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Abstract: The influence of topographical characteristics and rainfall intensity on the accuracy of
satellite precipitation estimates is of importance to the adoption of satellite data for hydrological ap-
plications. This study evaluates the three GPM IMERG V05B products over the arid country of Saudi
Arabia. Statistical indices quantifying the performance of IMERG products were calculated under
three evaluation techniques: seasonal-based, topographical, and rainfall intensity-based. Results
indicated that IMERG products have the capability to detect seasons with the highest precipitation
values (spring) and seasons with the lowest precipitation (summer). Moreover, results showed that
IMERG products performed well under various rainfall intensities, particularly under light rain,
which is the most common rainfall in arid regions. Furthermore, IMERG products exhibited high
detection accuracy over moderate elevations, whereas it had poor performance over coastal and
mountainous regions. Overall, the results confirmed that the performance of the final-run product
surpassed the near-real-time products in terms of consistency and errors. IMERG products can
improve temporal resolution and play a significant role in filling data gaps in poorly gauged regions.
However, due to the errors in IMERG products, it is recommended to use sub-daily rain gauge data
in satellite calibration for better rainfall estimation over arid and semiarid regions.

Keywords: satellite-based precipitation products; GPM; IMERG; Saudi Arabia

1. Introduction

Precipitation is one of the most complex natural process in the hydrological cycle that
undergoes momentous variability at both the spatial and temporal scales. The acquisition
of accurate precipitation measurements is crucial since it is the main input in a wide range
of applications such as climate change prediction, environmental studies, hydrological
modelling, flood forecasting, drought monitoring, and water resources assessment. In ad-
dition, precipitation measurements at a high spatial and temporal resolution are crucial to
properly simulate the hydrological states of natural systems. Precipitation characteristics,
such as the rainfall pattern, intensity, probability distribution of rainfall and return periods,
are considered the basis for studying the hydrological behavior of any catchment [1–6].

In the last three decades, meteorologists and hydrologists were attracted by advance-
ments in satellite information technology; primarily their focus was on developing algo-
rithms to retrieve precipitation data from information remotely collected by these satellites.
These algorithms estimate precipitation amounts from the characteristics of clouds as inter-
preted from infrared (IR), visible (VI), and microwave (MW) satellite images [7]. Generally,
passive microwave (PMW) measurements have demonstrated high performance at the
global scale compared to algorithms that were based on IR and VI, while precipitation esti-
mations that are based on IR have a higher temporal resolution than others [8,9]. Currently,
most of the recognized satellite-based precipitation products rely on a combination of
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MW and IR to benefit from their complementary strengths. For instance, the Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks method
(PERSIANN) generates rainfall estimates by deriving relations between MW data and
IR data [10]. Furthermore, other methods such as Climate Prediction Centre Morphing
Method CMORPH generates rainfall estimates that are derived from MW data, whereas IR
data are used to propagate rain pixels by a tracking approach to derive a cloud’s motion
field [11].

The first devoted meteorological precipitation satellite is the Multi-satellite Precip-
itation Analysis (TMPA) 3B42R that was produced by the Tropical Rainfall Measuring
Mission (TRMM). The National Aeronautics and Space Administration (NASA) launched
the successful satellite in late 1997. The TRMM products were used widely, and it pro-
vided two products: the post-processed product (3B42-V7) and the near-real-time product
(3B42RT). TMPA applies an estimation method that relies on using IR-calibrated estimates
with MW estimates. The TMPA product provides estimations of tropical precipitation
with good accuracy [12–15]. Recently, in 2014, NASA and Japan Aerospace Exploration
Agency (JAXA) cooperated to launch the Global Precipitation Measurement (GPM) satellite,
after the impressive success of TRMM. It consists of one main observatory satellite and
ten other partner satellites, carrying an up-to-date Dual-frequency Precipitation Radar
(DPR), GPM Microwave Imager (GMI), and other innovative instruments [12,16]. The
satellite is anticipated to perform efficiently in the prediction of flood hazards and re-
duce uncertainties in estimating short-term precipitation as it has a high spatiotemporal
resolution [17,18]. According to NASA, the GPM provides four levels of data which are
Level-0, Level-1, Level-2 and Level-3. The Level-3 product is the Integrated Multi-satellitE
Retrievals for GPM (IMERG), released in early 2015, and has since gained more attention
and recommendations from researchers and practitioners. IMERG products have a high
resolution (spatially 0.1◦ latitude × 0.1◦ longitude) and multiple temporal resolutions
(ranging from half-hourly, up to monthly basis). It includes three modes of output namely
an, early, late, and final run product based on latency and accuracy.

One of the often-discussed challenges for satellite precipitation retrievals is estimating
precipitation over areas of complex topography, where precipitation has high spatiotempo-
ral variation [9]. It is not common to find rain gauges in mountainous regions, particularly
in Saudi Arabia, due to accessibility issues. In addition, since most developments exist in
lowlands, it follows that most of the rain gauges are concentrated in lowlands, while the
highlands are left under-represented. Since this under-representation can be augmented
with satellite products, researchers have started focusing on evaluating satellite precipita-
tion products over complex topography [15,19–23]. These efforts represent a good start,
but more research is needed to cover different topographic and climatic regions around
the globe. Results from previous studies show that the main sources of error in satellite
precipitation measurements are from IR and PMW retrievals [3,15,19,24]. In addition to
complex topography, low rainfall intensity (light rainfall) events represent another chal-
lenge for satellite precipitation products. Although light rain covers vast areas of the globe,
particularly the subtropics, to date limited studies are attempting to evaluate the accuracy
of satellite products in the detection of light rain. Previously, TRMM Precipitation Radar
TRMM PR was only sensitive to precipitation exceeding 0.5 mm/h. This is particularly
relevant to the evaluation of GPM precipitation products, since one of its main missions
is to improve the monitoring of snowfall and light rain by using highly sensitive PMW
sensors, which are sensitive to precipitation as low as 0.2 mm/h [25].

In the past decade, several studies were conducted to evaluate the detection accu-
racy of satellite rainfall products in arid and semiarid regions. One study evaluated
seven satellite rainfall products over an arid and semiarid region that spans from North-
Western Africa to North-Western India [26]. These satellite precipitation products included
CMORPH, GSMaP-MVK, TRMM (3B42), TRMM (3B42RT), African rainfall climatology,
and African rainfall estimation algorithm. Their findings showed that satellite precipitation
measurements had an overall positive detection performance, particularly during the wet
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season. Few studies, however, specifically focused on evaluating the performance of GPM
IMERG products over arid regions. The latest studies [27,28] assessed the performance
of GPM IMERG rainfall products over the United Arab Emirates and Egypt, respectively.
Both are considered arid countries with high rainfall scarcity. Mahmoud et al. [27] found
that the calibrated IMERG product outperformed the near-real-time products, giving the
highest detection accuracy and the lowest errors. Moreover, Nashwan et al. [28] evalu-
ated two products other than IMERG, namely: Global Satellite Mapping of Precipitation
(GSMaP), and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS).
The results showed the superiority of IMERG products in rainfall occurrence detection
and its capability to represent rainfall spatial variability during extreme events. Moreover,
two earlier studies evaluated the accuracy of the TRMM products over Saudi Arabia and
found that there was considerable variation in the accuracy of the products for different
events and sub-regions; the conclusion was that TRMM cannot be the only source of data
for hydrological applications as it provides limited input information [16,29]. A more
recent study validated the IMERG products over Saudi Arabia, and the findings showed
that the final-run product had a better performance than other products in detecting and
estimating precipitation in the study area [4]. This study was, however, limited to only
one rainy season, and did not investigate the impact of varying topographical regions and
rainfall intensity on the performance of satellite measurements. A more comprehensive
study is thus needed to address these research gaps and investigate the ability of GPM
satellite instruments in overcoming the impact of complex topography, and verifying the
claim that it can detect low rainfall intensity events, which has not been addressed in arid
and semi-arid regions—such as Saudi Arabia—to date.

The main purpose of this study is to evaluate the performance of GPM IMERG V05B
products, namely early, late, and final run products, over Saudi Arabia. The evaluation was
conducted by using ground observation data acquired from 275 rain gauge stations at daily
scale over the period from March 2014 to June 2018. The evaluation of IMERG satellite
products in this study was threefold: (1) evaluate the impact of spatial characteristics
(topography) on IMERG products; (2) evaluate the variation in IMERG performance in
different seasons (temporal); and (3) evaluate the performance of IMERG products in
detecting rainfall of different intensities. More importantly, for the first time in arid and
semi-arid regions, this study evaluated the performance of IMERG precipitation products
across the five rainfall intensity categories (light, moderate, heavy, storm, and strong storm)
with a focus on light rain detection. The outcome of this analysis could verify the utility
of IMERG products as a source of rainfall data over arid regions such as Saudi Arabia.
This analysis could also highlight the use of GPM data in forecasting and early warning
against potentially hazardous rainfall events in less prepared arid regions.

2. Materials and Methods

The primary objective of this study is to assess the capability of the IMERG products for
detecting the rainfall under low intensity, and over various topography over Saudi Arabia.
The evaluation was carried out in the following main steps: preparation of rain gauge data,
processing of the satellite data, and performing the spatiotemporal and intensity-based
evaluation of the GPM satellite data versus the gauged-based data using a set of statistical
indices.

2.1. Study Area

This study is focused on the country of Saudi Arabia that occupies an area of about
2,250,000 km2, which is just under eighty percent of the Arabian Peninsula. The country has
complex topographical features and falls between 34◦–55◦E and 16◦–32◦N, as represented
in Figure 1. Its vast area (with a wide latitude expanse) combined with its topographical
variation resulted in diverse rainfall rates over the area [4,30]. The country has thirteen
administrative regions and about 400 rainfall stations [31].
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Figure 1. (a) Distribution of rain gauge network operated by Ministry of Environment, Water, and Agriculture (MEWA),
Saudi Arabia; (b) Average annual rainfall values for rainfall stations distributed across Saudi Arabia from 1979 to 2009 [30].

Although the country has a wide climatic range due to spatial and temporal tempera-
ture variability, it is considered one of the driest countries in the world [30]. Based on the
aridity index, the majority of the country’s area is classified as a desert climate, where pre-
cipitation is infrequent, and temperatures are high, with the exception of the mountainous
region as it is considered a semiarid region. Saudi Arabia is sandwiched between the mas-
sive continental land of Africa and Asia and is at the same time close to the circum-global
latitudinal belt, that has high atmospheric pressure. These factors make Saudi Arabia one of
the hottest and lowest humidity countries in the world, except for its coastal lands [30,32].

In general, precipitation over Saudi Arabia is variable. In the northern half of the
country, the rainy season starts in October and ends by April while there is almost no
precipitation for the remainder of the year. Rain in this area results from the feeble weather
originating from the Mediterranean or North Africa. The southwestern region, on the other
hand, experiences a different precipitation pattern resulting from a mountain range that
extends to western Yemen in a north–south orientation along the Red Sea, reaching heights
of more than 1500 m. These mountains cause an uplifting of the Indian monsoon and the
occurrence of heavy rainfall in the region. Overall, this part of Saudi Arabia is characterized
by rainfall throughout the whole year due to convective and orographic rain driven by
topography [30,32]. Overall, in the desert areas, the mean annual precipitation is less than
100 mm while in mountain areas it ranges between 250 and 300 mm [30,31,33]. Figure 1b
shows the annual rainfall (mm) over Saudi Arabia during the period 1979–2009 [30]. Table 1
provides summary statistics of annual rainfall based on rainfall events for the period from
March 2014 to June 2018. Appendix A shows descriptive statistics of large rainfall events
that occurred during the study period (2014 to 2018).

Table 1. Descriptive statistics of annual rainfall based on events measured by MEWA stations
(in mm).

Year Mean a Standard
Deviation

Sample
Variance Kurtosis Skewness Range Average Annual

Rainfall

2014 9.77 6.68 44.66 3.62 1.55 38.55 43.64 b

2015 10.10 6.38 40.66 0.75 0.89 30.30 89.65
2016 11.59 7.81 61.02 3.07 1.33 50.00 110.80
2017 10.57 7.45 55.54 2.16 1.31 41.00 69.05
2018 8.53 5.32 28.35 −0.50 0.59 20.38 26.5 b

a The Mean is the average rainfall depth (mm) of annual rainfall events; b 2014 data spans from
March–Dec, whereas for 2018 covers from January to June.
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2.2. Rainfall Datasets
2.2.1. Rain Gauge Dataset

Ideally, well-distributed and sufficiently dense rain gauge stations should be used
for such a study. Rainfall data were obtained by special request from the Ministry of
Environment, Water, and Agriculture (MEWA) of Saudi Arabia, the data were provided in
the form of daily rainfall records. MEWA is the authority that owns, operates, and maintains
the rain gauges used in this study [4]. The data included 275 gauges distributed over the
country (see Figure 1) and extended for the period from March 2014 to June 2018. Overall,
the data covers most of the study area with a slight variation in distribution. It can be
observed that the rain gauge stations are concentrated in the western and southwestern
parts of the country as well as in the middle part, which has the country’s capital city
Riyadh. The eastern part also has a good distribution of the gauges. On the other hand,
the northern part and the southeastern parts of the country have a sparse distribution of
rain gauge stations.

In the past, Saudi Arabia had two meteorological authorities that observed and pro-
vided the precipitation data, namely MEWA and The General Authority of Meteorology
and Environmental Protection. Currently, both datasets are merged under MEWA; how-
ever, in this study, we excluded the data of The General Authority of Meteorology and
Environmental Protection because this data is used to produce the Global Precipitation
Climatology Centre (GPCC) product, which is used to calibrate the GPM IMERG-F. Thus,
to make this study independent, we excluded these stations.

2.2.2. IMERG Dataset

The IMERG V05B data are available from NASA at a spatial scale of approximately
11 × 11 km2 and between 60◦S–60◦N with different temporal scales. In this study, the finest
temporal resolution (half-hourly) data were used. It includes three modes of runs, near real-
time: early-run (IMERG-E) and late-run (IMERG-L), and post-real-time: final-run (IMERG-F).
The differences between the three products are the time of release and the calibration process.
The near-real-time products are pure satellite products, which are released 4 h and 12 h after a
real-time, respectively; while the post-real-time IMERG-F is calibrated with the GPCC data
and released after about 2 months. The IMERG products were requested and collected from
NASA’s website through the link (https://pmm.nasa.gov/data-access/downloads/gpm).

2.3. Data Preparation and Processing

Data preparation was carried out in several steps. The first step involved sorting and
storing ground precipitation data in a database. Then IMERG data were processed and
converted to an ASCII format. This step required processing of 75,480 files to cover the
period from March 2014 to June 2018. The processed satellite data were then adjusted to
match Saudi Arabia’s local time (time was converted from Universal Time Coordinated
(UTC) to Local Standard Time (LST), which is GMT +3) and aggregated from half-hourly
to daily to sustain the homogeneity in comparison with gauge-based data, which were
available only at a daily temporal resolution.

Several modules (scripts) were developed to carry on the analysis and further steps
in data processing and preparation (Figure 2). The first module determines large rainfall
events that occurred during the study period based on ground observations. Due to the
scarcity of the rain events over Saudi Arabia, the data analysis and evaluation process in
this study were based on identified rain events and not on the time series rainfall data.
Thus, the false positives cannot be analyzed as most of the data in the time series indicate
zero rainfall. The second module deals with data mining, which is a process of specifying
the nearest GPM grid point that represents the rain gauge station (point to point analysis).
Thus, the outputs of the second module are two datasets that include rain gauge data
and their corresponding IMERG estimates. The final module handles data analysis and
visualization by applying statistical performance measures to evaluate the accuracy of the

https://pmm.nasa.gov/data-access/downloads/gpm
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IMERG products. Figure 2 demonstrates the structure of each module and how each part
of the analysis was implemented.
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Figure 2. Schematic diagram of the event determination, matching coordinates, and data analysis modules.

2.4. Statistical Evaluation Indices

Quantitative statistical indices were used to evaluate the accuracy of the GPM IMERG
products against ground station observations. In this study, statistical measures were
divided into three main indices: the detection accuracy indicator, error and bias indices,
and the correlation coefficient index (Table 2). The probability of detection (POD) measures
the ratio of ground observations that were correctly detected by the IMERG estimates.
The second group measures the level of error and bias in IMERG products; it includes
a mean absolute error (MAE), root-mean-square error (RMSE) and relative bias (RBIAS).
Usually, RMSE is either larger than or equal to the MAE. However, the main difference
between MAE and RMSE is that the latter correlates with the variance in the individual
errors in an analyzed dataset. Finally, the consistency of the IMERG products with ground
observations was tested using the correlation coefficient (CC). The equations of the statisti-
cal indices presented in Table 2 are based on earlier peer-reviewed studies in the field of
satellite products evaluation [17,34].

Table 2. List of statistical evaluation indices utilized to assess the IMERG-E, IMERG-L, and IMERG-F.

Statistical Indices Formulae Optimum Value

Probability of Detection (POD) POD = NOD
NOD+NO

1

Mean Absolute Error (MAE) MAE = 1
n ∑n

i=1|Di −Oi| 0

Root Mean Square Error (RMSE) RMSE =
√

1
n ∑n

i=1(Di −Oi)
2 0

Relative Bias (RBIAS) RBIAS = ∑n
i=1(Di−Oi)

∑n
i=1 Oi

× 100% 0%

Correlation Coefficient (CC) CC =
∑n

i=1(Di−D)(Oi−O)√
∑n

i=1(Di−D)∑n
i=1(Oi−O)

1

Where n is number of records, Di is the detected precipitation value by the satellite,
Oi is the observed rainfall value by ground stations, D and O are mean values of Di and Oi,
NOD is the number of observed and detected events by both satellite and rain gauge, NO
is the number of events that are observed by rain gauge but not detected by the satellite,
ND is the number of events that are not observed by the rain gauge but detected by the
satellite.
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2.5. Evaluation Techniques

To comprehensively evaluate the accuracy of GPM IMERG precipitation products,
three evaluation scales were adopted, namely seasonal evaluation (temporal evaluation),
rainfall intensity-based evaluation, and topographical (spatial) evaluation.

2.5.1. Seasonal Evaluation

The seasonal evaluation was conducted by analyzing rainfall on a seasonal basis
throughout the study period. This evaluation intended to investigate the capability of
IMERG products to accurately detect rainfall in each season and determine which product
has the capability to represent the variability in rainfall distribution within each season.
Ground observations and IMERG datasets were prepared and aggregated to represent the
four seasons of Saudi Arabia, which are December to February (winter), March to May
(spring), June to August (summer), and September to November (fall).

2.5.2. Rainfall Intensity-Based Evaluation

The objective of this evaluation was to explore the accuracy of GPM satellite products
in detecting different precipitation intensities ranging from light rain to large storm events.
This article will focus more on the detection of light rain since it is the most frequent type
of precipitation in arid regions such as Saudi Arabia. Data aggregation was neither strictly
temporal nor spatial, but rather a combination of both. The analysis encompassed the evalu-
ation of the detectability of events that had fallen within the study area, and throughout the
entire study period, categorized only by precipitation intensity. The approach required im-
posing various thresholds to classify precipitation intensities (Table 3), these were adopted
from the classification by the Chinese Meteorological department [35].

Table 3. Rainfall intensity classification [35].

Rainfall Class Light
Rainfall

Moderate
Rainfall

Heavy
Rainfall Storm Large

Storm
Extreme Large

Storm

24 h Rainfall
(mm) <10 10–25 25–50 50–100 100–250 ≥250

2.5.3. Topographical (Spatial) Evaluation

The spatial evaluation was conducted based on the topographical characteristics of
the study area. This evaluation is intended to assess the influence of topography on the
performance of the IMERG precipitation measurements. This is particularly important since
Saudi Arabia has a complex and highly varying topography. Data were aggregated for each
analyzed topographical region, and the statistical measures were applied to compare between
the two aggregated datasets formulated by point to point matching (rain gauge observation
and corresponding satellite estimates). For example, if a set of rain gauges fall within one
region, the observations from these rain gauges will form one dataset to be compared to the
dataset formed from the matching (nearest) satellite point precipitation estimates. The study
area was divided into five topographical regions as shown in Figure 3, these regions were
specified in previous studies such as [36]. The topography in Saudi Arabia varies from low
altitudes in the coastal areas (0 up to 100 m) to high altitudes in the mountainous areas
(more than 2000 m). Table 4 shows the distribution of ground stations and the number
of observations (precipitation events) across the different topographical regions. It can be
observed that there are few stations located in the high mountain regions, which resulted in a
very low station density, whereas the inland region has the highest number of rain gauges.
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Figure 3. Distribution of rain gauges over the different topographical regions in Saudi Arabia
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Table 4. Rain gauge distribution in each topographical region.

Topographical Regions No. of Observations * No. of Stations Station Density
#/1000 km2

Coastal region 1140 63 0.14
Areas adjacent to the coasts 1657 58 0.15

Inland region 1918 96 0.46
Foothills region 215 19 0.52

High mountains region 213 12 0.01
Total 5143 248 **

* The total number of precipitation events collected over a topographical region throughout the study
duration. ** Excluding offshore stations.

3. Results
3.1. Seasonal-Based Evaluation

The seasonal evaluation was carried out to investigate the accuracy of the IMERG
products over the four seasons. In this study, a total of 17 seasons (4 falls, summers,
winters, and 5 springs) were evaluated. Figures 4 and 5, and Table 5 illustrate the results
of the performance indices of the three IMERG products. The analysis was based on the
three performance measures: detection accuracy indicator, error and bias indices, and the
correlation coefficient index.
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Table 5. Error and BIAS indices based on the seasonal evaluation.

Season
MAE RMSE RBIAS

IMERG-
E

IMERG-
L

IMERG-
F

IMERG-
E

IMERG-
L

IMERG-
F

IMERG-
E

IMERG-
L

IMERG-
F

Fall 11.51 11.00 9.22 17.39 16.70 13.84 −0.02 −0.01 −0.15
Spring 10.32 9.43 7.82 15.70 14.42 12.52 0.004 −0.19 −0.16
Summer 11.95 11.34 10.85 16.94 16.08 15.44 −0.16 −0.18 −0.38
Winter 13.48 12.92 11.72 18.12 18.29 14.28 0.12 1.50 −0.15

In terms of IMERG products detection accuracy, the three IMERG products performed
well during the four seasons over the study period (Figure 4). Most of the seasons showed
remarkable detectability, with an average POD of 0.9, while the winter season showed the
least detection accuracy with values ranging between 0.75 and 0.8. In general, IMERG-F
and IMERG-L performed better than IMERG-E, and both had almost the same results
during the study period. All IMERG products performed accurately in summer with high
POD values reaching 0.95. Spring comes after the summer in the level of detection accuracy
where all IMERG products showed relatively high PODs with an average of 0.9.

An interesting finding was associated with the error and bias indicators (MAE, RMSE,
and RBIAS), which showed relatively low error values compared to similar studies [4,16,27]
for all IMERG products and seasons (Table 5). IMERG-F had the least MAE and RMSE
values for all seasons compared with IMERG-E and IMERG-L. In addition, all IMERG
products showed very small values of RBIAS fluctuating between underestimation and
overestimation of the rainfall during all the seasons with a maximum of −0.35% and
1.5%, respectively. The spring season exhibited the lowest estimated errors amongst other
seasons for the three IMERG products, followed by fall and summer season. The winter
season had the highest errors (MAEs and RMSEs) compared to the rest of the seasons.

In terms of consistency, IMERG products showed low CCs (<0.5) for all the seasons
throughout the study period (Figure 5). However, the results revealed that IMERG-F had a
better consistency than the other two products. It was observed that fall seasons showed
the highest CCs compared to other seasons, reaching 0.39 on average.

3.2. Rainfall Intensity-Based Evaluation

The purpose of this evaluation is to investigate the accuracy of the IMERG products
to detect different intensities. The results illustrate the accuracy of the IMERG products in
terms of detection, consistency and the errors associated with the precipitation estimates
(Table 6). Overall, the three products of IMERG presented a high detection accuracy (greater
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than 70%) for the four various rainfall classes over Saudi Arabia during the study period
(March 2014 to June 2018). The observed PODs ranged between 0.71 and 0.96. However,
IMERG-F and IMERG-L showed similar values with an average of POD = 0.9. In addition,
IMERG-F and IMERG-L had a higher performance in detecting all rainfall classes than
IMERG-E. Furthermore, it can be observed that IMERG products had a slightly lower
performance in detecting light rain than other rainfall classes. However, the value of POD
still shows remarkable performance in detecting the light rain (POD > 0.8).

Table 6. Rainfall intensity-based evaluation matrices.

Event Date Product CC MAE RMSE BIAS POD

Light
IMERG-E 0.093 7.51 13.04 0.03 0.84
IMERG-L 0.075 8.68 17.17 0.04 0.87
IMERG-F 0.145 4.26 6.66 0.001 0.87

Moderate
IMERG-E 0.045 12.59 16.49 −0.01 0.89
IMERG-L 0.039 13.32 18.83 −0.01 0.9
IMERG-F 0.073 11.41 13.39 −0.03 0.9

Heavy
IMERG-E 0.012 23.58 26.55 −0.1 0.9
IMERG-L 0.034 23.18 26.36 −0.09 0.91
IMERG-F 0.113 24.46 26.55 −0.14 0.91

Storm
IMERG-E 0.173 41.68 45.66 −0.64 0.93
IMERG-L 0.147 40.46 44.52 −0.61 0.96
IMERG-F 0.175 43.22 47.24 -0.69 0.96

Large storm
IMERG-E 0.488 121.19 123.97 −13.03 0.71
IMERG-L 0.714 117.57 119.64 −12.64 0.86
IMERG-F 0.621 110.01 112.5 −11.83 0.86

In terms of errors and bias, it can be observed that the error indicators (MAE and
RMSE) increased with the increase in rainfall intensity for all IMERG products (Table 6).
The error values showed a gradual increase with an average increase of about 10 mm,
except for large storm events, as it showed the highest errors with a significant increase
(more than 50mm). Regarding the RBIAS, very small percentages (less than 0.69%) were
observed for the three IMERG products during light, moderate, and heavy rainfall. How-
ever, a clear underestimation was observed in large storm events, which could cause
flash floods, accounting for −12% on average. Overall, both light rain and moderate rain
showed an acceptable level of errors, while the remaining rainfall classes had high errors
compared to previous studies [4]. In general, IMERG-F exhibited the least errors in almost
all the rainfall classes, while IMERG-E and IMERG-L fluctuated in performance across the
different classes. On the other hand, all IMERG products had very low correlations with
ground observations. This was observed for four classes of the rainfall, except for large
storm events, which showed a higher correlation between the satellite estimate and the
ground observations, reaching an average of CC = 0.6 compared to other classes.

In summary, IMERG products showed a considerably good performance in capturing
the various rainfall intensities. Specifically, light rain was fairly detected by all IMERG
products. Since about 60% of the total precipitation occurring over Saudi Arabia is classified
as light rain, it is particularly important to have a high detection accuracy for this class with
minimum errors. Furthermore, the results showed a higher CCs for large storms events
and these events are quite rare over Saudi Arabia; they represent less than 0.2% of the
total precipitation. Thus, it is expected that there would be a lower error in the detection
of such large, rare events, consequently resulting in a high CC between ground data and
satellite data for these large storm events. IMERG-F had the most accurate performance
for most rainfall classes while it showed a close performance to IMERG-E and IMERG-L
for the heavy rainfall and large storm events, as evidenced by the calculated errors (MAE
and RMSE).
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3.3. Topographical (Spatial) Evaluation

The three GPM IMERG products were evaluated spatially by investigating the effect
of topography on the performance of the GPM satellite. The study focused on linking the
different topographical region with the accuracy of the satellite by testing the detection,
consistency and the error associated with the satellite estimates. The satellite detection
accuracy for the three IMERG products showed relatively high PODs (>0.8), with some
exceptions in foothills and mountainous regions (Figure 6). IMERG-L and IMERG-F
showed similar patterns and results of POD over the five topographical regions, and they
had slightly higher detection accuracy than IMERG-E in foothills and mountainous regions.Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 18 
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Overall, all IMERG precipitation products exhibited a low correlation (CC) with
the ground observations ranging between 0.18 and 0.3. However, it can be noticed that
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there was a considerable enhancement in the performance of IMERG-F compared to
the other IMERG products, while IMERG-L had the lowest performance. Furthermore,
the consistency results showed low values of CC over foothills and mountainous regions
for all IMERG products with a slight improvement in IMERG-F product.

The error estimators supported the results of consistency and detection accuracy of
the satellite rainfall products (Figure 7). It was observed that IMERG-F had relatively low
estimation errors, while IMERG-L had the highest estimation errors. For both IMERG-E
and IMERG-L, the estimation errors in inland areas and areas adjacent to the coastal region
were moderate. While coastal and mountainous regions exhibited high errors. In contrast,
IMERG-F revealed low detection errors with MAE < 10 mm, for most of the topographical
regions except the foothills region. Regarding MAE comparisons, the MAE of the inland
areas, foothills, and the region adjacent to coastal areas remained the same in both IMERG-E
and IMERG-L, while it dropped to less than 5 mm in IMERG-F. The estimated errors of the
coastal region decreased to reach MAE between 7 and 10 mm for IMERG-F. The same trend
was observed for RMSE as the best product with the lowest RMSE in all topographical
regions was IMERG-F, and the worst one was IMERG-L. The greatest improvement was
observed for the coastal and high mountains region for which RMSE decreased from 15 mm
for IMERG-E to 5 mm for IMERG-F. These regions represent the topographic extremes in
the study area. Minor percentages of RBIAS, almost negligible, were observed for all the
IMERG products as seen in Table 7.Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 18 
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Table 7. RBIAS measurements for IMERG-E, IMERG-L, and IMERG-F using the topographical-based
evaluation.

Region Name Altitude (m) IMERG-E IMERG-L IMERG-F

Coastal region 0–100 0.001 −0.03 0.01
Areas adjacent to the coasts 100 to 200 −0.02 −0.03 −0.01

Inland region 200 to 1000 0.01 −0.02 0.02
Foothills region 1000 to 2000 −0.08 −0.25 0.11

High mountains region More than 2000 −0.09 −0.23 −0.05

4. Discussion
4.1. Discussion of Evaluation Results

The weak correlation exhibited by IMERG products during the seasons might be
attributed to high spatiotemporal variability of precipitation over Saudi Arabia. Further-
more, the IMERG-F—the calibrated product—should have had better correlation; however,
the low correlation may be because it was calibrated only with GPCC monthly data [37].
Thus, it is proposed to use daily precipitation in the calibration to improve the IMERG-F
algorithm. This is reinforced by similar findings and justifications stipulated when the
IMERG products were assessed over Malaysia [37]. Moreover, it can be noticed that,
based on the averages of the statistical indices, spring and summer were better repre-
sented by the IMERG products than fall and winter seasons. This finding indicates that
IMERG products have the capability to detect seasons with the highest precipitation values
(spring season) as well as the seasons with the lowest ones (summer season). On the other
hand, IMERG products had relatively low performance in the winter; this may be due to
the fact that most winter precipitation particularly falls over the southwest region which is
dominated by mountainous areas [30]. This finding was reinforced by findings from the
topography-based evaluation in Section 3.3.

The results presented in the intensity-based evaluation section are of significant
importance to arid countries, where rainfall intensities often fall in the light rain category.
Previous research highlighted that the high-frequency GMI and DPR lead to the high
detection accuracy of light rain by GPM products [16,38]. The results of this study thus is in
agreement with other studies conducted on an arid region in Far-East Asia, which verified
the high detection of light rain by IMERG products in comparison to TRMM (TMPA) [16,39].
This was also supported by previous research evaluating IMERG products against other
satellite products over arid regions in Malaysia and China, these studies revealed that
IMERG products had the ability to detect light rain more accurately than other satellite
products [37]. However, despite the small RBIAS associated with the various rainfall
classes, IMERG products exhibited a tendency to overestimate light rain. This finding is
consistent with a previous study that also proved that light rain has lower PODs than
heavy rain and that the POD increased with the rainfall intensity [40].

The results of the topography-based evaluation indicate a high detection accuracy
of IMERG-F in different topographical regions. Even though all the IMERG products
presented low correlation values with ground observations over the different topographical
regions, IMERG-F showed a good improvement compared to IMERG-E and IMERG-L.
Moreover, the coastal, foothills, and high mountains regions exhibited the highest errors
compared to other topographical regions. This conclusion is in agreement with the findings
of a previous study conducted by Prakash et al. [13], which assessed the performance of
IMERG products over India. Their results indicated that IMERG products were affected
by the orographic process, which leads to higher errors and negative bias in mountainous
areas. A further study carried by Navarro et al. [41] revealed the poor performance
of the IMERG product over the mountainous areas of the continent, particularly over
the Alps and Scandinavian mountains. Another study carried out by Kim et al. [16]
also revealed the drawbacks of IMERG products over mountainous and coastal regions.
They attributed the poor performance of IMERG at coastal regions to a deficiency in
the calibration algorithm that identifies rainy clouds over coastal areas. Similar results
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were obtained by Anjum et al. [42], which prompted them to recommend refraining from
using IMERG products in mountainous areas because of the high uncertainty in daily
precipitation estimates, particularly light rainfall.

4.2. Study Limitations

In order to comprehensively investigate the temporal variation of precipitation, sub-
daily data are required. In this study, only daily rainfall data were available for rain gauges
in Saudi Arabia, which could not allow for a more extensive evaluation of satellite products.
In addition, rainfall events in an arid region such as Saudi Arabia are quite rare. Thus, this
study relied on data extracted for rainfall events rather than analyzing the entire time-series
data from satellite and ground stations. Therefore, the study did not investigate the false
detection of precipitation by satellite, which is important for an extensive evaluation of
satellite products. Moreover, this study assumed that data from ground observations
represented the correct value of rainfall measurements and thus the inherent errors in
ground data were obscured in the evaluation of satellite estimates. Finally, while this study
included the density of rain gauges in the description of the study area, it did not consider
the influence of the variation of rain gauge density on the evaluation results.

5. Conclusions

This study assessed the performance of the GPM IMERG V05B products, including
early, late, and final-run products, over Saudi Arabia. Ground observations from 275 rain
gauge stations over the period March 2014 to June 2018 were used as a reference. The per-
formance of IMERG satellite precipitation products was assessed using three evaluation
techniques: seasonal-based (temporal) assessment, topographical (spatial) evaluation, and
rainfall intensity-based evaluation. Quantitative statistical indices were used to quan-
tify the performance of the IMERG products. The main conclusions of this study can be
summarized as follows:

• The seasonal analysis showed an improvement in the performance from IMERG-
E, to IMERG-L, to IMERG-F. Nevertheless, all IMERG products showed very weak
correlations with ground observations throughout all the seasons.

• Spring and summer are the most detected seasons by IMERG products. This leads
to a conclusion that IMERG products have the capability to detect seasonal rainfall
with both the highest (maximum daily rainfall observed on spring) and the lowest
precipitation.

• It was interesting to observe the high performance of IMERG products across the
various rainfall intensity classes. According to the calculated classical statistical
indices, the light rain had the lowest detection errors by IMERG products. However,
higher rainfall intensities exhibited higher detection errors in the IMERG products.
The detectability of rainfall, as indicated by POD, was excellent for midrange classes of
rainfall, whereas that for extreme rainfall intensities (light rain and large storms) was
slightly lower. This finding is particularly promising for the applicability of IMERG
products in arid regions dominated by light rain events.

• Even though the CC values are generally low for different rainfall intensities, large
storm events showed significantly higher CCs (0.5 to 0.7) compared to lower intensity
events. This is probably induced by the rarity of such large storms over arid regions
such as Saudi Arabia.

• Topographical features had a significant influence on the performance of IMERG
products. The detectability (POD) was improved significantly in higher altitudes
(mountains and foothills regions), particularly for IMERG-F. However, the areas
adjacent to the coasts showed a significant reduction in the estimation errors of
IMERG-F, whereas the highest estimation errors were observed in coastal regions,
foothills, and mountainous regions.

In conclusion, IMERG products have great potential for improving the temporal
resolution of rainfall data. In addition, it could play a significant role in complementing
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or filling the spatial gaps in rainfall observations, especially for extremely arid regions
such as Saudi Arabia. Furthermore, the consistency of the IMERG products in detecting
high rainfall intensities could provide significant information on managing and mitigating
hazardous events such as flash floods, which are characteristic of arid regions. Finally,
due to the errors associated with the IMERG precipitations estimates, it is recommended to
use sub-daily rainfall data to calibrate the satellite algorithms for better rainfall estimation
over arid and semiarid regions. In addition, further investigations are needed to assess the
impact of rain gauge density on the evaluation of satellite precipitation products [41].

It is recommended that future studies incorporate uncertainty analyses into the inves-
tigation of satellite performance. Sources of uncertainty may include errors from ground
observations (such as instrumental problems, weather conditions, and data gaps); or errors
from the satellite instrument itself. Several factors could affect the satellite estimation of
precipitation such as the brightness of clouds in the visible spectrum, and the misidentifica-
tion of clouds. In addition, there are uncertainties due to error propagation through the
IMERG algorithms into the applications relying on IMERG products, such as hydrological
models. Thus, a comprehensive study on the uncertainties of the IMERG precipitation
products and the propagation of error is highly recommended.
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Appendix A

Table A1. Descriptive statistics of large rainfall events over Saudi Arabia observed from 2014 to 2018.

Year Date No of
Obs. Mean Median Std.

Error
Std.
Dev. Var. Kurtosis Skew. Min Max Total

2014

22-November 36 9.49 5 2.29 13.73 188.43 20.47 4.09 0.5 80 341.8
23-November 41 7.20 6 0.80 5.15 26.57 0.98 0.93 0.8 22 295.1
24-November 33 11.44 7 1.73 9.94 98.82 −0.39 0.95 1 35 377.5
30-November 48 11.37 8.4 1.32 9.17 84.05 0.53 1.08 1 38 545.9

2015

21-March 34 7.27 6.1 1.27 7.40 54.81 2.89 1.74 0.3 31 247.1
28-October 35 8.32 3.6 2.70 15.97 255.04 18.01 4.12 0.5 86 291.3

17-November 40 7.44 4.5 1.07 6.75 45.60 5.06 2.22 1 30 297.5
23-November 59 11.68 10.5 1.07 8.24 67.83 1.37 1.04 0.5 39 689.2
24-November 56 23.62 17.75 2.39 17.92 321.19 −0.19 0.69 1 77 1322.7
2-December 35 12.32 10 1.54 9.09 82.69 0.67 1.14 1 33.5 431.3

23-December 57 8.16 5.6 1.13 8.54 72.90 6.80 2.48 0.5 42 465
30-December 46 5.11 4 0.51 3.46 11.96 1.40 1.26 0.5 15 235.2

2016

4-April 49 13.31 9 2.11 14.78 218.42 11.73 3.05 1.3 84 652.35
12-April 70 11.12 7.75 1.23 10.29 105.94 9.23 2.38 0.5 64 778.7
13-April 31 30.12 21 4.56 25.40 645.09 0.35 1.07 0 96 933.65
29-April 46 9.93 6.7 1.49 10.09 101.81 5.25 2.22 0.5 45.2 456.9
31-July 32 25.52 22.75 2.78 15.74 247.78 1.07 0.98 2.5 71 816.5

25-November 44 10.22 7.4 1.33 8.86 78.41 1.22 1.21 1 36 449.8
26-November 60 10.23 5.5 1.23 9.54 91.03 0.38 1.18 1 35 614
27-November 51 17.69 15 2.43 17.36 301.54 9.10 2.59 1 98.2 902.2
28-November 49 16.28 15.8 1.44 10.09 101.78 1.77 1.02 2 51 797.7
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Table A1. Cont.

Year Date No of
Obs. Mean Median Std.

Error
Std.
Dev. Var. Kurtosis Skew. Min Max Total

2017
14-February 41 23.69 15 5.33 34.14 1165.5 12.35 3.45 1.5 165 971.2

13-May 38 11.81 8.25 1.76 10.83 117.37 2.60 1.66 1.2 47 448.7
21-November 32 19.57 9.3 4.43 25.08 628.87 1.56 1.61 0.4 90 626.1

2018

24-February 58 10.17 8.25 1.06 8.06 64.90 8.91 2.58 1 48 589.9
6-April 37 10.66 8 1.28 7.79 60.72 1.18 1.26 2 34.4 394.6
8-April 34 8.99 6.5 1.48 8.60 74.04 0.73 1.29 0.5 32 305.6

10-April 39 16.23 17 1.82 11.35 128.87 −0.42 0.55 0.5 45 632.9
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