2  0.0168 0.0198 
𝑎𝑎3  −0.1933 −0.1933 
𝑏𝑏 0.3623 0.3848 0.5851 
𝑐𝑐 0.0398 0.0235 0.0119 

Variance pa-
rameters 

𝜎𝜎𝑢𝑢0
2    0.0589 

𝜎𝜎𝑢𝑢1
2    0.0032 

𝜎𝜎𝑢𝑢3
2    0.0098 

𝜎𝜎𝑢𝑢0,𝑢𝑢1   −0.0094 
𝜎𝜎𝑢𝑢1,𝑢𝑢3   0.0007 
𝜎𝜎𝑢𝑢0,𝑢𝑢3   −0.0176 
𝜎𝜎2 0.3102 0.4199 0.6102 
γ 0.5787 0.4049 0.3131 

Fitting Statis-
tics 

𝑅𝑅𝑎𝑎2 0.8105 0.9026 0.9132 
RMSE 2.6397 1.8926 1.7872 
AIC 39,976.27 34,415.39 33,385.81 
LL −19,986.13 −17,200.69 −16,678.90 

3.2. Evaluation and Comparison 
3.2.1. Different Calibration for NLME Model 

We applied two strategies (subplots’ and trees’ random sampling) to locally calibrate 
the NLME model and calculate the site-level random effects for predicting DBH. Both of 
the calibration methods were repeated continuously 1000 times. The average RMSE is pre-
sented in Figure 4. For each method, the subject-specific prediction with local calibrated 
random effects could achieve lower RMSE than the uncalibrated NLME model (mean re-
sponse prediction by the fixed parameters presented in Table 2). The RMSE values de-
creased with the increasing number of sampling blocks and the width of blocks. In addi-
tion, the RMSE also decreased as the number of trees increased. Overall, the prediction 
accuracy has a positive correlation with the sampling number, indicating that more trees 
being used for estimating the random-effects parameters will yield a higher prediction 
accuracy. Considering the time and cost of the in situ measurements, we herein applied 
the feasible scheme of sampling 20 trees at a particular calibration site as a baseline for 
NLME prediction to compare with other methods. 

 
Figure 4. Root mean squared error (RMSE, in cm) for the uncalibrated prediction and local cali-
brated prediction of the nonlinear mixed-effects model with two sampling strategies (based on 
subplots and trees). 
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3.2.2. Comparison of Prediction 
The results of the six DBH estimators are shown in Table 3 and Figure 5. The base 

univariable model with the LiDAR-derived tree height data as the only predictor had a 
relatively poorer performance than the other multivariable equations. This indicated that 
using tree height as a sole predictor is insufficient to explain the variation in DBH. The 
NLME prediction calibrated with 20 sampling trees exhibited the lowest BIAS (0.02 cm) 
and RMSE (1.86 cm). Compared to the generalized model and the uncalibrated NLME 
model, the insertion of site-level random effects led to an improvement in the prediction 
accuracy. The generalized and uncalibrated model performed slightly better than the two 
nonparametric models (RF and k-NN). The accuracy assessments based on leave-one-site-
out cross-validation showed the transferability of the multivariable parametric model 
across different sites. Figure 5 presents the relationship between the predicted and the 
field-measured diameter at breast height (DBH) calculated with six different methods, 
which shows that the calibrated NLME method has more compact and uniformly distrib-
uted points on both sides of the 𝑦𝑦 =  𝑥𝑥 trend line. 

Table 3. Prediction accuracies of diameter at breast height (DBH) for the different models. 

Model BIAS (cm) BIAS% (%) RMSE (cm) RMSE% (%) 
Base −0.14 −0.93 2.76 18.58 

Generalized −0.05 −0.36 1.96 13.17 
Uncalibrated 

NLME −0.08 −0.56 1.94 13.03 

Calibrated 
NLME 0.02 0.10 1.86 12.51 

RF −0.28 −1.89 2.00 13.42 
k-NN −0.10 −0.67 2.08 13.97 

 
Figure 5. The predicted vs. field-measured diameter at breast height (DBH) for 8364 correctly de-
lineated trees calculated using six different methods. 
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The predictions across 11 different sites were separately assessed, and the RMSE val-
ues are given in Table 4. The univariable base model always had the worst accuracy at 
every site, while the multivariable parametric and nonparametric models achieved more 
reliable results. Meanwhile, the NLME model with local calibration always achieved the 
highest prediction accuracy, with the RMSE values ranging from 1.64 to 2.37. Using 20 
sample trees per site for local calibration might decrease the RMSE value by 0.02‒0.41 with 
respect to the uncalibrated prediction. The six models’ residuals were plotted across 11 
sites in Figure 6. The error range of the calibrated NLME model was relatively stable com-
pared with other methods across all 11 sites, which indicated a more stable prediction 
accuracy and better transferability between different sites. The calibrated NLME model 
indicates the robustness of the mixed-effects modeling technique, which is suitable when 
the predictor properties are highly varied. The mixed-effects model comprises both fixed- 
and random-effects parameters, which can express not only the mean response of the 
whole population but also the variation between individuals. 

Table 4. The root mean square error (RMSE, in cm) of the six methods across the 11 sites. 

Site Base Generalized 
Uncali-
brated 
NLME 

Calibrated 
NLME RF k-NN 

1 2.21  1.67  1.68 1.64 1.67 1.78 
2 3.39  2.37  2.29 2.14 2.32 2.60 
3 2.75  1.79  1.81 1.77 1.86 1.93 
4 3.99  2.53  2.24 2.01 2.25 2.54 
5 1.94  1.68  1.71 1.66 1.68 1.70 
6 2.86  1.94  1.91 1.89 2.00 2.17 
7 3.55  2.38  2.41 2.37 2.42 2.51 
8 3.84  2.81  2.63 2.22 2.29 2.49 
9 3.63  2.38  2.45 2.15 2.54 2.50 

10 2.53  1.87  1.85 1.78 1.90 2.01 
11 2.46  1.75  1.73 1.64 1.94 1.97 

 
Figure 6. The boxplots of errors (cm) among different models and 11 sites. 

In addition, the prediction results of the six approaches were assessed across differ-
ent forest structures (age groups). The RMSE and RMSE% values are plotted in Figure 7. 
The RMSE% values were the worst in young stands and decreased with the increase in 
age for all methods. The univariable base model always exhibited the worst performance, 
while the multivariable parametric and nonparametric models had substantial improve-
ments in the RMSE and RMSE% values in each age group. Furthermore, the calibrated 
NLME model almost presented the best prediction accuracies across different age groups. 
The calibrated NLME model decreased the RMSE and RMSE% values by 1‒8% compared 
with the uncalibrated prediction and achieved the smallest improvement in young stands. 
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Figure 7. The root mean square error (RMSE) and relative RMSE (RMSE%) of the six methods 
across different age groups. The left axis represents RMSE (bars) in cm and the right axis repre-
sents the RMSE% (points) in percentage. 

4. Discussion 
In recent years, miniaturized laser scanning sensors on unmanned aerial vehicle plat-

forms have gained an outstanding reputation in practical forest inventory [10,82,83]. Us-
ing remotely sensed data for individual tree DBH estimation is an appealing prospect, 
providing a new way to quantify the stand’s volume, biomass, and carbon stock and to 
reconstruct other forest attributes (e.g., stem diameter distributions [18–20]). To address 
the issue of DBH prediction from UAVLS data, herein we utilized a multi-echo RIEGL 
UVX1-mini sensor to scan 11 plantation sites of larch, one of the most abundant and eco-
nomically important species in northeast China. We applied the NLME modeling ap-
proach to establish the generalized individual tree DBH equation. The accuracy of the 
developed equation was evaluated and compared with the weighted nonlinear least 
squares model and nonparametric regressions through leave-one-site-out cross-valida-
tion. 

LiDAR-derived tree height data are often utilized to estimate DBH because of the 
robustness of the LiDAR-derived height measurements and the strong relationship be-
tween DBH and tree total height [21,22,63]. In this study, we also used tree height as a 
basic predictor for NLME modeling. The covariates and random effects were then intro-
duced for model generalization. The results show that the base univariable model per-
formed less well than the multivariable model. This finding corroborates previous re-
search conducted by Jucker et al. (2017), which reported difficulties in using LiDAR-de-
rived tree height data as a sole predictor to reflect the DBH variation [22]. Although some 
studies have achieved relatively a good performance and high accuracy, the diameter 
ranges and species information should be taken into account in developing the model for 
a proper comparison [21,60]. On most occasions, each species has a maximum growth 
limit of the tree height, and the relationship between DBH and tree height across various 
ranges of tree size is generally nonlinear [27,63]. The inclusion of crown attributes is es-
sential in order to differentiate trees of a similar height with substantially different diam-
eter sizes. Several crown attributes, such as crown project area, crown surface area, and 
crown volume, have been reported to have a significant influence on increasing the pre-
diction accuracy of DBH [28,29,63]. In the present study, adding these crown attributes to 
the model did not lead to any significant improvement compared to using crown diameter. 

The diameter growth of individual trees is also affected by the growing environment 
and stand conditions [30,31]. Hence, our study introduced the LiDAR-derived competi-
tion index (𝐶𝐶𝐶𝐶𝑝𝑝75) and plot-level metrics (𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅) into DBH modeling. 𝐶𝐶𝐶𝐶𝑝𝑝75 represents the 
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competition status, which has a negative effect on DBH growth. 𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅 is the canopy ru-
gosity within each plot, which could be considered as the explanation of the stand density 
and reflects the variation in the canopy surface’s height; the smaller the overlaps between 
crowns, the greater the variation. The proposed multivariable generalized model shows a 
high flexibility, which could further explain the DBH variation under similar height and 
crown sizes. In previous studies, Paris and Bruzzone (2019) also took topography metrics 
to improve the DBH estimation [24]. However, due to the small terrain difference in our 
study area, no particular topographical metrics were incorporated in the generalized 
model. The features selected for stepwise selection using the random forest nonparametric 
are the height, crown, and competition metrics of the individual tree- and plot-level can-
opy height metrics (Supplementary Material Figure S3), which emphasizes the im-
portance of the abovementioned variables in describing the DBH variation. With respect 
to the comparison of predictions among different age groups, all the methods performed 
the worst in the young stand. This might be because height measurements were taken as 
the main predictor for DBH estimation, but DBH variation may not be explained well by 
tree height variation in young stands compared with other stands (see the RMSE% values 
of the base model in Figure 7). The DBH of larch grows fast at a young stage, so factors 
reflecting the tree’s vigor (such leaf area, site index) may be helpful and should be tried in 
studies focusing on young stands. 

A lot of previous studies have applied nonparametric models to predict DBH utiliz-
ing LiDAR-derived variables [34,35]. In our studies, the benchmark from nonparametric 
models (RF and k-NN) had a relatively reliable performance (see Table 4). However, they 
still showed slightly higher RMSE values than both uncalibrated and calibrated NLME 
models in site-level LOOCV, which confirmed the advantage of the parametric model for 
extrapolating data outside the coverage of the model fitting data [36]. 

The inclusion of random-effects parameters led to a further improvement in both the 
model fitting and prediction. Specifically, the calibrated NLME prediction with a small 
number of resampling field measurements led to more stability and a better accuracy than 
other methods across all UAVLS-inventoried areas. Although using more variables can 
improve the generalization of the model, the site environmental variation and the uncer-
tainty in the data acquirement process reduce the model transferability [39,57]. Many 
studies have attempted to analyze the transferability of airborne LiDAR-based models. 
Breidenbach et al. (2008) employed mixed-effects models across separate datasets. They 
found that the mixed-effects model (with both fixed and random effects) was able to more 
precisely predict DBH using stand attributes from two different inventory areas than the 
fixed-effects model [84]. Korhonen et al. (2019) applied an established mixed-effects model 
to other inventory areas outside the scope of the data used in the model’s development 
process [57]. Their results revealed that measuring a small number of calibration trees 
could decrease systematic errors, which increases the model’s transferability. The mixed-
effects model includes both fixed and random effects parameters, and so can be adapted 
to a specific site. It can reflect not only the general trend of the sites but also the variation 
between individuals. The mixed-effect model’s transferability can be utilized to calibrate 
the models for further purposes, providing a new way to improve the model’s portability 
and ductility, especially for UAV-based small-scale forest applications. 

Different from previous studies, which mainly applied plot-level mixed-effects mod-
els [57,63,85], in the current study we introduced a site-level NLME model to explain the 
site variability in the tree growth using both LiDAR point clouds and field data. Even after 
applying similar scanning and flight parameters, different UAVLS devices may produce 
remarkably different point clouds due to the various forest conditions [6,41]. For small-
area forest inventories using UAV platforms, high-precision point clouds could obtain the 
individual tree information at a 1 km2 coverage per scan, breaking the spatial limitation 
of traditional forest survey sample plots [14,86]. After establishing the models, site-level 
random effects can be directly and easily used to calibrate the entire UAV flight site, with-
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out needing to establish plot-level mixed-effects models for independent calibration. Alt-
hough a higher prediction accuracy can be obtained by using a smaller scale of mixed 
effects, a shift from the sample plot survey to focus on the whole stand is needed when 
UAV is used for small-area forest surveys. The approach proposed in this study might 
provide a more affordable option for operational forestry. 

Using an optimal number of sample trees in mixed-effects model calibration will de-
liver a relatively high prediction accuracy and appears to be a more efficient strategy for 
forest management [37,85]. Both of the sampling strategies (based on subplots and indi-
vidual trees) behaved logically in relation to the amount of calibration information (Figure 
4), as corroborated by previous studies on forest modeling [63,65,66]. In the field meas-
urements, plot delineation often required extra labor compared to random tree sampling. 
As a result, when comparing the prediction accuracy (Section 3.2.2) we only selected 20 
sample trees for local calibration, which is more realistic in the actual application. From 
the prediction results among different age groups, the calibration performance exhibits 
the lowest improvements in the young stand because the higher stand density in young 
forests leads to a lower calibration quantity. Proportional resampling methods may obtain 
more consistent improvements in forests with different densities, but increase the work-
load of high-density stands. Extending the sample quantity will improve the model’s ac-
curacy in a linear correlation with the increasing inventory cost; thus, the optimum prac-
tical calibration approach should be determined based on a compromise between accu-
racy and efficiency [85]. 

From the perspective of practical applications, another problem that needs to be ad-
dressed is the impact of individual tree segmentation errors. It seems that there were rel-
atively high commission errors in our study for larch plantations compared with others; 
this is mainly due to the fact that the segmentation methods was sensitive to the outer 
trees with their crowns extending into the plot boundaries, as shown in Figure 3. How-
ever, this indeed has few impacts on the subsequent parameter extraction and DBH mod-
eling in our study, since we only used matched trees and the incomplete segmented 
crowns along plot boundaries were also excluded for model development. In practical 
application in forest inventory, commission and omission errors may lead to potential er-
rors in the applications of established DBH estimation models [20]. In particular, segmen-
tation errors and DBH estimation bias may cause error transfer from individual tree to 
plot-level forest parameter estimation such as stem diameter distribution and forest bio-
mass estimation [18,19,87]. An edge-tree correction could have a significant contribution 
for the following individual as well as plot-level application of the developed models, as 
in [88] and [89]. On the other hand, many studies have revealed that stand densities and 
dominant positions may strongly affect the performance of individual tree delineation. 
More segmentation errors brought about greater challenges in DBH estimation for small 
trees and high-density young forests [90,91]. Together with the relatively poor prediction 
accuracy in young stands (Figure 7), it is necessary to further explore the proposed 
method for application in young trees. In addition, our study only proposed a species-
specific DBH estimation modeling method. In practical applications, it is often necessary 
to classify tree species in the first step and then choose the modeling approach depending 
on the tree species, as in [55]. 

With the development of LiDAR technology, many studies have attempted to di-
rectly extract DBH from high-density UAV‒LiDAR point clouds. The previously pub-
lished study of Wieser et al. (2017) focused on utilizing UAVLS point cloud data to esti-
mate DBH from manually delineated tree stems during the leaf-off season in a deciduous 
forest [92]. Kuželka et al. (2020) applied an automatic diameter measurement and tree 
stem detection procedure in mixed Norway spruce and Scots pine forests with a stand 
density of less than 500 stems/ha; they achieved a relative RMSE value of 19% for DBH 
estimation [93]. Liang et al. (2019) compared the results of manual and automatic DBH 
measurements using UAVLS. The relative RMSE of automated and manual measure-
ments was around 15‒30% with different stand complexities [86]. These studies implied 
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that DBH direct measurements lacked robustness, as the performance was affected by the 
penetration of laser sensors and forest conditions [86]. Overall, we are looking forward to 
using direct extracted UAVLS point cloud DBH for calibration in future research, mini-
mizing the burden of field measurement and model application. 

5. Conclusions 
This study introduces a framework for model-based individual tree diameter at 

breast height (DBH) estimation in UAVLS forest inventories. The tree- and plot-level Li-
DAR-derived metrics (𝐻𝐻, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝑝𝑝75, and 𝐶𝐶𝑐𝑐𝑝𝑝𝑅𝑅) were found to be statistically significant, 
and hence were included in the DBH model development process. Although the selected 
variables improved the model’s generalization ability, there are still several unexplained 
sources of variation, which can be further described by adding the site-level random ef-
fects. The site-calibrated NLME model showed a more stable performance across different 
sites and achieved a higher prediction accuracy than other approaches, such as uncali-
brated NLME, uni- or multivariable weighted nonlinear least square regression, and non-
parametric regressions (random forest and k-nearest neighbors). Furthermore, the calibra-
tion led to logical behavior with respect to the amount of calibration information. The 
practitioners could realistically choose the sample sizes and calibration method according 
to the trade-off between the accuracy requirements and field-measurement costs. Utilizing 
site-level random effects improved the transferability of the LiDAR-based DBH estima-
tion model, leading to a breakthrough in how we interact with forests in the future. The 
mixed-effect modeling approach is a flexible method and provides a foundation for 
UAVLS-based inventories in small-scale forests. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-
4292/13/1/24/s1. Figure S1: A linear fit between field-measured and LiDAR-derived tree height, Fig-
ure S2: Computation of the competition index based on crown cross-sectional areas calculated at a 
reference height equal to a certain percentage of the height of the subject tree, Figure S3: Out-of-bag 
(OOB) error with variables being removed by a backward stepwise variable selection of random 
forests. The dash line represents the number of variables equal to 85, Table S1: Summary of the tree- 
and plot-level metrics derived from unmanned aerial vehicle light detection and ranging (UAVLS) 
point clouds that were used for the DBH estimation., Table S2: The basic equation forms considered 
for the base model selection. 
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