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Abstract: With rapid urbanization, the disposal and management of urban construction waste have 

become the main concerns of urban management. The distribution of urban construction waste is 

characterized by its wide range, irregularity, and ease of confusion with the surrounding ground 

objects, such as bare soil, buildings, and vegetation. Therefore, it is difficult to extract and identify 

information related to urban construction waste by using the traditional single spectral feature anal-

ysis method due to the problem of spectral confusion between construction waste and the surround-

ing ground objects, especially in the context of very-high-resolution (VHR) remote sensing images. 

Considering the multi-feature analysis method for VHR remote sensing images, we propose an op-

timal method that combines morphological indexing and hierarchical segmentation to extract the 

information on urban construction waste in VHR images. By comparing the differences between 

construction waste and the surrounding ground objects in terms of the spectrum, geometry, texture, 

and other features, we selected an optimal feature subset to improve the separability of the con-

struction waste and other objects; then, we established a classification model of knowledge rules to 

achieve the rapid and accurate extraction of construction waste information. We also chose two 

experimental areas of Beijing to validate our algorithm. By using construction waste separability 

quality evaluation indexes, the identification accuracy of construction waste in the two study areas 

was determined to be 96.6% and 96.2%, the separability indexes of the construction waste and build-

ings reached 1.000, and the separability indexes of the construction waste and vegetation reached 

1.000 and 0.818. The experimental results show that our method can accurately identify the exposed 

construction waste and construction waste covered with a dust screen, and it can effectively solve 

the problem of spectral confusion between the construction waste and the bare soil, buildings, and 

vegetation. 

Keywords: urban remote sensing; construction waste; information extraction; very-high-resolution 

remote sensing; morphological index 

 

1. Introduction 

Construction waste refers to waste concrete, waste soil, and waste masonry gener-

ated in production, construction, demolition and repair, as well as construction waste 

generated in engineering due to man-made aspects or for natural reasons [1]. With the 

acceleration of urbanization in China, the output of construction waste in cities is contin-

uing to increase. Statistically, construction waste accounted for 30%~40% of urban waste 

in 2018 [2]. Due to the generation and accumulation of construction waste, a large number 

of land resource areas are occupied, which also causes air pollution, water pollution, and 

soil pollution, and the large amount of waste destroys the environment, which human 
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survival relies on [3]. Scientific management of construction waste is one of the important 

aspects of current urban management [4], and the identification of illegal accumulation 

areas is the premise of scientific management of construction waste. Due to the wide and 

irregular distribution of construction waste, which is easily confused with the surround-

ing land objects, it is a great challenge to identify the location information about construc-

tion waste. 

The traditional method of manual field inspection is time-consuming, laborious, and 

inefficient [5]. Due to the rapid changes in the accumulation sites of construction waste, 

remote sensing has become an important source for obtaining the latest regional data on 

construction waste [6]. In recent years, with the rapid development of space technology, 

sensor technology, computer technology, and related technologies, remote sensing tech-

nology has made rapid progress. Multi-source remote sensing image resources with high 

spatial resolution and high temporal resolution are becoming increasingly abundant, 

which provides a new technical means for the identification and extraction of construction 

waste. 

The composition of construction waste is complex, and its spectral features are also 

complex. The phenomenon of “foreign objects with the same spectrum, different spectrum 

of the same object” [7] is common between construction waste, surrounding buildings, 

bare earth, and other ground objects, and it causes many confusion problems in the clas-

sification process. Therefore, it is difficult to identify a construction waste storage area by 

using only spectral features. Although many scholars use a single feature to extract infor-

mation from the objects of interest, the extracted objects are usually regular artificial ob-

jects, or there are obviously separable features for information extraction research. For 

example, research objects in urban vegetation coverage [8,9], road detection [10], glacier 

feature analysis [11], lithology information extraction [12], and other aspects have a wide 

coverage range and have image features that are easily distinguished from other ground 

objects. In certain scenarios, analysis can be conducted by establishing a feature library 

[10] or band operation [13]. However, the distribution range of the construction waste is 

variable, and its shape is random. There is no clear single feature to distinguish construc-

tion waste from easily confused ground objects. Aiming at the problem that the spectral 

features of construction waste are easily confused with buildings and bare soil due to the 

interference of various factors, we combined spectral, geometric and texture features to 

improve the classification accuracy and to overcome the lack of image features that can 

help to distinguish construction waste from the confused ground objects. Many scholars 

have adopted the method of using a multi-feature combination to address the problem 

that the single feature method is difficult to solve. In the urban feature extraction[14], land 

use information extraction [14–16], construction land separation from other surfaces [6], 

crop growth analysis [17], earthquake disaster monitoring [18], and other directions, 

many scholars have analyzed and compared the image features of the target of interest 

and the interfering ground objects. Then, the appropriate feature combination and hierar-

chical structure are established for classification, which can effectively separate the target 

object from other objects that are easily confused. 

Usually, buildings have regular geometric features and texture features. Buildings 

with roofs and walls demolished have random shapes and rough textures that are similar 

to the features of the construction waste and have low contrast with construction waste. 

Additionally, the demolished buildings are scattered in the construction waste and the 

buildings. The above situation leads to confusion in the classification process after the 

adoption of spectral, geometric and texture features of images. Many scholars adopt dif-

ferent image processing methods to extract the target information. For example, principal 

component analysis [19], edge enhancement [20,21], morphological enhancement [22–24], 

and other methods are used to optimize the image features of the target objects and to 

simplify the complexity of the feature selection. A large number of experiments have 

proved that in the direction of addressing road detection [10], building information ex-

traction [21], water area information detection [25,26], reef extraction, geological structure 
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information extraction [27], and other applications, image enhancement is conducive to 

highlighting target image features, reducing redundant and interfering information, and 

improving the classification accuracy. 

In conclusion, using remote sensing technology to identify construction waste pro-

vides an effective way to accomplish urban management. The difficulty of remote sensing 

identification of construction waste lies in the following: (1) The spectral and texture char-

acteristics of construction waste are not very homogeneous, and the shapes and sizes are 

complex and diverse. It is difficult to identify construction waste with a single feature. (2) 

Interfering features such as buildings and bare soil seriously affect the identification ac-

curacy of construction waste, which means that they are easily confused with construction 

waste in remote sensing images. (3) There is a lack of reliable evaluation methods, espe-

cially for the evaluation of their separability.  

Very high resolution (VHR) remote sensing images refers to remote sensing images 

with a spatial resolution below 10 m, which is very suitable for remote sensing identifica-

tion of urban elements such as construction waste, but there are also problems such as the 

“salt and pepper effect”. Object-based image analysis (OBIA) can help us to avoid this 

type of effect and obtain multi-feature information by image segmentation, especially for 

the VHR remote sensing images. According to the characteristics of construction waste in 

remote sensing images, we can select features with greater heterogeneity to be the char-

acteristics for identifying construction waste. Additionally, to solve the problem of confu-

sion between construction waste and the surrounding ground objects, we consider intro-

ducing the idea of hierarchical segmentation in the image segmentation process. By com-

paring their feature differences, using different segmentation rules for image segmenta-

tion, we can finally obtain highly separable image objects for subsequent remote sensing 

identification research. 

According to the above analysis, we proposed an object-oriented hierarchical seg-

mentation method combined with a morphological index, to improve the separability be-

tween construction waste with buildings, buildings under demolition, and bare soil. By 

analyzing and comparing the spectral, geometric, and texture features of construction 

waste and confusable ground objects in images, we selected the optimal feature sets, and 

we identified and extracted the information in two different types of construction waste 

accumulation areas in Fangshan district and Daxing district of Beijing. In addition, we 

evaluated the accuracy of construction waste by constructing an accuracy evaluation in-

dex, and we analyzed the separability of construction waste and the surrounding ground 

objects by using the proposal construction waste separability index. 

The remaining parts of this paper are mainly the following. Section 2 introduces the 

concept of image segmentation and morphological index image processing technology as 

well as the accuracy evaluation method of construction waste extraction. Section 3 dis-

cusses the feature selection for construction waste identification and the accuracy evalua-

tion of the experimental results, as well as the analysis of the separability between con-

struction waste and the surrounding ground objects in two study areas. Section 4 dis-

cusses the influence of image segmentation and threshold selection on the accuracy, and 

it shows the problem of identifying vegetation-covered construction waste. Section 5 out-

lines our conclusions. 

2. Materials and Methods  

2.1. Study Area and Data 

To prove the reliability of this method, we chose two regions located in Beijing, China 

as study areas. Study area A is located in the demolition area of Baohezhuang village in 

the east of Changyang town, Fangshan district, Beijing, China. The dominant ground ob-

jects are vegetation, roads, buildings, bare earth, and construction waste. The construction 

waste is mainly bare construction waste, which is mainly composed of waste residue, 
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brick, limestone, and other demolition waste. According to the Google earth images, dem-

olition occurred in and around Baohezhuang village in May 2017, and there were still piles 

of construction waste and undemolished buildings in this area until April 2018. Therefore, 

we chose this area as a typical area for long-term accumulation of construction waste for 

experiments. 

Study area B is located in the demolition area on the east side of Nanyuan airport in 

Daxing district, Beijing, China. The dominant ground objects are vegetation, roads, build-

ings, and construction waste, which include exposed construction waste and construction 

waste covered with dust screen and vegetation (Figure 1). The construction waste in study 

area B has a large coverage, which verifies the applicability of this method. At the same 

time, the vegetation coverage of the two study areas is different, which can verify the in-

fluence of vegetation on the identification of construction waste. 

 

(a) 

  

(b) (c) 

Figure 1. Study area and material. (a) The whole study area; (b) study area A (WV2,2017/12/20); (c) study area B 

(GF2,2018/09/05). 

Study area A was covered by WorldView-2 remote sensing images with a 0.5 m pan-

chromatic image and 1.8 m multi-spectral image, which were obtained on 20 December 
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2017. Study area B was covered by Gaofen-2 remote sensing images, which had panchro-

matic images of 1 m and multi-spectral images of 4 m of resolution, including 4 standard 

bands, and they were acquired on 5 September 2018. 

Firstly, remote sensing image preprocessing includes ortho-correction, geometric 

correction, atmospheric correction, and image fusion, which enables multi-spectral image 

data to have the spatial resolution of panchromatic bands. Then, a morphological index 

of the remote sensing images was calculated. After selecting the appropriate shape and 

scale of the structural elements, the processing results were fused with the original image 

to obtain a 5-band remote sensing image enhanced by open reconstruction. Figure 1 shows 

the single-band image results after the morphological index processing. Approximately 

100 verification sample points were randomly distributed in study area A, including 10 

construction waste verification points and 90 other types of verification points. Addition-

ally, 100 verification samples were randomly distributed in study area B, including 50 

construction waste verification samples and 50 other types of verification samples. 

Additionally, we obtained GPS data points of construction waste accumulation loca-

tions through field surveys and identified the range and type of construction waste accu-

mulation by using Google Earth images. According to the differences in the construction 

waste types and accumulation time in these areas, we found that there were 13 and 11 

construction waste accumulation areas in cases A and B, respectively, as shown in Figure 

2. 

  

(a) (b) 

Figure 2. The reference data for the construction waste. (a) Case A (13 points); (b) Case B (11 points). 

2.2. Methods 

This section introduces the object-based hierarchical segmentation and morphologi-

cal index and constructs the accuracy evaluation parameters and separability indexes. Hi-

erarchical segmentation, knowledge classification rules, and accuracy evaluation were 

performed in eCognition Developer 9.1. Image preprocessing, sample collection, and fea-

ture statistics were conducted in ENVI 5.3. Morphological image processing was com-

pleted on MATLAB 2016b. 

2.2.1. Feature Analysis and Selection 

The construction waste in the study area mainly includes demolition construction 

waste, which is composed of roof waste and wall waste. The main components include 

bricks, sand, residual soil, asbestos tiles, and lime blocks. The composition of the demoli-

tion construction waste is complex, and it leads to complicated image features; this type 
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of complexity is mainly manifested in blurred boundaries, irregular shapes, and disor-

dered internal texture. Apparently, these properties caused the construction waste to be 

confused with surrounding ground objects, especially buildings and bare soil. Therefore, 

in this study, by comparing the differences of each feature, we try to find the optimal 

feature combination, which would be used to establish knowledge classification rules. 

(1) Spectral Features 

The spectral features of the construction waste are mainly related to the composition 

of the construction waste on the VHR remote sensing image. Different soil contents, wall, 

roof waste, and other components will exhibit different spectral features, which makes it 

more difficult to interpret the construction waste. Moreover, the surface features of the 

construction waste vary depending on the accumulation time. In this study, spectral mean 

analysis was performed on samples collected from construction waste and the surround-

ing ground objects in the study area, as shown in Figures 3 and 4. The X-axis represents 

the image bands, which are blue, green, red, near-infrared bands, and single bands pro-

cessed by the morphological index. The Y-axis represents the mean statistics of each band. 

The distribution of the spectral mean value for these two study areas is obviously 

different, according to the different land cover types, image acquisition time and surface 

reflectance. However, the construction waste in these two areas is similar to the spectral 

mean values of the buildings and bare soil. In other words, there is a problem of confusion 

between the construction waste and other land features in both areas, when using only 

the spectral features to identify the construction waste area on the VHR remote sensing 

image. 

In case A, vegetation and roads could significantly be separated from other land fea-

tures on all of the bands, but construction waste, buildings, and bare soil are more closely 

distributed, especially in the third band, as shown in Figure 3a. In other words, this type 

of distribution could lead to many commission classifications in the regular classification 

by spectral bands. It is worthwhile to note that the fifth band is the image processed by 

the morphological index, and construction waste, buildings and bare soil are obviously 

separated in terms of their spectral mean value in this band. 

Different from case A, the construction waste area in case B has been covered by dust 

screen and vegetation, as shown in Figure 3b, and the spectral distribution of the construc-

tion waste covered by dust screen and the exposed construction waste are relatively close, 

while the spectral distribution of the construction waste covered by vegetation and vege-

tation are also close. That means that it is difficult to identify the construction waste area 

when it has been covered by vegetation and; thus, the dust screen coverage has no partic-

ularly significant impact on the identification and extraction of the construction waste area 

using spectral features on a VHR remote sensing image, but vegetation does. 

 

(a) 
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(b) 

Figure 3. Spectral distribution of cases A and B: (a) Case A; (b) Case B. 

 

Figure 4. Histogram distribution of the third band in case A: (a) the junction of the vegetation road and the construction 

waste; (b) the approximate distribution range of the separated vegetation, road and other ground objects is 250~350. 

Considering the vegetation and bare soil with vegetation after the re-segmentation 

of the second layer, we applied the normalized differential vegetation index (NDVI) [28] 

to separate those ground objects according to the reflection feature differences of the veg-

etation in the near infrared band and the red band. 

NDVI =
���� ������ �

���� ������ �
. (1)

where Band 3 is the spectral mean value of the image objects in the red band, and Band 4 

is the spectral mean value of the image objects in the NIR band. 

In this article, the third band and the fifth band were used for threshold classification 

to separate the vegetation, roads, and some buildings as non-construction waste. The 

larger the value of the vertical axis is, the more concentrated the distribution of the gray 

values of the ground objects that correspond to the horizontal axis. For example, in Case 

A, the red circle in Figure 4a shows the junction of the vegetation road and the construc-

tion waste, and the approximate distribution range of the separated vegetation, road and 

other ground objects is 250~350 in Figure 4b. Finally, the optimal threshold value could 

be determined through multiple experiments. 

(2) Geometric Features 
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There are always many artificial ground objects around construction waste, such as 

buildings, farmlands, and roads, and they usually have regular shapes, while the geome-

try of construction waste is usually irregular (Figure 5a,b); as a result, we can use a rec-

tangle function to discriminate the construction waste from the other surroundings. Some-

times; however, the boundary of the construction waste accumulation is similar to the 

boundary of the original building (Figure 5c,d). Thus, we need to use more geometric 

features to distinguish between buildings and construction waste, not only a rectangle 

function. 

Roads always have some obvious linear features (Figure 6a) and low compactness 

(Figure 6b,c), which are significantly different from the geometric features of construction 

waste. According to this type of difference, we prefer to use the ratio of the length to width 

and polygon compactness to discriminate construction waste from roads. 

   
 

(a) (b) (c) (d) 

Figure 5. Geometric shapes of construction waste: (a) Irregular shape, (b) irregular shape, (c) standard rectangular, (d) 

regular shape of building. 

   

(a) (b) (c) 

Figure 6. Geometric features of roads: (a) Linear image objects, (b,c) image objects with low compactness. 

The ratio of the length to the width is a common linear index parameter [29], which 

is used to identify image objects with linear characteristics such as roads. 

L/W =
������

�����
. (2)

where Length is the length of the image object, and Width is the width of the image object. 

The compactness (polygon) is the ratio of the area of a polygon to the area of a circle 

with the same perimeter, which is used to separate image objects with low compactness, 

such as rural roads, due to the large number of serrated teeth caused by segmentation. 

Compactness(Polygon) =
����

�×π×����������. (3)

where Area represents the area of the polygon object, and Perimeter represents the perim-

eter of a polygon object. 

Since image segmentation objects will have small areas of patches, we divided such 

objects into non-construction waste by setting an area threshold. 



Remote Sens. 2021, 13, 158 9 of 32 
 

 

Area = ��  ×  ��. (4)

where Pv represents the number of pixels contained in the image object, and u represents 

the pixel size of the coordinate system units. 

(3) Texture Features 

According to the field survey, we found that the differences in the image texture 

characteristics between construction waste and other surrounding objects are obvious in 

the study area (Figure 7). We used the gray level co-occurrence matrix (GLCM) [30] to 

obtain the texture features of the image objects.  

�(�, �) = [�(�, �|�, �)]. (5)

where d is the distance, θ is the direction, and i and j represent the row and column num-

bers, respectively. 

  

(a) (b) 

Figure 7. Significant differences in the texture features: (a) Bare soil, (b) construction waste. 

A series of statistics to describe the texture of the image object could be calculated by 

GLCM [31]. Homogeneity reflects the partial texture change of the image, and it can well 

characterize the partial texture features of the image [31]. The value range is [0, 1], as 

shown in Equation (6). For bare soil that is confused with the spectral features of the con-

struction waste but has obvious differences in internal texture features (Figure 7), we used 

homogeneity to separate it into the non-construction waste. 

Homogeneity = ∑
�(�,�)

��|���|�,� , (6)

��� = �∑ ∑ �(�, �) × (� − Mean)�
�� , (7)

��� = ∑ ∑ (� − �)��(�, �)�� . (8)

The demolished buildings and some urban buildings cannot be completely separated 

by spectral and geometric features, but their features are obvious differences from the 

adjacent image objects. 

GLCM describes the texture by measuring the spatial correlation features of the spec-

trum on the image [32]. The standard deviation is one of its statistics, which is different 

from the simple standard deviation of the grayscale in the image. It mainly addresses the 

combination of a reference pixel and adjacent pixel, and it measures the dispersion degree 

of the mean, as shown in Equation (7). The standard deviation is mainly used to separate 

the image objects that are easily confused with the construction waste in the vicinity of 

the vegetation and shadows in the study area. 
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The contrast reflects the sharpness of the image and the depth of the groove of the 

texture [33]. The deeper the groove is, the greater the contrast, and the clearer the effect. 

On the other hand, when the contrast is small, the groove grain is shallow, and the effect 

is fuzzy. We used the contrast eigenfunctions to separate the confusing image objects, such 

as buildings near the construction waste accumulation area. 

(4) Morphological Features 

Most of the buildings around construction waste are in the process of demolition, 

and they do not have the regular geometric shape and texture features of undemolished 

buildings. Moreover, the spectral features of buildings and building waste during demo-

lition are similar. As a result, it is difficult to separate the buildings from a demolition area 

because of this redundant and interfering information. In consequence, we use mathemat-

ical morphological image processing to highlight the characteristics of the buildings and 

to increase the differences between the construction waste and the buildings. The appli-

cation of mathematical morphology in image processing can simplify image data, main-

tain the basic shape features of the target in the image, and eliminate any irrelevant noise 

structure [34]. There are four basic operations of mathematical morphology: dilation, ero-

sion, opening, and closing. These basic operations are based on mathematical morphology 

and can also be deduced and combined into various practical algorithms for mathematical 

morphology, such as the top-hat transformation, bot-hat transformation, opening by re-

construction, closing by reconstruction, and so on [35]. The morphological reconstruction 

algorithm is the basis of many effective image transformation algorithms. Due to the con-

straints of the mask image, it solves the shortcoming that the traditional opening opera-

tion is highly dependent on accurate structural elements to correctly restore the shape. 

Moreover, due to its own nature, open reconstruction not only removes all of the parts 

that are corroded by structural elements but also spreads only at the highest level suitable 

for structural elements, in such a way that the contrast of bright image objects can be re-

duced to a certain extent. In this article, we used the opening by reconstruction algorithm 

to smooth the image and removed all objects that were smaller than structuring elements. 

Therefore, the use of morphology not only provides morphological features for iden-

tification but also helps the higher reflectivity of construction waste to form high spatial 

contrast with adjacent buildings, which provides a method for the successful separation 

of construction waste from buildings.  

Opening by reconstruction is an algebraic opening operation [36]. The realization of 

morphological reconstruction requires two elements: the mask image f and the mark im-

age g. The basic idea is to use the marked image g to iteratively process the mask image f. 

When the propagation of the marked image is hindered by the mask image, the iteration 

is stabilized, and the algorithm is automated. In other words, image f is reconstructed with 

size n. 

The structuring element b is defined to erode the input image to obtain the marker 

image g, and then, the original image is used as the mask image f to reconstruct the marker 

image g. The opening by reconstruction of image f at scale n is defined as the reconstruc-

tion of the f erosion at scale n. The opening by reconstruction of image f at scale n is defined 

as the erosion reconstruction of f at scale n. 

��
(�)

(�) = ��
(�)

(�) = ��
(�)

[���(�)], (9)

� = ���(�). (10)

where i is the number of cycles when )()( )1()( gg i
f

i
f

 , )()( gi
f  is the dilation recon-

struction of image g to image f, and )( fb  is the erosion operation of mask image f based 

on the structuring element b. 

Firstly, we used the principal component analysis to transform the original image, 

and we used the first principal component as the mask image f. Thus, we could obtain the 
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marked image g by corroding the mask image f. Then, according to the geometric charac-

teristics of the buildings in the study area, we used the open reconstruction operations of 

different scales and shapes on the marked image g, under the restriction of the mask image 

f, and the scales and shapes were defined by the structuring element b. Finally, we selected 

the optimal shape and scale to reconstruct the image as the result of the morphological 

index processing, and we fused the result with the original image to obtain an image with 

five bands, as the input data for the image segmentation and classification. 

Based on the above ideas, we used the basic morphological operations in study area 

A to compare the effect with the reconstruction operation, as shown in Figures 8–11. 

Image PCA
The first 
principal 

component

Shape: 
rectangle

Band 
fusion

Tagged image g Mask image f

Structural 
element

Dimensions: 
k[1,3]

Results

 

PCA: Principal Component Analysis 

Figure 8. Flowchart of morphological image processing. 

  

(a) (b) 

Figure 9. The results of the erosion (a) and dilation (b) operation on study area A. 
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(a) (b) 

Figure 10. The results of opening (a) and closing (b) operations on study area A. 

  

(a) (b) 

Figure 11. The results of the morphological opening reconstruction: (a) Area A; (b) area B. 

2.2.2. Hierarchical Segmentation 

Multi-resolution segmentation (MRS) is known to be a general segmentation algo-

rithm for VHR remote sensing applications. When using MRS, a large scale can result in 

small image objects being covered by larger objects, which is called “under-segmenta-

tion”, whereas a small scale can cause fragmentary image objects, which is called “over-

segmentation“. The boundaries and number of image objects in these two situations might 

not be consistent with the actual object [37]. Multi-level optimization of MRS can achieve 

the corresponding level of application requirements through different scales, and the gen-

erated image objects have different attributes, which helps to extract different categories, 

to solve the problem of under and over segmentation caused by single-layer segmenta-

tion. This type of segmentation was called hierarchical segmentation. Aiming at the above 

problems, we adopted the hierarchical segmentation method to extract construction waste 

information, which ensured that different ground objects were completely segmented at 

different levels and scales [38]. 

Hierarchical segmentation refers to the re-segmentation of the “child-layer” on the 

basis of the “parent layer”. This method combines the characteristics and inheritance re-

lationships of the parent and child layers. We used the multi-resolution segmentation 
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method with the segmentation parameters, which generally include dimension parame-

ters and the conditions of homogeneity, to obtain the optimal objects. Figure 12 is a 

flowchart for the hierarchical segmentation. 

Scale parameter settings include the weight setting of each band and the scale param-

eter setting. The size parameter is an abstract concept that affects the size of the segmen-

tation objects. The larger the segmentation parameter is, the larger the size of the image 

objects will be. In contrast, the smaller the segmentation parameter is, the smaller the im-

age object is. 

The homogeneity condition parameter setting consists of the following two parts: 

(1) The weight of the shape criterion refers to the degree of deviation from compact or 

smooth shapes. The higher its value is, the lower the influence of the color on the 

segmentation process. The sum of the weight of the shape criterion and the color 

criterion is 1, in other words, homogeneity = weight of color criterion + weight of 

shape criterion. 

(2) The weight of the color criterion refers to the sum of the weights of the standard 

deviations of all image layers. After we define the weight of the shape criterion, the 

weight of the color criterion is automatically generated. 

(3) The weight of the compactness criterion refers to the weight of the compactness cri-

terion in the shape criterion, which is obtained by the quotient of the boundary length 

and the area. The higher the value is, the more compact image the objects could be. 

The sum of the weights of the compactness criterion and smoothness criterion in the 

shape criterion is 1. 

(4) The weight of the smoothness criterion refers to the quotient of the boundary length 

of the image object and the perimeter of the maximum enclosing rectangle. We define 

the weight of compactness, and the weight of smoothness is automatically generated. 

According to Figure 12, we obtained the optimal parameter settings by combining 

the spatial and shape features of the construction waste and the surrounding ground ob-

jects. 

Sample collection and 
spectral characteristcs 

analysis of ground objects

Rough 
segmentation

First floor: separate 
vegetation, roads and 
parts of the building

Analyze the geometric 
and texture features

Resegmentation

The second floor: separation of 
buildings, bare soil and 

Demolition building and other 
confusing ground objects

1. Segmentation parameters
2.Homogencity criterion parameters

 

Figure 12. The flowchart of the proposed hierarchical segmentation. 

2.2.3. Accuracy Evaluation of the Construction Waste Identification 

Firstly, we used the confounding matrix method to evaluate the accuracy of the con-

struction waste identification and extraction. Moreover, we defined the judging condi-

tions for the separability of the construction waste, and we proposed a set of construction 

waste separability evaluation quality indexes to evaluate the reliability of the classification 

model in this paper. 

(1) Confusion Matrix 
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We randomly selected from a few samples and used the evaluation model to test the 

accuracy of the classification results, combined with the same period of ground truth data. 

The following evaluation factors, including the overall accuracy, Kappa coefficient, pro-

ducer accuracy, and user accuracy, are obtained based on the calculation of the confusion 

matrix [39]. 

The confusion matrix can intuitively show the confounding ratio among the different 

types [40], which has two dimensions, including the true value and the predicted value, 

as show in Table 1. Each column of the confounding matrix represents the prediction cat-

egory, and the total number of each column represents the number of predicted catego-

ries. Each row represents the true category of the data, and the total number of rows rep-

resents the true number of classes. 

Table 1. The graph of the confusion matrix. 

Confusion Matrix 
True Value 

Construction Waste Non-Construction Waste 

Predicted value 
Construction waste 11X  12X  

Non-construction waste 21X  22X  

The overall accuracy (OA) is equal to the number of correctly classified objects di-

vided by the total number of objects. The number of correctly classified objects is distrib-

uted along the diagonal of the confusion matrix, and the total is equal to the total number 

of objects of all of the real reference data. We used the overall accuracy to measure the 

total experimental result accuracy. The Kappa coefficient (Kappa), which uses the infor-

mation in the whole error matrix, can reflect the overall classification accuracy [41]. The 

Kappa coefficient is between −1 and 1, and a higher Kappa value indicates higher classifi-

cation accuracy. The producer accuracy (PA) is the ratio of the number of objects correctly 

classified as class i (diagonal values) to the total number of true references in class i (the 

sum of columns i in the confusion matrix). Corresponding to PA is the omission error, in 

other words, omission error = 1 − PA. The user accuracy (UA) refers to the ratio between 

the number of objects correctly classified into class i (diagonal value) and the total number 

of objects classified into class i (the sum of the rows of class i in the confusion matrix). The 

commission error corresponds to the UA, in other words, the commission error = 1 − UA. 

�� = ∑
���

�

�
��� , (11)

 ����� =
� ∑ ����∑ (���×���)�

���
�
���
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���
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��� =
���

∑ ���
�
���
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��� =
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∑ ���
�
���

. (14)

where i represents the sample of class i, n represents the number of categories, N repre-

sents the total number of objects (which refers to the test samples), 
iiX  represents the di-

agonal elements of the error matrix, 
kiX  represents the column sum of category i, and 

ikX  is the row sum of category i. 

(2) Construction Waste Separability Quality Evaluation Index 

Since the construction waste is characterized by unclear edges, there is uncertainty 

in the extraction accuracy and separability of the construction waste measured by area, 

which will bring incalculable errors. However, the spatial distribution of the construction 

waste is visual and predictable. Therefore, we compared the spatial distribution and loca-

tion of the construction waste with the classification results to evaluate the reliability of 

the experimental results. 
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We used the GPS data collected outdoors and the construction waste accumulation 

points obtained by visual interpretation as reference data to determine the storage location 

and approximate range of the construction waste. 

The separability condition is the following: 

(1) The identified construction waste object has an intersection or inclusion relationship 

with the reference range. 

(2) In the case of condition (1), when the intersection takes up a large proportion of the 

reference range, or the number of objects beyond the reference range is small, it is 

considered that the separability meets the requirements (Figure 13a). When the ref-

erence range includes construction waste objects, and the proportion of the construc-

tion waste is large, the separability is considered to meet the requirements (Figure 

13b). When the construction waste contains the reference range, separability is con-

sidered to meet the requirements (Figure 13c). The judgment of the proportion size 

must be analyzed according to the actual situation. We evaluated the separability by 

taking the proportion of greater than or equal to 50% to be a good separability stand-

ard. 

 

Figure 13. The criterion of separability quality analysis: (a) the separability meets the requirements, (b) the separability is 

considered to meet the requirements, (c) separability is considered to meet the requirements. 

Formula 15 is the overall separability evaluation index for evaluating the construc-

tion waste identification. In Equation (15), the number of construction waste areas whose 

separability meets the requirements is taken as the numerator, and the total number of 

construction waste areas whose separability meets the requirements plus the number of 

wrong and missing areas is taken as the denominator. Equations (16)–(18) are the separa-

bility evaluation indexes of the construction waste and bare soil, buildings, and vegeta-

tion, respectively. 

CW_������������ =
�

�����
, (15)

CW_������������������� =
(�����)��

�����
, (16)

CW_������������������� =
(�����)��

�����
, (17)

CW_��������������������� =
(�����)��

�����
. (18)

where a is the number of actual construction waste accumulation areas, b is the number of 

commission classification areas, c represents the number of omission classification areas, 

d represents the number of commission classification areas between the construction 

waste and bare soil, e represents the number of commission classification areas between 

the construction waste and the buildings, and f represents the number of omission classi-

fication areas between the construction waste and vegetation. The value range of the sep-

arability index is between 0 and 1, and the larger the value is, the better the separability 

quality. 
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3. Results 

3.1. Classification of Knowledge Rules 

Based on the analysis of the features of the construction waste and surrounding 

ground objects in Section 3.1, we established a one-to-one knowledge classification rule 

[42] and divided ground objects into two categories: construction waste and non-construc-

tion waste. The classification model of the knowledge rules also has two parts. Firstly, the 

vegetation and road were classified in the first layer of the classification structure by 

coarse image segmentation. Secondly, the bare soil, regular buildings and demolition 

buildings were classified in the second layer of the classification structure by fine image 

segmentation.  

In the first level, we used the coarse segmentation to separate the large parts of the 

vegetation and roads from the area and set the segmentation parameters according to the 

features of different objects. The spectral features of the construction waste and vegetation 

roads are obviously different, which makes the proportion of color weight be higher. 

When using the shape criterion, both smooth edge and compactness should be consid-

ered. Therefore, we set the weight of both smoothness and compactness to 0.5. The seg-

mentation parameters of each layer of the classification model are set as shown in Table 

2. Vegetation, roads, and parts of buildings could be classified according to the feature set 

of the first floor in Table 3. 

Table 2. The parameters of hierarchical segmentation. 

Area Level Scale 

The Weight 

of the Shape 

Criterion 

The Weight 

of the Color 

Criterion 

The Weight of the 

Compactness Cri-

terion 

The Weight of 

the Smooth Cri-

terion 

Classification 

Level 

A 

1 200 0.4 0.6 0.5 0.5 
Vegetation, roads, 

parts of buildings 

2 60 0.7 0.3 0.5 0.5 

Construction 

waste, buildings, 

bare soil 

B 

1 400 0.4 0.6 0.5 0.5 
Vegetation, roads, 

parts of buildings 

2 260 0.5 0.5 0.5 0.5 
Construction 

waste, buildings 

In the second level, we used the re-segmentation to separate the surrounding ground 

objects and construction waste; additionally, these parameters are set according to Table 

2. Moreover, the order of the features in the knowledge rule classification model has no 

effect on the extraction results of the construction waste. 

Table 3. Classification features selection. 

Area Level Spectral Features Geometric Features Texture Features Morphological Index 

A 

1 
Red band, morpho-

logical band 
  

Used in image segmenta-

tion and validation 
2 NDVI 

The ratio of length to 

width, area, compact-

ness 

GLCM homogeneity, 

GLCM standard devia-

tion 

B 

1 Red band   
Used in image segmenta-

tion and validation 2 
Red band, 

morphological band 
 GLCM contrast 

GLCM—gray level co-occurrence matrix. 

3.2. Accuracy Assessment and Separability Analysis 

The extraction results of the construction waste were evaluated concerning two as-

pects. Firstly, the accuracy of the extraction results on the construction waste was assessed 

by using the confusion matrix evaluation index in Section 2.2.3. Then, the separability 

quality for the extraction results was analyzed by overlaying the vector boundaries of the 
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construction waste between the reference data and the extraction results, with the separa-

bility conditions of the construction waste in Section 2.2.3. Additionally, the experimental 

results of study areas A and B were compared and analyzed concerning these two aspects. 

We have randomly selected some sample objects from the two study areas for accu-

racy assessment. As a result, there are 23 construction objects and 82 non-construction 

waste objects in area A. Additionally, 38 construction waste objects and 41 non-construc-

tion waste objects were in area B. The confounding matrix results of study area A and B 

are shown in Tables 4 and 5, and the accuracy evaluation results and separability evalua-

tion results of study areas A and B are shown in Tables 6 and 7, respectively. 

Table 4. The confusion matrix for area A. 

Type 

True Objects 

Total 
Construction Waste 

Non-Construction 

Waste 

Predicted objects 

Construction waste 19 6 25 

Non-construction 

waste 
4 71 75 

Total 23 77  

Table 5. The confusion matrix of area B. 

Type 

True Objects 

Total Construction 

Waste 
Non-Construction Waste 

Predicted objects 

Construction waste 32 5 37 

Non-construction 

waste 
7 56 63 

Total 39 61  

Table 6. Accuracy evaluation of the construction waste identification. 

Area 

Confusion Matrix 

OA KAPPA 
Construction Waste Non-Construction Waste 

PA UA PA UA 

A 90.0% 0.768 82.6% 76.0% 92.7% 95.0% 

B 88.0% 0.723 82.1% 86.5% 91.8% 88.8% 

OA—overall accuracy. 

Table 7. Separability evaluation of the construction waste. 

Area 

Overall Separability Index 
CW-Separability 

(Bare Soil) 

CW-Separability 

(Building) 

CW-Separability 

(Vegetation) 

CW *-Separability 

Number of objects    

True 

value 

Predicted 

value 

Bar soil  CW 

(Area A) 
 

CW  Vegetation 

(Area B) 

A 0.837 13 15 0.846 0.923 1 

B 0.788 11 9  1 0.788 

* CW—construction waste. 

Through field surveying and image interpretation, we marked the storage sites of the 

construction waste in the two study areas. The green box is the reference range, and the 

number represents the amount of construction waste in the study area. The results are 

shown in Figures 14 and 15. 

3.2.1. Area A 

Through the confusion matrix, we calculated that the OA of study area A was 0.966, 

and the Kappa coefficient was 0.838 and greater than 0.800, which indicates that the results 
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were excellent, and the overall accuracy was excellent. The PA and UA of the construction 

waste are 0.900 and 0.810, respectively, and the corresponding error is the omission error 

and the commission error, among which the commission error is relatively high. Although 

all of the construction waste in study area A was successfully identified, two areas were 

wrongly classified as construction waste. According to the historical images and field sur-

veying, the two misclassified areas are the open spaces after the construction waste is re-

moved and transported, and the surface remains construction waste, which leads to the 

confusion with the features of the construction waste images and the phenomenon of mis-

classification. In addition, the image objects in the construction waste accumulation area 

were not all identified, which results in the omission phenomenon, as shown in Figure 

14b–d. 

 

Figure 14. Separability analysis of study area A: (a–d) the image objects in the construction waste 

accumulation area were not all identified, which results in the omission phenomenon 

In this paper, the separability analysis of the construction waste extraction results 

was conducted, and the actual accumulation areas of construction waste were finally de-

termined according to the judging conditions. There were 13 areas in total, but two areas 

were misclassified areas, as shown in Figure 13. The red number indicates the correctly 

identified area, and the blue number indicates the misclassified area. Figure 14a shows 

the road in the middle of two construction waste accumulation areas. This area is often 

passed by construction waste vehicles, and there will be residual soil and gravel on the 

surface. Therefore, it was confused with construction waste in the experiment, but it met 

the condition judged by the conditions in Section 2.2.3. Therefore, this area meets the cri-

teria for the separability of construction waste. Figure 14b–d conforms to condition b in 

the conditional judgment. It indicates that the accumulation range of the construction 

waste can be correctly identified, even if few image objects in the region are missing. 

The result shows that the separability of the construction waste and buildings as well 

as the construction waste and vegetation can reach 1.000, which indicates that complete 

separability can be achieved. However, the two misclassified areas are bare soil, and as a 

result, the separability between the construction waste and bare soil is 0.846. According 

to Equation (7), the overall separability of the construction waste reaches 0.846, as shown 

in Table 7. 
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3.2.2. Area B 

Through the confusion matrix, as shown in Table 6, we obtained that the OA of the 

construction waste in study area B was 0.962, and the KAPPA was 0.963 and greater than 

0.8, which indicates that the result was excellent, and the overall accuracy was excellent. 

The PA and UA of the construction waste are 0.921 and 1.000, respectively, and the omis-

sion error is relatively high, which is consistent with the separability analysis. After judg-

ing the conditions of separability of the experimental results in study area B, we found 

that the identification and extraction results of the construction waste all met the condi-

tions of separability, but two construction waste accumulation areas were missed, leading 

to a high omission error. As shown in Figure 15, there are 11 accumulation areas of con-

struction waste according to whether the construction waste is exposed, covered with veg-

etation, or covered with dust screen. We successfully identified nine areas, and the two 

missed areas were vegetated construction waste, namely, the two areas marked “1” and 

“11” in Figure 15, as shown in Figure 15a,b. In addition, we successfully identified and 

extracted the construction waste area surrounded by buildings in the study area, such as 

d and f in Figure 15. The separability between the construction waste and the buildings is 

calculated to be 1.000. As the construction waste covered by vegetation is neglected, the 

separability of the construction waste and vegetation is calculated to be 0.818. Finally, the 

overall separability of the construction waste reaches 0.818, as shown in Table 7. 

 

Figure 15. Separability analysis of study area B: (a,b) vegetated construction waste,(c–f) the con-

struction waste area 

Buildings and demolition buildings are scattered around and inside the construction 

waste in study areas A and B. By integrating the morphological index into the classifica-

tion model of the knowledge rules, we successfully solved the problem of confusion be-

tween the construction waste and bare soil, as well as between the construction waste and 

buildings. 

By comparing and analyzing the object categories and feature selection of the two 

study areas, it is found that the feature analysis and selection of study area B is more sim-

plified than that of study area A. The acquisition date of the image data in study area B 

was September, with lush vegetation covering the paths between farmland, which simpli-

fied the feature selection in the classification process. This vegetation circumstance con-

trasts with the sparse vegetation in study area A. In addition, the distribution range of the 
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construction waste in study area B is large, and the demolition time is similar; thus, the 

types and features of construction waste are basically the same, which further simplifies 

the feature analysis and selection in the knowledge rule model. 

At the same time, due to the vegetation cover, the construction waste accumulation 

area is more easily identified in study area A. For example, all of the construction waste 

accumulation areas in study area A have been identified, while some of the construction 

waste accumulation areas in study area B are covered by vegetation, which seriously af-

fects the identification of building waste. Therefore, vegetation cover makes a great dis-

turbance to the identification process of construction waste. Sparse vegetation is condu-

cive to the identification of all construction waste, while lush vegetation coverage simpli-

fies the selection of features. 

3.3. Analysis of Construction Waste Identification Results 

We used eigenfunctions to conduct one-to-one construction waste identification and 

extraction. The results are shown in Figures 16 and 23, which are the experimental results 

in study areas A and B. The red area in the Figure 16 is the final identification result of the 

construction waste. We mark non-construction waste areas by different colors to corre-

spond to different feature functions. According to different types of ground features, we 

mainly analyze the separability of the construction waste and buildings, as well as the 

construction waste and bare soil in study area A. In study area B, we mainly analyze the 

separability of the construction waste and buildings. 

 

Figure 16. Construction waste extraction results in study area A. 

3.3.1. Area A 

In study area A, the first layer of the classification model used the red band and the 

fifth band to separate vegetation, roads, and some buildings. As shown in Figure 17a–c 

are the original images. The green areas in (d), (e), and (f) are the areas classified as vege-

tation, roads, and some buildings. The morphological band can be used in the first level 

structure as well as the second layer structure. Through experiments, it was found that 

the first level structure in study area A has a better effect by using this band, which avoids 

the wrong division phenomenon caused by using the same band after re-segmentation. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 17. Classification results for the first layer structure: (a–c) the red band and the fifth band to separate vegetation, 

roads, and some buildings, (d–f) the areas classified as vegetation, roads, and some buildings. 

We used the GLCM homogeneity eigenfunction to classify ground objects with uni-

form surface texture, such as bare soil. As shown in Figure 18, some buildings with uni-

form texture are also separated by this feature. The brown part of Figure 18d,e are the 

separated bare soil area, and Figure 18f is the separation result of the flat house. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 18. Classification results for GLCM homogeneity: (a–c) buildings with uniform texture are also separated by this 

feature, (d,e) the separated bare soil area, (f) the separation result of the flat house. 
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Figure 19 is the classification result graphed by the standard deviation eigenfunction 

of GLCM. The image objects of the buildings under demolition and some urban buildings 

have a high dispersion degree with neighboring image objects [43], and there are obvious 

differences. This eigenfunction can effectively separate buildings from construction waste. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 19. Classification results for GLCM standard deviation: (a–f) the classification result graphed by the standard de-

viation eigenfunction of GLCM. 

Figure 20 shows the result of separating linear features such as rural roads with the 

aspect ratio. The highlighted purple areas in Figure 20d are linear rural roads. The purple 

area in Figure 20e is the linear highway that appears after re-segmentation. The images in 

study area A were obtained in December, and the paths between the fields are exposed. 

Raised or sunken areas on the side of the road lead to significant differences in the internal 

texture of the path and bare soil. Moreover, the spectral features of the path are similar to 

those of bare soil but show linear geometric features after segmentation. Therefore, this 

type of object was accurately classified as non-construction waste by the ratio of the length 

to width in the geometric features. 

 

 

 

(a) (b) (c) 
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(d) (e) (f) 

Figure 20. Classification results of aspect ratio features: (a–f) he result of separating linear features such as rural roads 

with the aspect ratio. 

Polygon compactness was used to separate the image objects with low compactness, 

especially for image objects with the T or L shape in study area A, which have a significant 

separation effect. The results are shown in Figure 21.  

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 21. Classification results for the compactness: (a–f) Polygon compactness was used to separate the image objects 

with low compactness, especially for image objects with the T or L shape in study area A. 

Finally, the area feature function and NDVI index were used to separate some fine 

interference objects, including image objects with too small and meaningless area and 

vegetation cover on the second layer, as shown in Figure 22. Figure 22a,c shows the effect 

diagram of the area threshold and the original image, and Figure 22b,d shows the original 

image and effect diagram of the vegetation area separated by the NDVI index. 
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(a) (b) 

  

(c) (d) 

Figure 22. Classification results of the area and NDVI index: (a,c) the effect diagram of the area threshold and the original 

image, (b,d) s the original image and effect diagram of the vegetation area separated by the NDVI index. 

3.3.2. Area B 

We use the knowledge rule classification model to identify and extract the construc-

tion waste in study area B, and the result is shown in Figure 23. By comparison, there are 

fewer image objects of bare soil and rural roads in study area B than in study area A, and 

the types of construction waste are relatively simple, but there is more construction waste 

covered by dust screen and vegetation. Therefore, we mainly analyzed and selected the 

features based on the confusion between the construction waste and buildings in study 

area B. Experiments were completed according to the classification rules in Table 3. 
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Figure 23. Construction waste identification and extraction results for study area B. 

As shown in Figure 24, the first layer of classification rules successfully separated the 

image objects of vegetation and road by using the red band, and at the same time sepa-

rated most buildings, including urban buildings and buildings in the demolition area. 

Figure 24(b1) shows urban residential buildings. Figure 24(b2) shows the buildings in the 

demolition area. Figure 24(b3) shows a small car park surrounded by vegetation. Figure 

24(a1–a3) shows the corresponding original images. 

 

Figure 24. The result diagram of the first layer classification structure: (a1–a3) the corresponding 

original images. (b1) the corresponding original images. (b2) the buildings in the demolition area. 

(b3) a small car park surrounded by vegetation.  

Different from study area A, the fifth band was adopted in the second layer of the 

classification structure in this paper. Due to the large area of the construction waste in 

study area B, and since the first floor of the classification structure is designed to separate 
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vegetation and road, the initial segmentation scale is large. Some buildings within the 

construction waste accumulation area appear in large numbers after re-segmentation; 

thus, it is helpful to separate the image objects of the buildings on the second floor. The 

result is shown in Figure 25. Figure 25d shows the building under construction. Figure 

25e is a roadside car park. Figure 25f shows the building after re-segmentation. The blue 

area is the separated image object, and Figure 25a–c are the original image comparison 

diagram. 

 
 

 

(a) (b) (c) 

  
 

(d) (e) (f) 

Figure 25. Classification results of the fifth band:(a–c) are the original image comparison diagram, (d) a roadside car park, 

(e) the building under construction, (f) the building after re-segmentation. 

After the above classification operation, some image objects of buildings are still con-

fused with construction waste. It is found in this paper that these easily confused building 

image objects are basically simple houses that are located near the construction waste area 

and have obvious brightness contrast with the nearby construction waste. However, the 

wide range of the brightness threshold of the construction waste will lead to many mis-

classification phenomena in the separation process. Therefore, GLCM contrast was used 

to separate such buildings, as shown in Figure 26. Figure 26a–c are the original images, 

and Figure 26d–f are separated simple houses. Finally, we used the red band to separate 

the vegetation, and roads appeared after re-segmentation, and we obtained the final con-

struction waste extraction results. 
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(a) (b) (c) 

 
  

(d) (e) (f) 

Figure 26. Classification results of GLCM contrast: (a–c) the original images, (d–f) the separated simple houses. 

4. Discussion 

Based on the analysis and evaluation of the experimental results on the two study 

areas, the classification model in this paper can effectively identify the construction waste 

accumulation area. However, for the phenomenon of commission error or omission error, 

we will discuss two parts. Firstly, we analyzed the effects of image segmentation and 

threshold selection on construction waste identification. Then, we compared and ana-

lyzed the spectral features of the vegetation and the construction waste covered by vege-

tation to verify the confusion problem between them. 

4.1. Image Segmentation and Threshold Selection 

According to the accuracy analysis on the construction waste identification and ex-

traction, the main reasons for commission and omission errors are image segmentation 

and threshold selection. The hierarchical segmentation method that we used to extract the 

construction waste ensures that different ground objects have different segmentation 

scales to some extent. However, some boundaries and features of non-construction waste 

objects are similar to those of construction waste, such as the construction waste accumu-

lation area after cleaning, which could easily cause the phenomenon of wrong classifica-

tion. Figure 27c,d in Figure 26 are two houses in study area A; these are wrongly classified 

into construction waste after demolishing and cleaning (Figure 27a,b). 

At the same time, the image feature value range of the construction waste is very 

wide, and we could miss some construction waste objects in the threshold classification, 

such as the fragmentary image objects in the accumulation area of the construction waste 

(Figure 14b–d). Different segmentation scales lead to different classification threshold set-
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tings. Therefore, image segmentation also has a large impact on the threshold classifica-

tion. The selection of an appropriate segmentation scale and threshold value plays a key 

role in the identification and extraction of the construction waste. 

  

(a) (b) 

  
(c) (d) 

Figure 27. The construction waste accumulation area after cleaning: (a,b) wrongly classified into construction waste after 

demolishing and cleaning, (c,d). 

4.2. Construction Waste Covered by Vegetation 

Construction waste in study B includes not only bare construction waste but also 

construction waste covered with dust screen and vegetation. The experimental results 

show that the exposed construction waste and the construction waste covered with dust 

screen can be identified, but the construction waste communication areas covered with 

vegetation were missed. As shown in Figure 28, the spectral mean distribution of the con-

struction waste covered by dust screen is similar to that of bare construction waste, with 

no obvious changes. In Figure 29, the spectral mean distribution of the vegetation and 

construction waste covered by vegetation showed the same trend. Moreover, the band 

mean separation degree between the vegetation covered construction waste and the bare 

construction waste is obvious, and the band mean of the construction waste covered by 

vegetation lies between the construction waste and vegetation. 
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Figure 28. Spectral mean distribution of construction waste covered with dust screen and exposed 

construction waste. 

 

Figure 29. Spectral mean distribution of vegetation and construction waste covered with vegeta-

tion. 

As shown in Figure 30, the spectral features of the construction waste in Figure 30a,b 

are interfered with by surface vegetation, which seriously affects the identification and 

extraction of the construction waste. Moreover, the first layer classification structure only 

used spectral features to separate vegetation and road; thus, such ground objects were 

mistakenly classified as vegetation. In Figure 30c, due to the presence of vegetation in the 

image object and the use of red bands used to separate vegetation and road at both levels 

of the classification rules, such ground objects were also missed in the second classifica-

tion structure. Construction waste contains mainly residual soil, and its surface has sparse 

vegetation due to long-term accumulation, which causes substantial interference in the 

feature selection, and it is obviously different from the other two types of construction 

waste in terms of features. Therefore, the construction waste covered with vegetation can-

not be fully identified in the classification. 
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(a) (b) (c) 

Figure 30. Construction waste covered with vegetation: (a,b) the spectral features of the construction waste, (c) the pres-

ence of vegetation in the image object and the use of red bands used to separate vegetation and road at both levels of the 

classification rules. 

5. Conclusions 

In this paper, the method of information extraction combining morphological index 

and hierarchical segmentation was used to extract construction waste information rapidly 

and accurately. By comparing the differences between the construction waste and build-

ing, bare soil, vegetation, and other features in the spectrum, the geometry, texture, and 

other features, we selected an appropriate feature subset and established a knowledge 

rule classification model of one-to-one features. In addition, we established the separabil-

ity index rules for judging the construction waste and buildings, bare soil, and vegetation, 

and we evaluated the accuracy of the identification results of the construction waste with 

the accuracy evaluation index of the confusion matrix. 

We have conducted experiments on two representative accumulation areas of con-

struction waste in Beijing, and the analysis shows the reliability of the classification model. 

The confusion between the construction waste and the buildings can be effectively solved 

by integrating the morphological index into the classification structure of the knowledge 

rules. The GLCM homogeneity has a significant effect on the separation of the construc-

tion waste and bare soil. The GLCM standard deviation and GLCM contrast play an im-

portant role in separating the construction waste and demolishing buildings. The experi-

mental results show that the overall accuracy of the two study areas can reach 96.6% and 

96.2%, respectively, the separability between construction waste and buildings can reach 

1.000, and the separability between construction waste and vegetation can reach 1.000 and 

0.818. The separation between construction waste and bare soil in study area A is up to 

0.846. The experimental results show that the classification model in this paper can effec-

tively solve the confusion between the construction waste and the buildings and bare soil, 

and the separation effect is good. 

The method can quickly and accurately separate construction waste from buildings 

and bare soil. Considering the influence of the threshold selection on construction waste 

identification, we will build a more comprehensive construction waste feature database 

to analyze the features and rules of construction waste and easily confused ground objects 

and to improve the accuracy and efficiency of the classification model.  

At the same time, we will continue to conduct in-depth analysis on the confusion 

between the construction waste covered with vegetation and vegetation, and will attempt 

to combine different data sources and collect samples in the field for comparative experi-

mental analysis, to find the features and methods that can accurately separate these two 

ground features. 
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