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Abstract: To accurately describe dynamic vegetation changes, high temporal and spectral resolution
data are urgently required. Optical images contain rich spectral information but are limited by
poor weather conditions and cloud contamination. Conversely, synthetic-aperture radar (SAR) is
effective under all weather conditions but contains insufficient spectral information to recognize
certain vegetation changes. Conditional adversarial networks (cGANs) can be adopted to transform
SAR images (Sentinel-1) into optical images (Landsat8), which exploits the advantages of both optical
and SAR images. As the features of SAR and optical remote sensing data play a decisive role in the
translation process, this study explores the quantitative impact of edge information and polarization
(VV, VH, VV&VH) on the peak signal-to-noise ratio, structural similarity index measure, correlation
coefficient (r), and root mean squared error. The addition of edge information improves the structural
similarity between generated and real images. Moreover, using the VH and VV&VH polarization
modes as the input provides the cGANs with more effective information and results in better image
quality. The optimal polarization mode with the addition of edge information is VV&VH, whereas
that without edge information is VV. Near-infrared and short-wave infrared bands in the generated
image exhibit higher accuracy (r > 0.8) than visible light bands. The conclusions of this study could
serve as an important reference for selecting cGANs input features, and as a potential reference for
the applications of cGANs to the SAR-to-optical translation of other multi-source remote sensing
data.

Keywords: SAR-to-optical image translation; deep learning; conditional generative adversarial
networks (cGANs)

1. Introduction

Following advances in satellite technology in recent years, remote sensing data is now
widely used to monitor land-cover changes [1–3]. For various land-cover types, vegetation
changes are frequent, complex, and closely related to the surrounding environment [4,5].
To better observe and describe vegetation changes, we need a dataset with high temporal
resolution and high spectral resolution. Optical images provide rich spectral informa-
tion; however, the influence of cloud and rainy weather can necessitate months of image
processing to generate high-quality images [6–9]. Conversely, synthetic-aperture radar
(SAR) is not limited by lighting conditions, climate, or other environmental factors; thus,
it can produce images continuously and in all weather conditions, generating time series
with high temporal resolution [10,11]. However, an important limitation of SAR images is
that the spectral information is insufficient to recognize certain vegetation changes [12,13].
Determining the relationship between optical and SAR images can allow us to use SAR data
as the input, in the absence of optical data, to generate images similar to the optical images.
The generated and existing optical images can then form a complete dataset containing rich
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spectral information and high temporal resolution, which can be used for accurate and com-
prehensive analysis of vegetation coverage and changes. The process of generating optical
images with SAR images as input can be called SAR-to-optical image translation [14–16].
The exploration of SAR-to-optical image translation is beneficial to image interpretation,
spatial information transfer, and cloud removal [17,18]. However, SAR-to-optical image
translation is difficult to accomplish using a simple physical model [19,20].

First, remote sensing observation results and geographic information exhibit a highly
nonlinear relationship. Second, SAR and optical imaging systems have essential differences
in geometry and radiometry [21–23] due to different measurements (SAR: range-based
and measures physical properties; optical: angular-based and measures chemical char-
acteristics) [24–26], wavelengths (SAR: wavelength in centimeters; optical: wavelength
in nanometers) [27,28], instruments (SAR: active; optical: passive) [29–31], and viewing
perspectives (SAR: side-looking; optical: nadir-looking) [29,32,33]. For all these reasons,
SAR data mainly characterize the structural and dielectric properties of ground targets,
while optical data contain spectral information [32–34]. Therefore, it is difficult to explain
and simulate such a relationship using a simple physical model [35].

In contrast, deep learning can effectively simulate complicated relationships by per-
forming image-to-image translation tasks [36]. Generative adversarial networks (GANs) [37]
have recently been regarded as a breakthrough in deep learning as they consist of two
adversarial models, a generative model and a discriminative model, in which the gen-
erative model is used to capture the data distribution and the discriminative model is
used to estimate the probability that a sample belongs to real data rather than generated
samples. GANs generate data in an unsupervised manner but they cannot control the data
generation process. In other words, for large images or complex images, simple GANs
become very uncontrollable [38,39]. Therefore, conditional GANs (cGANs) were developed
to deal with complex images [40], whereby additional information is used to condition the
models and direct the data generation process of cGANs. cGANs have attracted consid-
erable interest in the remote sensing community [41], as they allow to generate desired
artificial data based on a specified target output and have achieved promising results in
many fields, such as image inpainting [42–44], image manipulation [45–47], and image
translation [48–52]. More specifically, cGANs can be employed to efficiently translate SAR
images to optical images, and have been proved to be suitable in the SAR-to-optical trans-
lation process [6,16,17,20,53–58]. There are several cGANs-based SAR-to-optical image
translation methods. However, these methods do not distinguish the features of SAR and
optical remote sensing data that have the greatest influence on the translation process.
Moreover, these methods do not consider the influence of different polarization modes of
SAR data.

Generation of an image is inseparable from analysis of the original image and target
image [55]. The goal of image analysis is to extract description parameters that can
accurately express key information in the image and to quantitatively describe the image
content; namely, feature extraction. Specifically, SAR images contain very rich structural
information, whereas optimal images contain very rich spectral information. As such, the
most abundant and typical information should be extracted from both images. However,
previous studies [53,59] have only considered the textural part of structural information
and neglected edge information, which also contains abundant useful information, as well
as the basic features of the target structure. Therefore, it is important to evaluate the effect
of introducing edge information to the cGANs on the SAR-to-optical translation process.

In general, SAR can be classified into four categories in terms of its polarimetric capa-
bility: single-polarization, dual-polarization, compact-polarization, and fully polarimet-
ric [60]. Among them, dual-polarization can be divided into co-polarization (VV/HH) and
cross-polarization (VH/HV). Polarization describes the vibration state of the electric field
vector, which is one of the inherent properties of the electromagnetic wave [61]. However,
the image information returned by different polarization methods can differ because the
polarization mode has a significant influence on the radar beam response [62]. Therefore, it
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is also important to evaluate the difference in echo intensity between cross-polarization and
co-polarization and determine the effect of this difference on the SAR-to-optical translation
process. Furthermore, the extent to which dual-polarization can improve the recognition
degree from that of the single-polarization mode remains unknown [11,63–65].

Therefore, this study employs cGANs to transform SAR images into optical images,
then explores the impact of edge information on the image generation process. Additionally,
the effects of three different polarization modes are compared: co-polarization (VV), cross-
polarization (VH), and dual-polarization (VV&VH). The main contributions of this study
are as follows. First, we extend cGANs to the field of optical image reconstruction and
prove its effectiveness. Second, we discuss the importance of edge information in the
SAR-to-optical process. Third, we compare the reconstruction capability of different
polarization modes for different land-cover types, which can be used to guide the selection
of polarization modes for SAR data.

2. Methods

SAR data and cGANs were used to infer the spectral band information of optical
images. SAR images are virtually immune to lighting conditions, weather conditions, or
other environmental factors [20], therefore, they were used to reconstruct cloudless optical
images. Thus, SAR images and optical images were used as the input, and the cGANs
model was trained to learn the nonlinear mapping function to obtain corresponding optical
images as the output. The specific methods were divided into four steps (Figure 1).
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(1) Preprocessing: optical remote sensing images and SAR images were preprocessed
and split into small patches.

(2) Feature extraction: rich spectral information of optical remote sensing images and
rich structural information of SAR images were extracted as feature vectors.

(3) cGANs model training: SAR-optical patches were input to train the cGANs until
convergence. In this step, we input paired co-polarization SAR-optical patches, cross-
polarization SAR-optical patches, and dual-polarization SAR-optical patches.

(4) Accuracy assessment: neural network classification was used to classify the generated
optical images and original optical images, then compare the classification results.

2.1. Paired Features for Model Training From Remote Sensing Images

In this experiment, Landsat8 multi-spectral data were used for the optical image, and
Sentinel-1 data was used for the SAR image. Landsat8 was launched by the National
Aeronautics and Space Administration (NASA) and the United States Geological Survey
(USGS), carrying the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS).
Sentinel-1 was launched by the European Space Agency (ESA) and is composed of a
constellation of two satellites, Sentinel-1A and Sentinel-1B, sharing the same orbital plane.
Both satellites carry a C-band SAR sensor and provide dual-polarization SAR images in
all weather conditions, day or night. We used Landsat imagery from Hengyang City,
Hunan Province, China, from July to September 2018 and 2019, along with corresponding
Sentinel-1 images (with a time difference of fewer than 14 days).

For optical images, Fmask (function of mask) algorithm [66,67] was used to detect the
cloud regions from landsat8 data and generate the cloud mask. First, it uses Landsat top of
atmosphere (TOA) reflectance and brightness temperature (BT) as inputs, and uses rules
based on cloud physical properties to separate potential cloud pixels (PCPs) and clear-sky
pixels. Next, a normalized temperature probability, spectral variability probability, and
brightness probability are combined to produce a probability mask for clouds over land and
water separately. Then, the PCPs and the cloud probability mask are used together to derive
the potential cloud layer. Using the cloud mask, we were able to remove invalid cloud
regions and get cloud-free regions. SAR images were subjected to the following processes:
multilooking, despeckling, geocoding, radiometric calibration, and resampling. After
preprocessing, we obtained large paired SAR-optical images with the same geographic
coordinate system and spatial resolution (30 m). Then, we used a sliding window to split
the large paired SAR-optical images into small patches with a size of 256 × 256 pixels.

To fully exploit the rich spectral information of optical remote sensing images, we
used a feature vector containing the pixel spectral information from bands 1 to 7 and
the normalized difference vegetation index (NDVI); therefore, the optical feature vector
contained eight channels (coastal aerosol, blue, green, red, near infrared[NIR], short-wave
infrared[SWIR 1, SWIR 2 ], and NDVI).

In SAR data, the radar backscatter coefficient of the ground object is strongly correlated
with the grayscale feature on the image; therefore, the grayscale difference cannot effectively
reflect changes in the ground object target. As such, it is necessary to introduce textural
features to represent the rich structural information contained in SAR data. The gray
level concurrence matrix (GLCM) was first proposed by Haralick [68] in the early 1970s.
It effectively describes the image gray value in terms of the direction, stride, and space
between adjacent pixels, and can be simply interpreted as an estimate of the second-order
joint probability:

Pij =
P(i, j, d, θ)

∑i ∑j P(i, j, d, θ)
(1)

where d and θ are the distance and direction, respectively, P(i, j, d, θ) denotes the pixel
point with a gray value of I, and the probability of the pixel point with a gray value of J
appearing in the specified distance d and direction θ. For simplicity, the textural features of
SAR images are generally obtained using the features of correlation, contrast, homogeneity,
and energy, which can effectively reflect the texture of remote sensing images [69].
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In addition to textural information, the edge information also exhibits good differen-
tiation. The edge of the image is the boundary between adjacent different homogeneous
regions, which is the region with the richest amount of useful information that contains the
basic features of the target structure. In this study, we used the Canny edge detection algo-
rithm [70] to extract the edge information of the SAR image. The Canny algorithm applies
a Gaussian filter for image smoothing and noise suppression, then filters out low-gradient
edge pixels (caused by noise), based on a hysteresis thresholding method [71]. The specific
implementation steps were as follows:

(1) A Gaussian filter was used to smooth the image and filter out noise.
(2) The gradient magnitude and direction of the filtered image was calculated. The

direction of a pixel was divided into components in the x direction and y direction.
The Canny operator was used to perform relevant operations with the original image
and calculate the gradient of the pixel in the horizontal and vertical directions.

(3) All values along the gradient line, except for the local maxima, were suppressed to
sharpen the edge features.

(4) By selecting high and low thresholds, edge pixels with weak gradient values were
filtered out and edge pixels with high gradient values were retained.

For the SAR images, we computed the features using the GLCM and Canny edge
detection algorithm. As shown in Figure 2, we computed four features (correlation, contrast,
homogeneity, and energy) in four directions (0◦, 45◦, 90◦, and 135◦) using 7 × 7 windows.
Then, each SAR pixel in co-polarization mode (VV) and cross-polarization mode (VH) was
represented by a 17-dimensional feature vector, whereas those in dual-polarization mode
(VV&VH) were represented by a 34-dimensional feature vector.
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2.2. SAR-to-Optical Translation
2.2.1. Conditional Generative Adversarial Networks (cGANs)

cGANs are an extension of the GAN concept, whereby both the generator and discrim-
inator are conditioned using additional information (y). The loss function for conditional
GANs is expressed by:

LcGAN(G, D) = Ex∼Pdata(x)[logD(x|y)] + Ez∼Pz(z)[1− D(G(z|y))] (2)

Previous studies [42] have found it favorable to combine the cGANs objective function
with a loss function that measures the difference between pixels, such as the L1 distance:

L1(G) = Ex,y∼Pdata(x,y),z∼Pz(z)[‖x− G(y, z)‖1] (3)

Then, the whole objective function can be defined as:

min
G

ma
D

xLcGAN(G, D) + λL1(G) =

Ex∼Pdata(x)[logD(x|y)] + Ez∼Pz(z)[1− D(G(z|y))] + λ
(

Ex,y∼Pdata(x,y),z∼Pz(z)[‖x− G(y, z)‖1]
) (4)

where λ is a parameter that controls the weight of the L1 distance in the overall objective
function.

The additional information can be any type of auxiliary information, such as class
labels or data from other modalities [40]. If x and y represent two different image domains,
then cGANs can achieve the corresponding image-to-image translation [48]. Many applica-
tions have exploited this characteristic for image translation [72,73]; in this study, we apply
it to SAR-to-optical translation.

2.2.2. Network Architecture

We adapted the pix2pix network architectures [48] to be compatible with multi-spectral
optical images, as well as either one-channel (VV or VH) or two-channel (VV and VH) SAR
images. Pix2pix, as a widely-used image-to-image translation network architecture, has
proven stable and powerful for image-to-image translation [72,74]. It makes it possible
to create various images without specialized knowledge of the images that we want to
make [38]. In particular, the generator adopted the U-Net [75] architecture, consisting
of seven convolution layers for encoding and seven deconvolution layers for decoding.
In contrast, the discriminator adopted the PatchGAN architecture, consisting of five con-
volutional layers, followed by a sigmoid output layer for classification. The detailed
information is shown in Figure 3. The inputs of the generators were SAR images, and the
discriminators were either SAR images or optical images. The outputs of the generators
were the generated optical images. For VV and VH polarization modes, the size of the
input of the generator was set to 256 × 256 × 17, whereas for the VV&VH polarization
mode, the size of the input of the generator was set to 256 × 256 × 34. The output of the
generator was set to 256 × 256 × 8 and the size of the input of the discriminator was set to
256 × 256 × 16.
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Figure 3. Architectures of the generator networks and discriminator networks. Acronyms in the
encoder and decoder units are as follows: b: number of bands, C: convolutional, LR: leaky ReLU, B:
batch normalization, D: dropout, US: upsampling, CC: concatenation, T: tanh. The three numbers
in round brackets shown in all encoding and decoding layers indicate the number of filters, filter
size, and stride, respectively. The numbers in square brackets indicate the size of the feature maps.
The discriminator learns to classify between fake (generated images, SAR patches) and real (Landsat
patches, SAR patches) tuples.

2.2.3. Establishing the SAR-to-Optical Translation Relationship by Model Training

The small SAR-optical patches were input in order to train the cGANs until conver-
gence (Figure 4). The generator uses SAR patches as the input to generate optical images.
The generated images and SAR patches are then classed as fake examples, whereas the
Landsat patches and SAR patches are classed as real examples for the discriminator to learn.
Each time the optical image generated by the generator is judged by the discriminator,
information regarding its judgment is fed back to the generator. When the discriminator
is unable to determine whether the input data patches are real or fake, it indicates that
the images generated by the generator are good enough, and the training is ended. The
training parameters at this point correspond to the SAR- to-optical relationship



Remote Sens. 2021, 13, 128 8 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 22 
 

 

learn. Each time the optical image generated by the generator is judged by the discrimi-
nator, information regarding its judgment is fed back to the generator. When the discrim-
inator is unable to determine whether the input data patches are real or fake, it indicates 
that the images generated by the generator are good enough, and the training is ended. 
The training parameters at this point correspond to the SAR- to-optical relationship 

In this step, we input the paired co-polarization SAR(VV)-optical images, cross-po-
larization SAR(VH)-optical images, and dual-polarization SAR(VV&VH)-optical images. 
For each polarization mode, we extracted 2300 pairs of patches, of which 1700 pairs were 
classed as training data, among which 600 pairs were the most common testing data, 
which trained 200 epochs at a batch size of 16. The networks were trained with stochastic 
gradient descent and the ADAM optimizer [76], where the learning rate was set to 0.0002 
and β was set to 0.5. All code development was conducted with TensorFlow deep learning 
frameworks on the Ubuntu operating system, and training was conducted on a single 
Graphic Processing Unit(GPU),namely, NVIDIA Tesla P100. 

 
Figure 4. Training process of the proposed method. G: generator; D: discriminator; Z: SAR fea-
tures; X: Landsat features; G (Z): image generated by the generator; D(G(Z)): feedback from the 
fake example; D(X): feedback from the real example. The red box denotes the training setup for 
fake examples (generated images, SAR patches) as the input, and the green box denotes the train-
ing setup for real examples (Landsat patches, SAR patches) as the input. 

2.2.4. Optical Image Generation 
Once the SAR-to-optical translation relationship was determined, i.e., by obtaining 

the training parameters at the point when the model converges, we used this relationship 
to generate the optical image. In reality, we already had the original optical image at time 
T1 (the real image) but pretended otherwise, for convenience of verification. Then, we 
used the SAR image at time T1 as the input and generated the optical image at time T1, 
using the established SAR-to-optical transformation relationship. 

2.3. Evaluation of Reconstruction Image Data Quality 
Neural network classification was used to classify the generated optical images and 

the original optical images, then compare the classification results. To quantitatively eval-
uate the accuracy, surface objects were visually compared using the following indicators: 
the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), corre-
lation coefficient (r), and root mean squared error (RMSE). PSNR indicates image pixel 
statistical information, with a higher PSNR generally indicating higher image quality. 
SSIM represents structural information by calculating the structural similarity between 
generated images and real optical images. Its value ranges from zero to one and will reach 

Figure 4. Training process of the proposed method. G: generator; D: discriminator; Z: SAR features; X:
Landsat features; G (Z): image generated by the generator; D(G(Z)): feedback from the fake example;
D(X): feedback from the real example. The red box denotes the training setup for fake examples
(generated images, SAR patches) as the input, and the green box denotes the training setup for real
examples (Landsat patches, SAR patches) as the input.

In this step, we input the paired co-polarization SAR(VV)-optical images, cross-
polarization SAR(VH)-optical images, and dual-polarization SAR(VV&VH)-optical images.
For each polarization mode, we extracted 2300 pairs of patches, of which 1700 pairs were
classed as training data, among which 600 pairs were the most common testing data, which
trained 200 epochs at a batch size of 16. The networks were trained with stochastic gradient
descent and the ADAM optimizer [76], where the learning rate was set to 0.0002 and
β was set to 0.5. All code development was conducted with TensorFlow deep learning
frameworks on the Ubuntu operating system, and training was conducted on a single
Graphic Processing Unit(GPU),namely, NVIDIA Tesla P100.

2.2.4. Optical Image Generation

Once the SAR-to-optical translation relationship was determined, i.e., by obtaining
the training parameters at the point when the model converges, we used this relationship
to generate the optical image. In reality, we already had the original optical image at time
T1 (the real image) but pretended otherwise, for convenience of verification. Then, we used
the SAR image at time T1 as the input and generated the optical image at time T1, using
the established SAR-to-optical transformation relationship.

2.3. Evaluation of Reconstruction Image Data Quality

Neural network classification was used to classify the generated optical images and
the original optical images, then compare the classification results. To quantitatively evalu-
ate the accuracy, surface objects were visually compared using the following indicators: the
peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), correlation
coefficient (r), and root mean squared error (RMSE). PSNR indicates image pixel statistical
information, with a higher PSNR generally indicating higher image quality. SSIM repre-
sents structural information by calculating the structural similarity between generated
images and real optical images. Its value ranges from zero to one and will reach one when
the two images are identical. PSNR and SSIM are commonly used in the field of image
quality evaluation. The correlation coefficient, r, is a statistical index that determines the
degree of linear correlation between variables; a larger r indicates a greater relevance of the
value of each pixel in the generated images real images. RMSE measures the deviation of
generated values from the true value and detects the consistency between the two values;
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the smaller the RMSE, the denser the data and the higher the quality of the generated
image.

3. Results
3.1. Influence of Edge Information on SAR-to-Optical Translation

In this experiment, we compare the influence of the addition of edge information on
the SAR-to-optical translation process without comparing different polarization modes. We
perform control experiments using only the textural information as the input; the textural
information is provided by the GLCM and the edge information is provided by the Canny
edge detection algorithm.

3.1.1. Qualitative Evaluation of Generated Images

The results generated from several different inputs are compared with the original
images in Figure 5. From the perspective of visual effects, after the addition of the edge
information, the boundaries of the water body are clearer and more continuous. Specifically,
in VV mode (as shown in the vertical comparison of columns 2 of Figure 5), the addition
of edge information results in blurrier ground objects with less textural information in
the generated image; in VH mode (as shown in the vertical comparison of columns 3 of
Figure 5), the addition of edge information results in a clearer boundary between the water
body and vegetation in the generated image, as well as more detailed textural information;
in VV&VH mode (as shown in the vertical comparison of columns 4 of Figure 5), the
addition of edge information also results in a clearer boundary between the water body
and vegetation in the generated image, as well as a more uniform water body that does not
erroneously contain vegetation.
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Figure 5. Comparison of generated results. (a): real image; (b): VV-GLCM; (c): VH-GLCM; (d):
VV&VH-GLCM; (e): VV- GLCM&Canny; (f): VH- GLCM&Canny; (g): VV&VH- GLCM&Canny.
Acronyms indicate images generated using: VV: co-polarization as the input; VH: cross-polarization
as the input; VV&VH: dual-polarization as the input; gray level concurrence matrix (GLCM): only
textural information as the input; GLCM&Canny: both textural information and edge information as
the input.

3.1.2. Quantitative Evaluation of Generated Images

Table 1 shows the image quality assessment (IQA) results for the different combi-
nations of inputs. The best values for each quality index are shown in bold. The IQA
consists of PSNR and SSIM. After edge information is added, images generated using the
VV mode input exhibit lower quality according to both indexes, indicating that the addition
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of edge information in this case results in a more confusing cGANs with weaker learning
ability. Conversely, images generated using the VH mode input exhibit higher quality;
however, this improvement is only observed in bands 1, 2, and 7 for PSNR, indicating that
the addition of edge information in this case may provide the cGANs with more effective
information. Furthermore, images generated using the VV&VH mode input improve in
all bands for both indexes, indicating that the addition of edge information in this case
provides the cGANs with more effective information and results in better image quality. It
is worth noting that the SSIM is improved for images generated using the VV and VV&VH
polarization modes, which indicates that the generated images are more similar to the real
image in terms of brightness, contrast, and structure.

Table 1. Image quality assessment (IQA) results of different inputs. The best values for each quality index are shown
in bold.

Polarization Input Features Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

PSNR

VV
GLCM 38.751 37.380 36.393 33.577 27.282 29.529 31.373

GLCM+Canny 38.348 35.602 35.007 32.360 26.460 28.280 29.996

VH
GLCM 38.650 37.260 36.108 33.176 26.530 28.406 29.960

GLCM+Canny 40.465 37.411 35.978 32.496 26.366 28.380 30.359

VV&VH
GLCM 38.317 36.695 35.463 32.305 26.180 28.439 30.183

GLCM+Canny 38.454 37.064 36.183 33.163 27.330 29.209 30.920

SSIM

VV
GLCM 0.949 0.927 0.906 0.832 0.609 0.694 0.747

GLCM+Canny 0.931 0.900 0.872 0.790 0.528 0.597 0.671

VH
GLCM 0.947 0.923 0.893 0.805 0.549 0.632 0.688

GLCM+Canny 0.948 0.925 0.898 0.809 0.582 0.673 0.721

VV&VH
GLCM 0.943 0.922 0.892 0.802 0.535 0.630 0.693

GLCM+Canny 0.949 0.927 0.900 0.821 0.603 0.666 0.722

3.2. Comparison of Different Polarization Modes

In this experiment, we compare the optimal polarization of the three polarization
modes in two cases: (1) using both textural information and edge information as the input
and (2) using only textural information as the input. To quantitatively assess the accuracy
of the images generated by the different polarization modes, we employ the r and RMSE
values between the predicted reflectance and real reflectance. To display the result clearly,
we employ a scatter diagram to show the density distribution of data using MATLAB.
The scatter diagram shows the reflectance relationship between the generated values and
the actual values of the Landsat image, where the line in the scatter diagram is the 1:1
line. Points that are close to the line indicate that the algorithm can capture the reflectance
change in surface objects and achieve high accuracy in predicting the reflectance of pixels.
The yellow color indicates high centralization of points.

3.2.1. Optimal Polarization Mode Using Textural Information and Edge Information

According to the statistical data, images generated using the VV&VH polarization
mode achieve the best r and RMSE values, followed by images generated using VH
polarization, with those generated using VV polarization achieving the worst r and RMSE
values. Regardless of the polarization mode used as the input, the r value is higher for
bands 5–7 than bands 1–4, with band 6 exhibiting the highest r value (VV: r = 0.832,
VH: r = 0.842, VV&VH: r = 0.864) and band 2 in images generated using VV and VH
polarization exhibiting the lowest r value (VV: r = 0.346, VH: r = 0.607). The r value for
images generated using VV&VH polarization is lowest in band 1 (r = 0.652). The relatively
low r value for bands 1 and 2 under VV polarization (0.48 and 0.346, respectively) indicates
that a large number of pixels have low accuracy; therefore, it is not recommended to use
the VV polarization mode as the input when generating Landsat8 first band and second
band images.
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According to the scatter diagram (Figure 6), the reflectivity distribution for images
generated using VV&VH polarization as the input is relatively concentrated, with the
majority of data falling in the yellow area and light blue area, and relatively little data in
the low-density dark blue area. In comparison, although the high-density yellow area is
larger for images generated using VH polarization as the input, more low-density points
appear in the dark blue area. Finally, the reflectivity values of images generated using VV
polarization as the input exhibit a relatively discrete distribution, with a large number of
low-density dark blue points falling far from the 1:1 fitting line.

3.2.2. Optimal Polarization Mode Using only Textural Information

According to the statistical data, the images generated using the VV polarization
mode as the input exhibit the best r and RMSE values, followed by those generated using
VV&VH polarization, with images generated using VH polarization exhibiting the worst r
and RMSE values. Again, regardless of the polarization mode, bands 5–7 exhibit higher
r values than bands 1–4, with the highest r value in band 6 (VV: r = 0.874, VH: r = 0.831,
VV&VH: r = 0.834) and the lowest r value in band 1 (VV: r = 0.623, VH: r = 0.596, VV&VH:
r = 0.567).

According to the scatter diagram (Figure 7), the reflectivity distribution for images
generated using the VV polarization mode is relatively small, but some points are scattered
parallel to the X-axis in bands 1–4. Taking band 1 as an example, some points appear near
the y = 0.15 line, which indicates that points with a reflectance of 0.15 in the real image are
generated by mistake with values ranging from 0.10 to 0.18. This situation is alleviated
when the image is generated using the VH polarization mode as the input, and almost
disappears when the image is generated using the VV&VH polarization mode as the input.

3.3. Accuracy Evaluation of Optimal Input Features for Different Surface Objects
3.3.1. Classification and Area Ratio Comparison

To assess the accuracy of surface object information in the generated images, we
classify the generated images into three categories: water bodies, building land, and
vegetation, and determine the areal proportion of each surface object (Table 2). The
proportions of the three types of surface object in the real images are regarded as the
baseline for the other sets. The best values for each quality index are shown in bold.
Figure 8 shows the intuitive results of the classification. When only the GLCM is used as
the input, the classification results of VV polarization are closest to those of the real images.
When both the GLCM and edge information are used as the input, the classification results
of VV&VH polarization are closest to those of the real images.

Table 2. Areal proportion of different classification results. The best values for each quality index are
shown in bold.

Polarization Vegetation Water Bodies Building Land

Real image - 15.09% 12.41% 72.50%

VV
GLCM 18.04% 11.80% 70.16%

GLCM+Canny 25.61% 13.10% 61.29%

VH
GLCM 22.22% 11.41% 66.37%

GLCM+Canny 31.34% 12.77% 55.89%

VV&VH
GLCM 39.85% 11.56% 48.52%

GLCM+Canny 20.11% 11.86% 68.03%
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Figure 6. Scatter plots of the real reflectance and generated reflectance produced by co-polarization
(VV), cross-polarization (VH), and dual-polarization (VV&VH) inputs when both textural infor-
mation and edge information are input. (a): co-polarization (VV); (b): cross-polarization (VH), (c):
dual-polarization (VV&VH). The horizontal axis represents the generated values, the vertical axis
represents the actual values, r represents the correlation between the generated values and actual
values, and RMSE represents the root mean square error.
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Figure 8. Comparison of surface object classification results. (a): real image; (b):
VV-GLCM; (c): VH-GLCM; (d): VV&VH-GLCM; (e): VV- GLCM&Canny; (f): VH-
GLCM&Canny; (g): VV&VH- GLCM&Canny. Acronyms indicate images generated
with: VV: co-polarization as the input; VH: cross-polarization as the input; VV&VH: dual-
polarization as the input; GLCM: only textural information as the input; GLCM&Canny:
both textural information and edge information as the input. Blue represents water bodies,
red represents building land, and green represents vegetation.

In VV polarization mode, the addition of edge information results in finer classification
of surface object patches, which means that the generated images contain more detailed
information. Water bodies surrounded by vegetation and building land are also effectively
distinguished; thus, the water area is closer to that in the real image. However, many pixels
that should be classified as building land are misclassified as vegetation, resulting in a
smaller proportion of building land and a higher proportion of vegetation compared to
the real image. The VH polarization results are similar to those of VV polarization, except
that the addition of edge information results in better separation of water bodies and more
detailed water area information in the generated image. In VV&VH polarization mode,
the addition of edge information again makes the water boundaries more continuous and
clear, reduces the misclassification of building land and vegetation, and generates areal
proportions that are more similar to those in the real images for all three surface objects.

3.3.2. Correlation Comparison

The scattering mechanism of SAR data is divided into surface scattering, body scatter-
ing, double echo, etc., which gives the SAR images different backscattering intensity for
different surface objects. Therefore, we determine the optimal input for different types of
surface objects by calculating the r value between the generated image and the original
image for different surface objects (Figure 9). For vegetation, the VV&VH polarization
mode with edge information is the optimal input. Although the overall correlation for the
VV polarization mode without edge information is relatively high, the correlation of each
band is quite different. With the addition of edge information, the correlation is improved
for vegetation areas generated with VH and VV&VH polarization modes as the input. For
water bodies, the VV polarization mode with edge information is the optimal input, which
may be because backscattering of the water body is typically surface reflection, which
requires a polarization mode with a stronger echo, such as the VV polarization mode. The
addition of edge information significantly improves the correlation for water body areas
generated using each polarization mode. For building land, the VV polarization mode
without edge information is the optimal input. The addition of edge information improves
the correlation for building land generated using VV&VH polarization. Therefore, different
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input features should be selected for different types of surface object to ensure optimal
image accuracy.
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4. Discussion
4.1. Effects of Different Reconstruction Methods on Different Optical Bands

There are many methods available for reconstructing optical remote sensing im-
ages [77–82]. The cGANs method adopted in this study has great potential for the recon-
struction of NIR and SWIR bands (for Landsat8 images, band 5 is the NIR band, and bands
6 and 7 are the SWIR bands). For example, the spatial and temporal adaptive reflectance
fusion model (STARFM) was used to obtain r values for NIR and SWIR bands of 0.693,
0.598, and 0.638, respectively [82], whereas the r values obtained in our study for inputs
including edge information, textural information, and the VV&VH polarization mode
were 0.848, 0.864, and 0.836, respectively. Moreover, sparse representation was used to
reconstruct an optical image with a PSNR value for band 5 of 22.35 [8], whereas our study
obtained a PSNR value of 27.33. Finally, the improved spatial-temporal fusion method was
used to predict a reflectance r value for band 5 of 0.8403 [83], whereas the r value obtained
in our study was 0.848. NIR and SWIR bands are typically used for urban monitoring,
detection, and identification of roads, exposed soil, and water. Therefore, cGANs-based
SAR-to-optical image translation methods may be the most suitable for image generation
in these cases.
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4.2. Superior Reconstruction with an Adequate Textural Extraction Scale

In this study, we used the GLCM to extract textural features, and the size of the
running window was set to 7 × 7. However, different ground objects do not have the
same texture size, periodic mode, or direction; therefore, the window size of 7 × 7 may
not be suitable for all ground objects. This highlights a very interesting problem, that is,
the problem of textural scale or the size of the window involved in the texture extraction
process. Many previous studies have demonstrated that the textural scale has a significant
influence on image reconstruction [84,85]. A larger textural scale can lead to blurred
boundaries and interiors of the textural information and even mosaic phenomena, which
conceals relatively small changes in the image. Conversely, a smaller textural scale will
result in a more broken and spotted image, despite the more detailed textural information,
which is not conducive to subsequent surface object extraction. Therefore, the spectral
properties and spatial properties of the geological phenomena or processes being studied
should be considered when selecting the textural scale. However, this topic is beyond the
scope of this study.

5. Conclusions

In this study, we translated SAR images into optical images using cGANs, then
investigated the effect of adding edge information and using three different polarization
modes in the model input on the translation process. The major findings are as follows.

The addition of edge information improves the structural similarity between the gen-
erated image and the real image, makes the boundaries between surface objects clearer in
the generated image, and provides the cGANs with more effective information, resulting in
better image quality when VH and VV&VH polarization modes are used as the input. The
optimal polarization mode with edge information added in the input is VV&VH, whereas
the optimal polarization mode without edge information is VV. Moreover, different surface
object types have different optimal input features. For example, VV&VH polarization with
edge information is the optimal input for vegetation, VV polarization with edge informa-
tion is the optimal input for water bodies, and VV polarization without edge information
is the optimal input for building land. Overall, the accuracy of NIR and SWIR bands in the
generated image is higher than that of visible bands (for Landsat8 images, bands 5–7 are
more accurate than bands 2–4).

These findings provide an important reference for the selection of cGANs input fea-
tures and have important applications for cloud removal, vegetation index reconstruction,
etc. Although we only translated Sentinel-1 images into Landsat8 images, the translation
of other optical images and SAR images is also theoretically feasible. Our results indicate
that SAR-to-optical image translation can generate high-quality optical images that can be
used in the construction of high temporal and spectral resolution time-series data. Future
research should consider using images from multiple satellites and introducing time-series
data to further improve the translation results.
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