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Abstract: Xylella fastidiosa subsp. pauca (Xfp) is one of the most dangerous plant pathogens in the 
world. Identified in 2013 in olive trees in south–eastern Italy, it is spreading to the Mediterranean 
countries. The bacterium is transmitted by insects that feed on sap, and causes rapid wilting in olive 
trees. The paper explores the use of Unmanned Aerial Vehicle (UAV) in combination with a 
multispectral radiometer for early detection of infection. The study was carried out in three olive 
groves in the Apulia region (Italy) and involved four drone flights from 2017 to 2019. To classify Xfp 
severity level in olive trees at an early stage, a combined method of geostatistics and discriminant 
analysis was implemented. The results of cross-validation for the non-parametric classification 
method were of overall accuracy = 0.69, mean error rate = 0.31, and for the early detection class of 
accuracy 0.77 and misclassification probability 0.23. The results are promising and encourage the 
application of UAV technology for the early detection of Xfp infection. 
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1. Introduction 
The bacterium Xylella fastidiosa is considered one of the most dangerous plant 

pathogens in the world, and has already caused diseases in more than 300 species in Brazil 
and U.S., with serious economic losses. In Europe, X. fastidiosa subsp. pauca (Xfp) was 
identified in 2013 in the Apulia region (south–eastern Italy), renowned in the world for 
its olive oil production, and have already caused very serious losses to oliviculture, one 
of the main productive sectors of the region, with a remarkable impact on the 
environment, the landscape, and the cultural heritage of that territory [1]. Xfp is a Gram-
negative bacterium that lives and reproduces into the xylem, thus clogging the conductive 
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vessels of the sapwood carrying water and mineral nutrients. The symptoms caused by 
Xfp infection in the olive trees are the intense browning of the leaves (leaf scorch) and 
more or less extensive drying of the foliage flap. The phenomenon affects, first, 
ramifications, and then small branches of the foliage, isolated and distributed at random, 
especially starting from the upper stands, and then spreading to the entire branches, until 
it reaches an extension that affects the whole aerial portion of the plant. Other symptoms 
are the reduced growth of branches and shoots. In the final stage, the foliage assumes a 
burnt color, but the tree remains alive, although is emaciated in its external aspect, and its 
roots, as long as they remain vital, are still able to emit suckers destined to dry in a short 
time. 

The pathogen is currently spreading, and a serious risk exists that the bacterium may 
affect the whole of Europe, particularly all of the countries of the Mediterranean Basin [2]. 
The attention of producers and consumers to the largest area of olive cultivation in the 
world is therefore understandable: more than 2.5 million hectares in the Mediterranean 
basin. Unfortunately, at present, there is no cure, and the only solution to stop the 
epidemic spread of the disease is to pluck infected trees. A disease management strategy 
would be much more efficient if the asymptomatic or infected plants with visible 
symptoms of desiccation were identified at an early stage, to reduce the spreading of the 
pathogen and the risk of infection to neighboring trees [3–5]. Disease severity on olive 
plants can be quantified in several ways (occurrence, intensity, severity level) and at 
different scales (leaves, stems, fruits, portion/whole plants, or small quadrats). At present 
the most common approach is visual rating, which is now reasonably well understood 
and its practice is over 100 years old [6,7]. Undoubtedly, it has some advantages: the 
process can be quick; it may be relatively easy to recognize the disease or differentiate 
multiple diseases with proper training, and no expensive equipment is required, although 
the use of technological aids can improve the results [8]. In the framework of the 
mandatory control program of quarantine pathogens managed by the regional 
Phytosanitary Authority, the monitoring of Xfp is currently based on the “visual 
inspection” of the plants, i.e., searching for visible symptoms on the canopy of the trees. 
However, visually assessed disease may be affected by variability in accuracy 
(subjectivity) and need to develop standards to aid assessment and/or to repeat training, 
maintaining quality. Therefore, visual rating may be time-consuming, expensive, and 
destructive if samples are collected in the field to be later analyzed in the laboratory [8]. 

It would then be desirable to have an automatic method for the detection of the 
pathogen that is fast, reliable, relatively inexpensive and allows real-time monitoring of 
the disease for the control and precise management of the infection. Remote sensing 
technologies have been used for a long period to identify and monitor disease [5,9–12]. 
However, the poor revisiting times and/or coarse spatial resolutions limit their use in the 
disease detection and the symptoms assessment, in which it is necessary to intervene 
promptly in the early stages of the infection to mitigate the damage caused by the spread 
of the pathogen. Unmanned aerial vehicles (UAVs), also known as drones, have already 
been used in some agricultural procedures; however, in the last few years they have 
expanded very rapidly, especially in the field of precision farming [13–15]. UAVs are 
capable of covering large areas to be monitored much faster than people on the ground 
can do; therefore, they can be used as a very efficient tool for scouting. 

Recent work on Xfp in olive trees [5,12,16] has demonstrated that infection causes a 
change in spectral reflectance. Actually chlorophyll content tends to decrease in infected 
plants, which causes a higher reflectance in the visible region (VIS) and a blue shift in the 
red-edge portion of the spectrum (700–720 nm) [3,17–21]. Moreover, stressed plants show 
a reduction in canopy density and leaf area leading to a decrease of spectral reflectance in 
the near-infrared region (NIR, 680–800 nm) [3]. It then makes possible using UAVs, in 
combination with cost-efficient and light-weight multispectral sensors operating in the 
VIS, red-edge, and NIR regions, for disease infection before it becomes widespread. 
However, to transform UAV into an effective tool for disease management, it needs to 
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extract useful information from multispectral images. Currently, many image processing, 
machine learning, and linear discriminant analysis (LDA) techniques have already been 
sufficiently developed to extract information useful for specific purposes [3,22–25]. 

However, when dealing with spatial data in a multivariate approach, it is crucial to 
face a major problem, which is unfortunately still much little considered in scientific 
literature, which is the one of their support. The support of a spatial variable is the 
physical volume over which the value of the variable is measured or computed [26]. In 
remote sensing, the term “pixel” is practically interchangeable with it. Changing the 
support of a variable through averaging or assimilation creates a new variable, which is 
related to the original one, but with different statistical and spatial characteristics [27]. The 
problem of determining how these properties vary with the support is called the change 
of support problem (COSP) [28] and this must be taken into account when jointly 
analyzing data with different support in a multivariate analysis. Geostatistics has 
proposed possible solutions to this problem [29,30], mostly based on block (co)kriging or 
on its more flexible version that is better suited to the Geographic Information System 
(GIS) context, known as polygon (co)kriging [27]. 

The real novelty of this article is to propose and apply an integrated approach of 
various statistical and spatial geostatistical techniques taking into account change of 
support, and able to discriminate asymptomatic and/or infected plants, but at a very early 
stage, by using radiometric data collected with a multispectral sensor on board of a drone. 

In particular, the study describes a semi-automatic combined method of geostatistics 
and discriminant analysis, to classify the Xfp symptom severity level on olive trees with a 
special focus on early detection. 

2. Materials and Methods 
2.1. Study Site Description 

The agronomic surveys involved two study areas located at Oria and Torchiarolo 
(Brindisi province, south–eastern Italy, Figure 1), and three olive orchards (40°31′12”N, 
17°39′36”E; 40°31′16”N, 17°39′40”E; 40°30′36”N, 18°03′36”E), where the evolution and 
spread of the quick Xfp syndrome of olive trees (Olea europaea L.) were monitored. 

A short description of the study sites follows: 
Oria (Re field): the olive grove consists of a single portion of centenarian trees of the 

“Ogliarola Salentina” cultivar. The trunk is large, twisted, with a dense and shrubby 
foliage. The planting system is very wide and in some respects irregular; there is no 
irrigation system. Periodic ploughing and mulching operations were carried out in the 
plot in order to contain weeds. 

Oria (Fella field): the olive grove consists of a single portion of 50–60 years old trees 
of the “Cellina di Nardò” cultivar. The trunk is regular, fairly linear and columnar in 
shape, with a thick and shrubby canopy. The planting system is wide and regular and 
there is no irrigation system. Periodic ploughing was carried out on the plot in order to 
contain weeds. 

Torchiarolo field: the olive grove is made up of a portion of centenarian trees of the 
“Cellina di Nardò” cultivar, and of a neighboring portion of olive trees of the same 
cultivar surrounding a trellis-shaped vineyard. The trunk is large in size, fairly linear in 
shape; the canopy is dense. The planting system is wide and regular and there is no 
irrigation system. Mechanical operations were carried out on the two plots for weeding. 
The field, which has a regular shape, is bounded on all four sides by a large uncultivated 
field, a high road, a waste-water drainage canal, and another olive grove with similar 
characteristics. 
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Figure 1. Localization of the three olive groves in the Apulia region (south–eastern Italy): Re field, 
Fella field, Torchiarolo field. 

2.2. Variables 
The following variables were used for the construction of the prediction model: 
Response variable: visual assessment of disease severity level. 
A survey was carried out on each olive plant in order to evaluate the level of Xfp 

disease severity. The visual inspection of the symptoms with the relative photographic 
documentation was carried out by an operator who scored the percentage of affected can-
opy, examining the portion of foliage with wilting symptoms in each of the four cardinal 
points. 

The plants were grouped according to an empirical scale of symptom severity with 
increasing values from 1 (asymptomatic plants) to 6 (plants characterized by lack of green 
parts and, therefore, dead), as follows: 

Class 1, asymptomatic: 0% foliage with drying symptoms. 
Class 2, slight wilting severity: 1% to 20% foliage with drying symptoms. 
Class 3, medium–low severity: 20% to 50% foliage with drying symptoms. 
Class 4, medium–high severity: 50% to 70% foliage with drying symptoms. 
Class 5, high severity: 70% to 99% foliage with drying symptoms. 
Class 6, dead or without green vegetation: presence of symptoms >99% (Figure 2). 
Therefore, the evaluation of the wilting severity does not refer to the entire plant, but 

to an angular portion of the canopy of 90° aperture, according to the four cardinal direc-
tions, which is to be assumed as the support of this measure. 

However, this work was aimed more specifically at identifying asymptomatic plants 
or in the very early stage of the disease, as any delay would preclude the effectiveness of 
the measures to slow down the epidemic progression and increase the infection risk for 
the surrounding plants. This aspect is particularly relevant for Xfp, whose latency period 
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on olive trees (i.e., the time lapse from the infection to the symptoms appearance) can last 
12–18 months. The “ideal” early detection stage would be located into the “latency pe-
riod”, when the symptoms are still not visible. However, this is not possible, being the 
official monitoring activity based on the “visual inspection” of the plant, i.e., searching for 
wilting symptoms on the canopy of the tree. Therefore, only two classes of wilting severity 
were considered: Class 0, including asymptomatic plants or plants with a wilting severity 
in each angular portion of the canopy not exceeding 5%, and Class 1, including all remain-
ing plants. 

The choice of this threshold value was based on the experience of well-trained people 
in visual rating. 

 
Figure 2. Examples of the six classes of Xylella fastidiosa subsp. pauca (Xfp) severity level. 

Quantitative variables as predictors: UAV multispectral data. 
The UAV used in this study was a multi-rotor DJI Mavic Pro drone. The maximum 

payload capacity was ~800 g, and the maximum flight range 7 km. The vehicle was 
equipped with a three-axis accelerometer, a gyroscope, an integrated barometric precision 
sensor for altitude control, and with four brushless motors powered by a battery. It flew 
autonomously with the aid of its Global Position System (GPS) receiver and its waypoint 
navigation system. The drone endurance with the designed payload was 12/13 min. 

A custom payload tray was designed to carry the multispectral sensor (Parrot Se-
quoia) that consisted of a four-band multispectral camera at high resolution (16 mega-
pixel), with the wavelengths centered in green (550 ± 20 nm), red (660 ± 20 nm), red-edge 
(735 ± 5 nm), and near infrared (790 ± 20 nm). The choice of these particular bands, instead 
of the usual RGB, is due to the well-known utility of the red-edge as a general indicator 
of plant stress, and the NIR as an indicator of the structure and leaf area of the canopy 
[3,17], which was one of the features of the olive tree most sensitive to infection. 

The high spatial resolution UAV images were acquired on September 2017, March 
2018, June 2018, and June 2019 for Re and Fella fields, whereas for Torchiarolo field, the 
last date was August 2019, at the height of 70 m, and with the theoretical ground sampling 
distance (GSD) of 6.6 cm/pixel; see Figure 3, as an example. 
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Figure 3. High resolution frame portion acquired by Unmanned Aerial Vehicle (UAV) at Oria field 
on September 2017. 

As the datasets where collected and processed over a long period of time, different 
versions of Pix4d Mapper software were used. The software was always kept updated to 
the latest version. 

However, after all flights were completed (August 2019), all of the spectral datasets 
were reprocessed with the version 4.4.12 of Pix4d Mapper. The software automatically 
manage the layers of the different bands, as the camera rig is already recognized in the 
software database. In order to have exactly the same areas (with the same extent and pixel 
number) for each flight and for each band, some target on the ground, which well-known 
coordinates are used by Pix4d Mapper software. For each elaboration, the same shapefiles 
were used to crop elaboration areas, and upscaled output ground sampling distance to 
the ones with the highest values. The software is a proprietary closed software so no fur-
ther information about its internal algorithms are provided. 

The software uses Structure from Motion (SfM) techniques to reconstruct the scene, 
based on a large number of overlapping photos, to generate a final orthophoto image from 
a quoted point cloud. 

2.3. Methodology 
The construction of the prediction model consisted of the following main steps: 

1. Extraction of canopies for each field from UAV images. 
The data processing, for the semi-automatic extraction of olive trees crowns, is de-

picted in the following main tasks. 
 Pre-processing: 

• To create a composite multispectral image from the individual spectral bands, 
the procedure of layer stacking has been applied, so individual image bands to 
have the same extent (no. of rows and columns). 

• To enhance specific information about the landscape, which cannot easily be 
seen with a natural color image, as stress and vigor of vegetation, the false color 
composite has been applied. In this case, to emphasize the status of the plant, 
the following bands have been combined: Red → Red, Red-Edge → Green, 
Green → Blue, (Figure 4a). 

 Supervised Classification: 
• Supervised classification was applied, which involves the use of training area 

data considered representative of the land cover types of the study areas. In this 
case three labels were identified: soil, canopy and shadow. 

As classifier algorithm, the maximum likelihood was used, which is based on max-
imizing the likelihood that the observed values follow a normal distribution (Figure 4b). 
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Figure 4. (a) An example, Oria Field: 4 layer stack at false colors. (b) An example, Oria Field: thematic map of classifica-
tion. 

• To smooth the boundaries of small areas located near each other, or to aggregate 
these areas, a morphological filter [31–33], which uses the fundamental opera-
tions of erosion and dilation, was preferred to fill gaps in the contour lines. Sub-
sequently, a format conversion has been applied to convert labelled raster image 
into vector data to extract closed spatial features (polygons) from the classifica-
tion. 

 Exporting to GIS Environment: 
• Each closed polygon, representing an individual plant, was then imported into 

GIS environment and an editing procedure was applied to generate a multipol-
ygon product (Figure 5). This process allowed to modify the vertices of the se-
lected spatial feature, to fill eventual holes in the polygon and/or to cut some 
parts. 

• Each polygon was further subdivided into four quadrants (North, East, South, 
and West), to which to refer both visual and radiometric measurements (com-
mon support). The quadrants were generated by a procedure that has been im-
plemented in C# language with ArcObjects libraries to be integrated into the 
ArcGIS environment. This procedure is based on segments that join the centroid 
of each polygon with the four points at 45°, 135°, 225°, 315° (defined above the 
horizon), to split the polygon into the north, east, south, and west sectors of the 
crown, respectively. 

• Each shapefiles of quadrants has been imported in geostatistical environment. 
For the classification and extraction of the spatial features the software ENVI (Envi-

ronment for Visualizing Images) 5.1 was used. Quantum GIS 3.8 was employed for ex-
tracting multipolygon product from the classification results and exporting to geostatisti-
cal environment. 
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Figure 5. An example of multipolygon product of the three fields on the date of September 2017: 
Re (a), Fella (b), and Torchiarolo (c). 

Figure 6 summarizes the process of canopy extraction from UAV data. 

 
Figure 6. Main processing tasks of semi-automatic extraction of olive tree canopies. 

2. Change of support: polygon cokriging. 
Since the UAV data had a very fine spatial resolution (about 0.07 m), the images were 

transformed to the support of single quadrant of each individual canopy, which was the 
support of the visual surveys. This change of support was necessary to jointly analyze 
these two types of data for the creation of the prediction model of infection severity level. 
At this end, polygon cokriging [27,34,35] was used that is an extension of block cokriging 
[36,37] when block (polygon) has an irregular and variable shape over space. In our case 
the variable block is represented by each quadrant of the previously extracted canopies of 
the olive trees. The expected values of UAV multi-band reflectivity and their standard 
deviations were then estimated over this support. Each polygon was first discretized in 
regular cells for the calculation of the areal (polygon) co-variance function, which was 
expressed as a weighted discrete summation of the point (pixel) covariance functions cal-
culated at the centroid point of each cell. In this procedure, the weights correspond to the 
proportion of cell falling inside the polygon [38]. 

Pre-processing
(UAV Images)

•Layer stacking
•False colours composition

Supervised 
Classification

•Training samples
•Maximum Likelihood Classifier
•Morphological filter
•Conversion Raster to Vector

Exporting to 
GIS 

Environment

•Accurate definition of polygon 
shapefiles

•Division into into 4 quadrants (N, E, 
S and W)
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After that, the calculation proceeded according to the standard formulation of the 
block cokriging, as exhaustively described in several geostatistical manuals [36–38]. Here, 
it is only intended to underline that the spatial correlation structure of the multitemporal 
and multi-band UAV data for each field has been analyzed by adopting a linear model of 
co-regionalization (LMC) to the reflectivity data of the four bands recorded on the four, 
flight dates for a total of 16 variables. 

LMC [39] considers all of the studied variables to be generated by the same inde-
pendent physical processes acting at Ns different spatial scales [40–42]. All (both direct 
and cross-) variogram models are expressed as linear combinations of the same basic 
structures for each spatial scale (range), represented by variograms standardized to unit 
sill, and with the coefficients equal to partial sills [41]. These last ones reflect the influence 
of the specific spatial scale on the total spatial variation of the study variable. 

All geostatistical analyses were performed using the software ISATIS (Geovariances, 
France, 2017). 

2.4. Construction of the Prediction Model: Statistical Analyses 
Moreover, for the statistical analysis, finalized to the construction of the prediction 

model, various phases can be considered, including different procedures, to be applied in 
a consecutive and integrative rather than alternative way. 
1. Selection of predictors. The first step in the statistical analysis was preliminary to 

determine which variables (bands) were significantly related to the response class 
variable (disease severity level), coded as shown above. For this purpose, a stepwise 
discriminant analysis was performed, which is a regression technique aimed to select 
a subset of the quantitative variables (predictors) for use in discriminating between 
the classes. The variables are chosen to enter or to leave the regression model on the 
basis of the significance level of an F test from an analysis of covariance, where the 
variables already chosen act as covariates and the variable under consideration is the 
response variable [39]. The analysis was performed using the STEPDISC procedure 
of SAS software in stepwise mode [39], and the significance levels for a variable to 
enter the subset and to stay in the subset were set to 0.1. 

2. Check of multivariate normality. The next step for implementing discriminant anal-
ysis was to check the multivariate normality in each of the two severity classes of Xfp 
symptoms, since the estimation of misclassification probabilities requires the as-
sumption of multivariate normality. Since the condition of normality for each of the 
16 quantitative variables is a necessary, but not sufficient, condition for multi-nor-
mality, first, the assumption of univariate normality was checked with three tests 
(Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling) [40]. 
As the variables showed large departures from normal distribution, they were trans-

formed to normal scores (yi) using Blom’s formula [41]: 

( )
( )

1 3 8
1 4

i
i

r
y

n
− −

= Φ
+  

(1)

where 
1−Φ  is the inverse cumulative normal (PROBIT) function, ri is the rank of the ith 

observation, and n is the number of observations that have non missing values for the 
ranking variable. 

Once the assumption of normality for the transformed variables was verified, multi-
variate normality was assumed for the multitemporal and multi-band data set of UAV data. 
3. Testing the sensitivity of multi-band data to the infection severity level. Univariate 

(ANOVA) and multivariate (MANOVA) analyses of variance were carried out on the 
UAV data, the former to test the hypothesis that the class means for each quantitative 
variable (band reflectivity) were equal, whereas the latter to compare multivariate class 
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means across several variables. Four multivariate statistical tests were used: Wilks’ 
lambda, Pillai’s trace, Hotelling–Lawley trace, and Roy’s maximum root [42–47]. 

4. Determination of the parametric discriminant model. Assuming that each severity 
class had a multivariate normal distribution, firstly, a parametric method was per-
formed, aimed at developing a discriminant mathematical function or classification, 
which best separated between the two classes of severity [44]. The classification cri-
terion can be a linear function, assuming the same variance–covariance matrix of re-
sponses across the severity classes, or quadratic, assuming each class with a unique 
variance structure. A chi-square test of equal variance was then performed [43]. Us-
ing Bayes theorem, the posterior probability of each observation belonging to each 
class was calculated, taking into account the prior probabilities of the classes [45,46]. 
Each observation was placed in the class to which it had the highest posterior prob-
ability to belong. Therefore, as the final product of the model, for each observation 
the most probable class was assigned together with its posterior probability, which 
can be considered as a measure of the uncertainty associated with such assignation 
or prediction. 

5. Determination of non-parametric discriminant model. Since multivariate normality 
might not be fully satisfied, a non-parametric approach was also estimated to be com-
pared with the parametric one. Non-parametric discriminant methods are based on 
non-parametric estimates of class-specific probability densities. The non-parametric 
kernel method uses a fixed radius (r) and a specified kernel (k), which can be uniform, 
normal, Epanechnikov, biweight or triweight, to calculate the kernel density in each 
class [44]. The value of r and type of kernel, called smoothing parameters, determine 
the degree of irregularity in the estimate of the density function. Small values of r 
produce jagged density estimates, whereas large values produce smoother density 
estimates. Therefore, for each type of kernel, several (ten on average) r values were 
tested, and the optimal set of the smoothing parameters, which minimizes the error 
rates, was chosen. 

6. Comparison between the two models. The performance of each model was evaluated 
using cross-validation [45,46]. Cross-validation uses n-1 out of n observations to de-
termine the discriminant function for the classification of the one observation left out. 
This is repeated for each of the n observations. The error-rate estimates were calcu-
lated by counting the number of misclassified observations; the class-specific error-
count estimate was determined as the proportion of misclassified observations in the 
class. [47–49]. The overall error rate was calculated as a weighted average of the in-
dividual class-specific error-rate estimates by using the prior probabilities as the 
weights [50–54]. 

7. Graphical display of infection status. Canonical discriminant analysis was also per-
formed to extract one (number of classes (2) minus 1) linear combination of the quan-
titative variables, called canonical variable, which best revealed the differences be-
tween the classes and had the highest possible multiple correlation with the classes. 
The standardized canonical coefficients were estimated, which express the partial 
contribution of each quantitative variable (band) to the canonical variable, and were 
then used to interpret its meaning. 

8. Prediction phase. The better classification model was then used in the prediction 
phase, by determining the more likely severity class for an independent data set not 
used in the previous phase of construction of the model. In particular, eight plants in 
the Torchiarolo field, for which the visual surveys were missing, were used for se-
verity class prediction on August 2019. The estimated posterior probability of the 
predicted class was also provided as a measure of prediction uncertainty. 
All discriminant analyses were carried out with the DISCRIM procedure of SAS (SAS 

University edition, release 9.4). 
An overview of the proposed combined geostatistical-discriminant approach, for 

jointly analyzing visual inspection data with UAV multitemporal and multi-band data, is 
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shown in Figure 7. The flowchart illustrates the methodology defined for: extracting 
crown from UAV data, merging visual data with UAV data taking into account change of 
support, predicting the more probable severity class from UAV data, producing a syn-
thetic map of plant status using the canonical variable and, finally, displaying the more 
likely infection severity class per sector of each plant with the associated prediction prob-
ability as a measure of its uncertainty. 

 
Figure 7. Flowchart of the proposed geostatistical-discriminant approach. 
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3. Results 
3.1. Geostatistical Analysis 

In order to apply the change of support for UAV data, an isotropic linear co-region-
alization model (LMC) was adapted to the multitemporal drone data set for each field, 
since no significant differences between the directional variograms were detected. In Ta-
ble 1 the characteristics of the LMCs, fitted to the experimental variograms of the drone 
data for the three fields, are reported. In the supplementary material (see Supplementary 
Materials Figures S1–S3), there are the graphs of the experimental variograms with the fit-
ted models, together with the partial sill matrices (covariance matrices) relative to each 
spatial structure (type of mathematical model). 

Table 1. The characteristics of the linear models of co-regionalization (LMCs). 

Field Type of Model Range (m) 
Spatial Variance Ex-

plained (%) 

Re 
Nugget effect - 32 
Cardinal sinus 18.64 68 

Fella 
Nugget effect - 37 

Cubic 2.42 21 
Cardinal sinus 31.18 42 

Torchiarolo 
Nugget effect - 54 
Cardinal sinus 22.23 37 

Spherical 88.62 9 

Field Re—in the spatial dependence model, the structured component predominates 
over the spatially uncorrelated error (nugget effect), which remains, however, high due to 
high intra-plant spatial variability at centimeter scale, as monitored by UAV. The sinusoi-
dal character of the structured component is due to the discontinuous nature of the vari-
ability (by units represented by the trees) with an influence scale corresponding to the 
average distance between the centroids of the trunks. 

Field Fella—also for this field, the structured component is predominant on the one 
spatially uncorrelated. However, in this case, the former is further split into two sub-com-
ponents: the one related to the short-range within-plant variation and the sinusoidal one 
due to the discontinuous nature of an olive grove. It should be noted that, for this partic-
ular plant arrangement, the influence scale of each tree is about double that of the previous 
field. 

Field Torchiarolo—for this field, the not spatially structured component predomi-
nates over the structured one, which is split into two sub-components: the major one as-
sociated with the discontinuous structure of the olive grove and the minor one related to 
the intrinsic variation of the field at longer range. Figure 8 shows, for each field, the mul-
titemporal map degraded to the quadrant support of the red-edge reflectivity, as an ex-
ample. Similar maps were also provided for the other three bands together with their de-
viation standards (not shown). The red-edge was chosen because, as already discussed 
before, it proved to be a valid indicator of the physiological status of the plant, as any 
stress generally induces a lowering of reflectivity in NIR and a shift towards blue. There-
fore, plants with a low reflectivity in the red-edge might be symptomatic of Xfp infection. 
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Figure 8. (a) Temporal red-edge reflectivity maps at plant quadrant level for the Re field. In this figure, and the follow-
ing ones, the color scale is on isofrequency classes to enhance the differences. (b) Temporal red-edge reflectivity maps at 
plant quadrant level for the Fella field. (c) Temporal red-edge reflectivity maps at plant quadrant level for the Torchi-
arolo field. 

Wanting to highlight a temporal trend in the evolution of the disease, in the Re field, 
the most stressed plants were first those on the south edge, and then those on the north 
edge and northwest corner at the first two monitoring times. At the third date, there was 
a sort of recovery of the plants, while in June 2019, it was apparent that the plants of the 
eastern section showed evident symptoms of disease. 

As for the Fella field, the evolution of the disease was clearer. While on the date of 
the first flight the plants in the south, and partly in the north, were showing clear signs of 
suffering, by March 2018 almost all of the plants showed wilting symptoms. 

For the Torchiarolo field, the situation appeared to be even more complex due to the 
high variability between the plants within the field. While on the first three monitoring 
dates, the plants on the west side were the most extensively and severely injured, in Au-
gust 2019, some of these plants seemed to have recovered considerably. This particular 
behavior should be attributed to particular manifesting of the symptoms of the disease 
and to the intense production of new shoots as a plant defense mechanism, so that the 
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trees might appear less affected, and seem to recover from the disease. Moreover, alt-
hough wilted leaves remain attached to the twigs, they tend to fall to the ground after a 
heavy rain or strong wind, thus masking the real disease severity on the plant. 

3.2. Statistical Analysis 
The study data set included 4095 observations, of which 2373 in class 0, with a pro-

portion (prior probability) equal to 0.58, and 1722 in class 1, with a proportion equal to 
0.42. Although the data set was slightly unbalanced towards class 0, it was considered an 
appropriate sampling since the analysis focused on the detection of infection in the very 
early stages. 

As from the application of the procedure STEPDISC to the UAV data set all the eight 
variables resulted significant at 0.10 probability level, they were included in the successive 
statistical procedures. 

None of the eight variables satisfied the univariate normal assumption based on Kol-
mogorov–Smirnov, Cramer–von Mises, and Anderson–Darling (p < 0.01) (Table 2). There-
fore, all of the variables were transformed into ranks by using the Blom transformation, 
which was very effective in transforming the raw skewed distributions of all variables 
into normal ones. Multivariate normality within each class was then assumed and from 
this moment on, all analyses are referred to the ranks. 

Table 2. Normality tests for the radiometric variables. 

Variable 
D* W-Qu* A-Qu* 

Statistics Probability Statistic Probability Statistic Probability 
GREEN 0.281019 <0.0100 105.9703 <0.0050 585.016 <0.0050 

RED 0.21957 <0.0100 56.25436 <0.0050 331.2315 <0.0050 
RED-EDGE 0.164006 <0.0100 17.94999 <0.0050 123.1129 <0.0050 

NIR 0.066529 <0.0100 2.045712 <0.0050 10.74146 <0.0050 
GREEN_std 0.442217 <0.0100 157.4172 <0.0050 830.784 <0.0050 

RED_std 0.391301 <0.0100 126.0456 <0.0050 728.0533 <0.0050 
RED-

EDGE_std 0.370405 <0.0100 111.0805 <0.0050 552.6192 <0.0050 

NIR_std 0.281603 <0.0100 65.14581 <0.0050 323.1493 <0.0050 
D* = Kolmogorov–Smirnov, W-Qu* = Cramer–von Mises, A-Qu* = Anderson–Darling. 

The preliminary analysis of ANOVA showed that the means of the two severity clas-
ses were significantly different for all the variables at the probability level of p < 0.0001, 
whereas they were not differentiated only by the standard deviation of the rank of red 
reflectivity (Table 3). 

Table 3. Results of ANOVA on rank variables. R before the name of the variable means rank. 

Variable F Value Probability 
R_GREEN 134.09 <0.0001 

R_RED 24.07 <0.0001 
R_RED-EDGE 174.09 <0.0001 

R_NIR 106.90 <0.0001 
R_GREEN_std 50.57 <0.0001 

R_RED_std 0.84 0.3580 
R_RED-EDGE_std 90.59 <0.0001 

R_NIR_std 16.86 <0.0001 
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The MANOVA analysis consistently showed high statistical significance with the 
four tests (Table 4). These results indicate that the two severity classes exhibited different 
spectral behavior not only at each individual band but also overall. 

Having assumed multivariate normal distribution within each class, a quadratic dis-
criminant analysis was performed since the Chi-Square value of the test of equal variance 
was statistically significant (p < 0.1). 

Table 4. Results of MANOVA on rank variables. 

Test Statistic Value F Value Probability 
Wilks’s lambda  0.931 37.74 <0.0001 

Pillai’s trace 0.069 37.74 <0.0001 
Hotelling–Lawley’s 

trace 0.074 37.74 <0.0001 

Roy’s maximum root 0.074 37.74 <0.0001 

The results of the cross-validation showed an overall accuracy of 0.64, while that of 
class 0 (producer’s accuracy) was 0.59, and the one of class 1 was 0.71 (Table 5). Actually 
the accuracy was quite low for class 0, which was the focus of the work. This is also con-
firmed by the error rates or misclassification probabilities that are rather high, especially 
for class 0 (Table 6). 

Table 5. Confusion Matrix for X. fastidiosa subsp. pauca severity classes using the quadratic discri-
minant classification with the absolute counts and the accuracies. 

 

Ground Truth  

0 1 
Total # of 
classified 
samples 

User’s accu-
racy  

Classification 
Results 

0 1405 498 1903 0.74 
1 968 1224 2192 0.56 

Total #of ground truth sam-
ples 2373 1722   

Producer’s accuracy  0.59 0.71  0.64 

Table 6. Error rates for X. fastidiosa subsp. pauca severity classes using the quadratic discriminant 
classification. 

Class 0 1 Average 
Error Rate 0.41 0.29 0.36 

As a cause of error might have been the assumption of multivariate normality, which 
might not be actually fully satisfied, a non-parametric approach was alternately per-
formed and after several trials on the smoothing parameters the optimal choice was: nor-
mal kernel with r equal to 0.3. 

Tables 7 and 8 show the results of cross-validation for the non-parametric method. 
Even if the overall results did not change appreciably (overall accuracy = 0.69 and mean 
error rate = 0.31), nevertheless the situation is completely reversed for the two classes. 
Fairly good results were obtained for the early detection class with a class accuracy (pro-
ducer’s accuracy) of 0.77 and a misclassification probability of 0.23. 
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Table 7. Confusion Matrix for X. fastidiosa subsp. pauca severity classes using the non-parametric 
method with the absolute counts and the accuracies. 

 

Ground Truth  

0 1 
Total # of 
classified 
samples 

User’s accu-
racy 

Classification 
Results 

0 1835 730 2565 0.72 
1 538 992 1530 0.65 

Total #of ground truth sam-
ples 2373 1722   

Producer’s accuracy 0.77 0.58  0.69 

Table 8. Error rates for X. fastidiosa subsp. pauca severity classes using the non-parametric method. 

Class 0 1 Average 
Error rate 0.23 0.42 0.31 

Finally, a canonical discriminant analysis was carried out in order to produce a di-
mension reduction of the eight quantitative variables to a single canonical variable and to 
highlight those variables that better discriminated between the two classes. The correla-
tion coefficient, although significant (p < 0.01), was rather low, equal to 0.26. However, the 
two classes were well separated from the canonical variable, reporting mean values equal 
to 0.23 and −0.32, for class 0 and 1, respectively. Table 9 shows the canonical coefficients 
standardized within the classes, being the variances not homogeneous, from which it can 
be deduced that the most positively influential variables were red-edge and red, the for-
mer indicative of the overall physiological status of the plant, while the latter more closely 
related to the chlorophyll function. On the reverse side, the red standard deviation 
weighted negatively, which can be interpreted as a larger variability in the most stressed 
plants due to the concomitant presence of foliage with different degree of desiccation. 

Table 9. Within-class standardized coefficients of the canonical variable. 

Variable Coefficients 
R_GREEN 0.034 

R_RED 0.652 
R_RED-EDGE 0.885 

R_NIR −0.247 
R_GREEN_std 0.171 

R_RED_std −0.689 
R_RED-EDGE_std 0.364 

R_NIR_std −0.154 

In Figure 9 the map of the canonical variable, corresponding to the monitoring of the 
Torchiarolo field in March 2018, is shown as an example, where it is evident that the plants 
in the south–west corner were suffering for some kind of stress. 
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Figure 9. The map of the canonical variable for the Torchiarolo field on March 2018. 

In Figure 10, it is reported, as an example, an output of the prediction model concern-
ing eight plants in the Torchiarolo field that had not been visually rated by the operator 
at the time of the flight of August 2019. In this case, we are concerned with plants in an 
advanced status of drying; however, we can note that not all of the predictions have the 
same degree of uncertainty. While predictions with a probability of 0.98 can be considered 
reliable, those with probabilities of 0.54 are extremely uncertain. 

 
Figure 10. The prediction of the more probable severity class, together with its posterior probabil-
ity at plant quadrant level, for eight plants at Torchiarolo field on August 2019. The brown color 
represents class1, blue color represents class 0. 
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4. Discussion 
The geostatistical analysis on UAV data has evidenced the extreme variability that 

characterizes the olive trees, even within individual plants. This then makes it hard to 
extract clear evidence of the occurrence of the disease. Therefore, only a multivariate and 
multitemporal statistical analysis could hopefully produce more reliable predictions. 

Several reasons may have caused the poor results of discriminant analysis with the 
parametric method: a sub-optimal choice of the radiometer wavelengths, more confusing 
factors that may have contributed to the drying of the vegetation, but not directly ascrib-
able to Xfp infection, and a different appreciation of the canopy quadrant support from 
ground at man height rather than from above the plants at the height of UAV flight. 

Another cause of error might have been the assumption of multivariate normality 
that was not actually fully satisfied. Therefore, a non-parametric approach was alternately 
performed. The rather low value of accuracy confirms the high stochasticity, characterized 
by short-range variability, as already observed in the geostatistical analysis of spatial de-
pendence (fitting of LMCs). 

The undoubtedly encouraging results obtained with the non-parametric method can 
be further improved with an appropriate choice of the classification method, an optimal 
calibration of its parameters, and a preference for the hyperspectral (rather than multi-
spectral) sensor. The former indeed allows the choice of quite narrow-band wavelengths 
that are particularly discriminating Xfp-infected plants, as it was previously verified by 
other authors [16]. 

The canonical variable can be used as an efficient and synthetic, although relative, 
spatial indicator of the overall health of the olive tree. According to its structure (Table 1), 
high and positive values denote luxuriant and homogeneous enough foliage with good 
chlorophyll function, while lower and negative values indicate clear symptoms of stress 
and drying of the foliage. 

A spatial map of this variable (Figure 9) could be used as an efficient tool for decision-
making, and support to address the monitoring activity, and direct the scouting for ascer-
taining the effective presence of the bacterium in the pre-selected plants by means of the 
molecular diagnostic techniques. From the examination of Figure 9, it can be noted that, 
leaving aside the plants evidently stressed in the south–west corner, some plants in the 
north–west and south–east corners of the upper portion of the field showed, especially in 
some sectors, incipient stress conditions. These plants should be given special attention 
with the perspective of avoiding the spread of the infection. 

Another way of using UAV data as a decision making tool is to provide the prediction 
of the most probable severity class together with its posterior probability, which is a meas-
ure of the degree of uncertainty, and then of the level of risk associated with a decision 
based on that prediction. 

Therefore, priority should be given to those plants for which prediction is more un-
certain. 

In addition, scouting should be intensified precisely where the prediction is most un-
certain. 

5. Conclusions 
In this study, a combined procedure, based on an integrated use of some geostatisti-

cal and discriminant analysis techniques, was developed for the semi-automatic classifi-
cation of Xylella-infected olive plants showing different symptoms severity. High spatial 
resolution imagery, recorded with a multispectral camera installed on board of an un-
manned platform, was acquired over three olive orchards differing in plant characteris-
tics, age, and planting system on three different dates. The radiometric data were firstly 
degraded to the support of visual assessment, using geostatistical techniques, after that a 
quadratic discriminant analysis and a non-parametric method were applied to discrimi-
nate between two severity classes, with a focus on early detection. The non-parametric 
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approach classified better the trees at initial and low severity levels compared with within-
class accuracy of 77%. 

The proposed approach, although including several geostatistical and statistical tech-
niques implemented using commercial software, uses standard procedures that could be 
easily rewritten with free software, such as R [55], geoR [56], and Qgis [57]. An exception 
is polygon cokriging, which, to our knowledge, is only implemented in the commercial 
ISATIS software. This procedure is actually a modification of block cokriging in the cal-
culation of the areal spatial covariance function, due to the irregular and variable shape 
of the crown polygons (blocks). However, its implementation using a common program-
ming language should not present particular difficulties. 

Therefore, we believe that the realization of a decision support system (DSS), aimed 
at identifying plants that might be asymptomatic or in the early stages of Xylella infection, 
could be easily achieved after a suitable informatization of the approach illustrated. How-
ever, it is worth underlining, the prediction of the most probable level of infection severity 
cannot be done in real time, but after the UAV data acquisition on the area of interest. 

The system is extendable to any type of data recorded, not only in remote (UAV, 
airplane, satellite), but also in proximal sensing. It is also flexible enough to include other 
classification techniques, such as those of machine learning. 

The results are promising and seem to encourage the application of UAV technology 
in the early detection of Xylella infection, and we expect that UAV spectral sensing sys-
tems will become a powerful tool in disease detection, not only for researchers, but also 
for service providers and even farmers. 

The results of numerous applications of proximal, UAV-borne, air-borne, and satel-
lite-borne imaging sensors seem to indicate their complementary rather than competitive 
use, even over the same area. This is because many factors (costs, spatial resolution, tem-
poral frequency, areal coverage, type of features to be extracted, wavelength range, etc.) 
may influence this choice [14]. 

For this reason, some authors propose to combine the images acquired at the various 
spatial scales with different sensors, using a data fusion approach, in order to improve the 
ability of stress detecting [48]. 

Therefore, disease monitoring with UAV data is of limited value when used individ-
ually. On the contrary, it acquires greater value if used in a wider knowledge system that 
integrates information of different (physiological, meteorological, and agronomic) type, 
as well as data from other sensors through geostatistical techniques of data fusion [27]. To 
investigate the full potential of UAVs in disease detection, some important future research 
priorities still remain, such as defining the scale at which to estimate the severity of the 
infection: leaves, plants, quadrats or quadrants? 

Further (different) methods of automatic disease assessment should be compared, 
including discriminant analysis and various techniques of machine learning. 

Finally, it is urgent to underline the importance of defining an appropriate sampling 
strategy in order to efficiently identify plants in the early stages of infection, thus allowing 
the operator to intervene in a timely manner. In this, the UAV data can give a valid sup-
port since, as it has been extensively demonstrated in this work, they can aid in classifying 
plants with different levels of symptom severity. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-
4292/13/1/14/s1, Figure S1: LMC for UAV data of the Re field, Figure S2: LMC for UAV data of the 
Fella field, Figure S3: LMC for UAV data of the Torchiarolo field. 
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