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Abstract: A task for environmental health research is to produce complete pollution exposure maps
despite limited monitoring data. Satellite-derived aerosol optical depth (AOD) is frequently used as
a predictor in various models to improve PM2.5 estimation, despite significant gaps in coverage. We
analyze PM2.5 and AOD from July 2011 in the contiguous United States. We examine two methods
to aid in gap-filling AOD: (1) lattice kriging, a spatial statistical method adapted to handle large
amounts data, and (2) random forest, a tree-based machine learning method. First, we evaluate
each model’s performance in the spatial prediction of AOD, and we additionally consider ensemble
methods for combining the predictors. In order to accurately assess the predictive performance
of these methods, we construct spatially clustered holdouts to mimic the observed patterns of
missing data. Finally, we assess whether gap-filling AOD through one of the proposed ensemble
methods can improve prediction of PM2.5 in a random forest model. Our results suggest that
ensemble methods of combining lattice kriging and random forest can improve AOD gap-filling.
Based on summary metrics of performance, PM2.5 predictions based on random forest models were
largely similar regardless of the inclusion of gap-filled AOD, but there was some variability in daily
model predictions.

Keywords: air pollution; PM2.5; AOD; random forest; gap-filling

1. Introduction

Ambient outdoor air pollution, particularly particulate matter less than 2.5 microm-
eters in aerodynamic diameter (PM2.5), poses a substantial risk to human health [1–3].
Air pollution monitors that can directly measure pollution concentrations are placed at a
limited set of locations, resulting in large areas without direct measurements of ground-
level pollution exposure. Aerosol optical depth (AOD) measures the amount of aerosol
in the atmosphere and can be remotely sensed by satellite instruments at various spatial
resolutions [4]. A growing literature has developed for using satellite-derived AOD as
a proxy and predictor for PM2.5 concentrations, often in conjunction with land-use and
meteorological variables, using a range of model types such as geographically weighted
regression, linear mixed effect models, and machine learning methods [5–7].

However, AOD itself has substantial missingness, complicating the process of predict-
ing PM2.5 concentrations. Gaps in AOD coverage are a result of cloud cover, snow cover,
and surface brightness; for the moderate resolution imaging spectroradiometer (MODIS)
10 km product, on average each grid cell has no AOD available on approximately 70% of
days, with substantial variation across regions [8,9]. AOD’s patterns of missingness are
also not random for the purpose of PM2.5 prediction; cloud and snow cover may plausibly
be related to PM2.5 concentrations [9,10]. At the scale of the continental United States,
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research suggests that missingness as a result of cloud cover is not likely to greatly bias
monthly and yearly PM2.5, although there is regional and seasonal variation [11]. However,
Liang et al. [12] show that long-term PM2.5 estimates in China are substantially biased as
result of missing AOD observations. Furthermore, for health effects research, the relevant
geographic scale is small and more impacted by missingness. When using PM2.5 estimates
based on satellite-derived AOD with substantial missingness, time series studies will
miss many days and lose statistical power, and cohort studies will use potentially biased
exposure estimates, resulting in a loss of statistical power. A number of approaches have
been proposed for handling missing AOD observations when estimating PM2.5 [7]. One
approach has been to combine different AOD retrievals, although this will still result in
incomplete coverage; e.g., Geng et al. [13] combine AOD measurements from Terra and
Aqua satellites using linear regression. Other approaches have used AOD where available,
but otherwise bypassed the need for gap-filling AOD [14–16].

Many recent studies use multi-stage approaches, where AOD is gap-filled, and then a
model relating PM2.5 to the gap-filled AOD and other land-use and meteorological variables
is fit. These gap-filling models may use land-use and meteorological terms, as well as
chemical transport model (CTM) estimates. Hu et al. [17] forego a statistical modeling
procedure for gap-filling AOD, saving computational time, and they replace missing AOD
values with CTM (GEOS-Chem) estimates of AOD. Xiao et al. [18] and Huang et al. [19]
use linear models that include cloud fraction estimates, meteorological and land-use data
together with smoothing splines, to account for spatial correlation for imputing AOD.
Lv et al. [20] gap-fill AOD using a model that relates AOD to the ratio of daily and seasonal
averages of PM2.5 multiplied by the average seasonal AOD values for the grid cell for each
city under study; a second stage then uses ordinary Kriging to fill in the remaining gaps.
Because of the computational costs of ordinary Kriging, this method will not scale well
to large datasets, but previous studies suggest that smoothing splines may not perform
as well as Kriging in some settings [21]. Chen et al. [22] use a mixed effect model to first
combine Terra and Aqua AOD measurements, and interpolate missing AOD values using
inverse-distance weighting (IDW). IDW with a maximum distance will not be able to
provide full coverage for AOD, however, as there are large missing areas with no observed
data. Random forest (RF) is a popular machine learning method used for gap-filling, due
to the fast implementations available and its ability to account for complex non-linear
interactions of features [7,23]. Bi et al. [10] uses a two-stage model with RF being used
to impute AOD using a number of relevant variables, including MODIS cloud and snow
fractions. Several other recent papers impute AOD as part of a multi-stage process using
RF (e.g., see Stafoggia et al. [24], Huang et al. [25], and Zhang et al. [26]). However, judging
performance based on “out-of-bag” measures or random holdouts of observed data may
be misleading in spatial prediction problems with large contiguous areas of missing data.
Furthermore, when a strong spatial pattern is present as in AOD, it is unclear how RF
performs compared to spatial statistical models. Jiang et al. [27] use RF to gap-fill AOD in
China and evaluate performance using aerosol robotic network (AERONET) measurements
[28,29]; however, there are relatively few locations with AERONET measurements on which
to validate performance on any given day.

Importantly, models for gap-filling AOD are generally more costly to fit than models
for estimating PM2.5, due to the much larger number of daily observations. For example,
in our case study, using a modeling grid of 12 km spatial resolution over the contiguous
United States entails over 50,000 daily cells. While several studies have used machine
learning methods for AOD gap-filling to overcome the computational costs, traditional
spatial statistical methods like Kriging are not well-suited to handle large datasets due
to the need to invert the spatial covariance matrix. Over the course of the last decade
or so, several spatial statistical methods have been developed to handle big data [30,31].
Although considerable attention has been given to using ensemble and hybrid approaches
for estimating PM2.5 (e.g., [32–35]), AOD gap-filling for large areas has received less focus,
possibly due to the greater computational cost.
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To our knowledge, studies have not thus far considered ensemble methods for com-
bining large-scale spatial statistical methods with machine learning methods for gap-filling
AOD. In this study, we focus on a particular spatial statistical method, lattice kriging
(LK) [36], together with RF for AOD gap-filling. Our study considers both RF and LK
models for gap-filling MODIS AOD, as well as ensemble methods for combining these
predictions following the super learner methodology [37,38]. Our case study focuses on the
contiguous United States using daily data for the month of July 2011. We focus on a single
month for computational reasons as each AOD model is fit daily to tens of thousands of
observations, and we perform 10-fold cross-validation on each day as part of the ensemble
method construction, resulting in an additional 10 models fit per day for LK and RF. We
assess performance using spatially clustered holdouts for AOD gap-filling models that
may more accurately measure performance than more commonly used approaches. Finally,
we assess whether the imputed AOD product using ensemble methods improves PM2.5
estimation in a random forest model. Broadly, we find that ensemble methods can be
effective for AOD gap-filling, but there is less evidence to suggest an ultimate benefit for
PM2.5 estimation.

2. Materials and Methods
2.1. Study Area

The study area of interest is the contiguous United States, consisting of 48 states, and
Washington DC, using daily data for the month of July 2011. We focused our analysis
on July, as summer months generally have less AOD missingness than other months on
average, while retaining substantial day-to-day variability in missingness. Descriptions of
the data sources follow the work of Hu et al. [17].

2.2. PM2.5 Measurements

We obtain measurements of PM2.5 from the U.S. Environmental Protection Agency
(EPA) Air Quality System (AQS) (https://www.epa.gov/outdoor-air-quality-data). We
used 24h averaged concentrations collected from 1248 federal reference method samplers.

2.3. MODIS AOD

For the purpose of this study, we utilize Collection 6 level 2 Aqua MODIS retrievals at
550 nm wavelength using the MYD04_L2 product [4,39]. High-confidence AOD retrievals
from the combined deep-blue/dark target parameter were used [8]. AOD at 550 nm is the
main product provided by the various mainstream aerosol instruments, and 550 nm is the
most common wavelength used in research applications for aerosols (https://atmosphere-
imager.gsfc.nasa.gov/faqs/aerosol). Following previous work [17], these retrievals at a
resolution of 10 km are regridded to 12 km × 12 km community multi-scare air quality
(CMAQ) grids. We consider daily MODIS AOD data from July 2011, for a total of 53,807
daily cells in the contiguous United States. The proportion of cells in which daily AOD is
observed ranges from a minimum of 26.33% to 54.63%, with an average of 41.08%. The top
row of Figure 1 demonstrates two days with the least and most missing observed AOD
points. We used MODIS AOD rather than a finer scaled product (e.g., 1 km2 products), in
part because our goal was to explore large-scale variation in the national map for AOD,
and in part due to computational costs.

https://www.epa.gov/outdoor-air-quality-data
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Figure 1. Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) on 12 km grid; full
observed data for (a) 1 July and (b) 12 July 2011; training data for (c) July 1 and (d) 12 July 2011. Notably, 1 July has the least
missingness, and 12 July has the most missingness in July 2011. Grid cells with observed AOD values greater than 1 are
excluded from display.

2.4. GEOS-Chem AOD

GEOS-Chem is a “global 3-D model of atmospheric chemistry driven by assimilated
meteorological observations from the Goddard Earth Observing System (GEOS) of the
NASA Global Modeling Assimilation Office (GMAO)” (http://acmg.seas.harvard.edu/
geos/) [40]. We utilize version 10.1 of the model, using GEOS-5 meteorological data for
2011, with total column AOD calculated as the sum of 6 AOD parameters (sulfate-nitrate-
ammonium, black carbon, organic carbon, accumulation-mode sea-salt, coarse-mode sea-
salt, and total dust) over 37 vertical layers (from the surface up to ≈20 km) [17,41].

2.5. Meteorological Variables

We obtained meteorological data from the North American Land Data Assimilation
System phase 2 (NLDAS-2) (https://ldas.gsfc.nasa.gov/nldas/) [42,43]. These data have a
spatial resolution of approximately 13 km and are available hourly. For this analysis, we
use pressure at surface (pa), u- and v-direction wind speed (m/s), temperature (K), relative
humidity (%), precipitation (kg/m2), fraction of total precipitation that is convective (no
units), convective available potential energy (J/kg), surface DW shortwave radiation flux
(W/m2), surface DW longwave radiation flux (W/m2), and potential evaporation (kg/m2).
Measurements are averaged from 10 a.m. to 4 p.m. local time to construct daily daytime
observations, roughly coinciding with the Aqua overpass time (about 1:30 p.m.).

http://acmg.seas.harvard.edu/geos/
http://acmg.seas.harvard.edu/geos/
https://ldas.gsfc.nasa.gov/nldas/
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2.6. Land Use

We include elevation obtained from the National Elevation Dataset at 30 m spatial
resolution (https://viewer.nationalmap.gov/basic/). We obtained total length of highways
(m), total length of limited-access road (m), and total length of local road (m) from ESRI
StreetMap USA (Environmental Systems Research Institute, Redlands, CA, USA). Forest
cover (unitless) and impervious surface (%) are derived from the National Land Cover
Database (https://www.mrlc.gov/). In addition, we include point emissions data for PM2.5
and PM10 combined (in tons) from the EPA 2011 National Emissions Inventory report
(https://www.epa.gov/air-emissions-inventories). Population density is obtained from
the 2010 Census at the tract level (population/km2).

2.7. Data Integration

Data were projected into a common coordinate system using the U.S. Lambert confor-
mal conic projection. For each 12 km × 12 km grid cell, forest cover, impervious surface,
and elevation were averaged, while road length and point emission values were summed.
Meteorological variables and population density were assigned based on nearest distance.
Grid cells containing multiple PM2.5 monitors for a day were averaged.

2.8. Statistical Methods

We conduct AOD gap-filling using two distinct methods from the spatial statistical
and machine learning fields, respectively, as well as methods for combining them.

2.8.1. Lattice Kriging

Lattice kriging (LatticeKrig or LK) is a multi-resolution Gaussian process model [36].
At a high-level, LK models the spatial process using several levels of two-dimensional basis
functions, which are laid out on a grid and approximately double with each successive
layer. These basis functions are compact, which means that for a particular point, only a
small number of basis functions are used to make the prediction. The coefficients associated
with the basis functions are assumed to be correlated, and this structure can flexibly model
observed spatial covariance structures. Estimation proceeds through a likelihood-based
approach after specifying various tuning parameters.

Following Nychka et al. [36], we observe {yi} at locations {xi} for i = 1, .., n. We as-
sume that {yi} follow an additive model consisting of a mean function based on covariates,
a spatial process, and a measurement error term:

yi = ZT
i d + g(xi) + εi, (1)

where d is a p× 1 vector of fixed coefficients associated with the covariates Zi, and g(xi)
denotes the spatial process. The mean-zero error terms εi are presumed to be independent
and identically distributed, i.e., ε ∼ N(0, σ2 I), where ε = (ε1, ..., εn)T .

The overall spatial process g(xi) can be written as a sum of L independent spatial
processes gl(xi):

g(xi) =
L

∑
l=1

gl(xi) =
L

∑
l=1

m(l)

∑
j=1

cl
jφj,l(xi), (2)

where φj,l denotes the the lth level of resolution’s jth basis function, and cl
j denotes the

coefficient associated with this basis function. Although the basis functions and number
of levels are fixed (i.e., chosen), the coefficients for each level l, cl = (cl

1, ..., cl
m(l))

T are

assumed to follow a multivariate normal with mean zero and covariance ρQ−1
l :

cl ∼ N(0, ρQ−1
l ). (3)

Each level’s spatial process is independent with marginal variance ραl subject to the
constraint ∑L

l=1 αl = 1, so that the marginal variance of the overall spatial process g(xi) is



Remote Sens. 2021, 13, 126 6 of 20

ρ. The main parameters that need to be selected are the number of levels of resolution (L),
the number of grid points along the largest dimension at the coarsest level of resolution
(which in turn determines the total number of basis functions), the relative weight of each
spatial level’s process (parameterized by ν), and the scale/range parameter (a). We provide
a more thorough description of the model in the Supplemental Materials, and we also refer
readers to the originating paper [36], the comparison paper by Heaton et al. [30], and the
documentation for the R implementation (version 8.4) [44].

2.8.2. Random Forest

Random forest (RF) consists of constructing a large number of regression trees [23].
At a high level, regression trees search for the best (as determined by mean-squared error)
binary split among the covariates (i.e., features), and then split the data accordingly. This
process continues until some condition is met (e.g., there is only 1 observation left, so
no further split can be made). Two key components of RF are: (1) bagging, or bootstrap
aggregation, wherein each tree is fit to a random sample (with replacement) of the original
sample; and (2) at each node, the algorithm considers only a random subset m of the
original p predictors for deciding on the best split. A single decision tree would likely
overfit to the data. Averaging many trees that implement these two components results in
reducing variance, while maintaining a low bias from the procedure.

The key parameters are the number of trees (B), the number of predictors to randomly
select for each split (m, or mtry) from the original p, and, to a lesser extent, the node size
(nsize). In general, we choose the number of trees B to be large, and we use validation data
to help select m and nsize. For this study, we use the ranger package (version 0.12.1) in
R [45].

2.8.3. Super Learner Methods

Super learners (SL), related to stacked generalization and stacked regression meth-
ods [46], use a potentially large and diverse set of algorithms by weighting their predictions
optimally according to some risk measure such as squared error loss. Although a large
number of algorithms are recommended in practice, we use just RF and LK as our algo-
rithms in order to demonstrate the use of SL and to maintain focus on the cross-validation
approach. The process for super learners is as follows [37,38,47,48]:

1. Divide observed data into k folds.
2. For each fold k, let the kth fold be the validation data, and the remainder be the training

data. Fit each algorithm or model m to the training data and make predictions on the
kth fold.

3. Stack all predictions ŷm for each algorithm.
4. Estimate the weights αm for algorithm m = 1, . . . , M using the model formulation

yi =
M

∑
m=1

αmŷi,m + εi, (4)

where αm ≥ 0 and ∑M
m=1 αm = 1. αm can be estimated by non-negative least-squares

methods and then normalizing the weights to sum to 1.

After these αm model weights are estimated through the cross-validation process,
each algorithm is fit to the full observed data, and test data predictions are made by
using these weights for combining predictions. Davies and van der Laan [48] provide a
discussion of extending SL theory to the case of spatial data. Murray et al. [35] use a similar
stacked regression approach for determining weights in combining separate models for
PM2.5 prediction.

2.9. AOD Gap-Filling Analysis

From the observed AOD data, we consider a spatially clustered approach for creating
a testing dataset on which to evaluate the results. In the proposed method, ten random
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AOD observations are selected from the observed AOD values for each day in July 2011.
These observations and any other observations within a 250 km radius are then held out
as the test dataset. We selected ten random points, in particular, to ensure that different
areas of the observed data had a sufficient chance of being held out for the testing data,
so that the performance of the different methods for a particular day was not likely to
be judged solely on predictions for one area of the observed map. We also observed that
this procedure resulted in close to a 70/30 split between training and testing data, on
average. Figure 1 demonstrates the observed and training data on two particular days.
This approach to creating testing data is an attempt to mimic the actual observed pattern of
AOD data, where large contiguous areas are missing and require imputation. In particular,
for many missing observations, there are likely no points nearby to aid in prediction. In
our analysis, we consider each day separately for model fitting and prediction.

For RF and LK, we used validation data taken from the training data following a
similar approach. For RF, we use 2000 trees with a node size of 5 and m = 7. We include
22 variables: the projected centroid coordinates, elevation, the 2011 emission inventory,
forest cover, impervious surface, total lengths of highway, limited-access road, and local
road, population density, potential evaporation, surface DW longwave radiation flux,
surface DW shortwave radiation flux, convective available potential energy, fraction of
total precipitation that is convective, precipitation, relative humidity, temperature, u- and
v-direction wind speed, pressure at surface, and GEOS-Chem AOD. For LK, we set the
number of levels of resolution to 5, a = 12, ν = 0.1, and the number of grid points along
the largest dimension at the coarsest level of resolution to 15. By default, the LatticeKrig
package includes the spatial coordinates as fixed predictors in Z. In addition, we include the
interaction between the coordinates, GEOS-Chem, the interaction between each coordinate
and GEOS-Chem, and elevation as the fixed predictors in the model. No variable selection
was performed—we instead focused on tuning the spatial aspect of the model.

In addition to comparing RF and LK, we aim to consider SL approaches for combining
these distinct methods. For each day, we construct 10 cross-validation folds using the
blockCV R package (version 2.1.1) [49]. This constructs spatial blocks for the validation
dataset, so that performance more accurately mimics the task of gap-filling AOD. In the
Supplementary Materials (Figure S6), we provide a full set of the maps showing these
spatial block cross-validation folds. Sarafian et al. [50], Murray et al. [35] (for PM2.5
prediction) and Young et al. [51] (for NO2) also consider spatially clustered cross-validation
approaches for assessing model performance. Based on the cross-validation folds, we stack
LK and RF validation predictions as discussed in the previous section. We assess 4 different
methods for combining LK and RF:

1. Average. We construct a simple average of RF and LK predictions. Cross-validation
data are not used in this approach.

2. SL: overall. After stacking all of the cross-validation predictions for all days together,
we produce a single set of optimal weights with (4) for making predictions.

3. SL: daily. We stack cross-validation predictions for each day separately, and we
obtaining a daily set of optimal weights with (4).

4. SL: distance-based. For each cross-validation fold on each day, we determine the
closest distance between each point in the cross-validation fold and the training data.
We then stack all of the cross-validation predictions across days together with these
nearest-neighbor distances. We bin these stacked predictions according to nearest-
neighbor distances with bin widths of 25 km from 0 to 300 km and higher. Using (4),
we estimate the optimal weights for LK and RF for each binned distance grouping. We
then fit a simple loess model relating interval mid-point distance and optimal weight,
and we use these fitted optimal weights for combining LK and RF for predictions.
The motivation for this last technique is that the further the unobserved point is from
the observed data, the more different algorithms may be in predictions. If there is
strong spatial correlation, then LK may perform better; in contrast, if there is limited
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range in the spatial correlation and the covariates are more important, then RF may
produce better fits based on the relationship between the covariates and response.

In all cases, we restrict weights to be between 0.1 and 0.9. We primarily assess
model performance on the basis of root mean square error (RMSE) and the coefficient of
determination (R2), as well as the intercept and slope from a linear model relating the true
AOD observations to the predicted values.

2.10. PM2.5 Analysis

We compare several random forest models for PM2.5 concentration estimation to deter-
mine whether including gap-filled AOD as a predictor can improve prediction performance.
Our gap-filled AOD is based on the super learner distance-based method. There are five
variations on the random forest models’ features:

• M1: Includes neither AOD nor GEOS-Chem.
• M2: Includes GEOS-Chem.
• M3: Includes gap-filled AOD. This variable is defined to be observed AOD where

available, and otherwise the predicted AOD value based on the super-learner distance-
based method. GEOS-Chem is also included as a separate feature.

• M4: Includes AOD by replacing missing values of AOD with GEOS-Chem (as in
Hu et al. [17]).

• M5: Includes observed AOD, and training solely on observations where AOD is
observed. For predictions, missing values of AOD are replaced with the gap-filled
AOD. GEOS-Chem is also included as a separate feature.

The other features included in the random forest models are the same as those in the
AOD analysis. All models except M5 additionally include an indicator variable for whether
AOD was observed at the location, and all models include a so-called convolution layer
of PM2.5. Several analyses [17,34] have demonstrated that a weighted-average of nearby
PM2.5 observations can aid in model prediction for PM2.5. Briefly, for each location, the
convolution layer of PM2.5 is a weighted average of all other training PM2.5 observations,
not including the location itself. The weights are inversely proportional to the squared
distance between locations (less distant observations in the training data are weighted
more). The procedure for creating the convolution PM2.5 layer must be repeated for each
training/validation split for each day.

We consider three distinct 10-fold cross-validation approaches for assessing perfor-
mance:

• Random: Cross-validation folds are constructed by selecting observed PM2.5 monitors
at random on a daily basis.

• Constant spatial clusters: Cross-validation folds are constructed by creating spatially
clustered areas that are constant across all days. A particular area of the map will be
assigned to the same cross-validation fold for each day.

• Varying spatial clusters: Cross-validation folds are constructed by creating spatial
clusters at random for each day.

Spatial clusters are constructed using the blockCV package (version 2.1.1) in R with
block widths of 150 km. Figure S8 in the Supplemental Materials displays the constant
spatial construction by color-coding monitor locations.

Models were fit both for each day separately, as well as for all of the days in July
2011 together. In the latter spatio-temporal random forest model, day of the year and
day of the week are additionally included as integer predictor variables. Our primary
metrics of interest are RMSE, R2, and the full prediction maps, but we also present the
intercept/slope estimates from fitting a linear regression model with the true PM2.5 values
as the dependent variable and the random forest prediction as the independent variable.
For all models, we set the number of trees to 2000. We varied m (mtry) between values of 4,
8, 12, and 16 and presented the best results for each model and cross-validation fold type
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on the basis of RMSE. The full maps and feature importance results are based on m = 4.
The Supplemental Materials include additional figures and tables for m = 8.

3. Results
3.1. AOD Gap-Filling

We highlight several results from our analysis. First, daily results show that any of
the average/super learner approaches match or exceed performance from either LK or RF
alone on a majority of days on the basis of RMSE (Table 1, Figure S2). While there are some
days where either LK or RF does particularly well, there are also days where these two
methods perform worse than any of the other methods. The ensemble methods are the best
or close to the best in terms of RMSE and R2 on the majority of days. The distance-based SL
method performs best on more days (10 out of 31 days) than any of the other approaches
considered. Based on our described approach, the distance-based SL prediction weights
LK greater for testing points that are close to training data, while for points further away
from the training data, it weights RF more, relying on a combination of location, land use,
and meteorological features (see Figure S7 in the Supplemental Materials).

Evaluating test predictions across all 31 days together, LK and RF have R2 values of
0.644 and 0.619, respectively. The average and SL methods improve to R2 values in the
range of 0.657 to 0.659. Compared to LK alone, the RMSE is reduced 2.34% and 2.30%
in the distance-based and overall SL models, respectively. A simple average of the LK
and RF predictions also provides most of these gains. The super learner method based
on the daily construction of weights performs well but is marginally worse than the other
ensemble methods. In explaining this small difference in performance, we posit that the
daily weight estimates may be slightly over-fitted to the daily training data relative to the
other ensemble methods, which benefit from pooling cross-validation predictions across
days together for the estimation of the super learner weights.

Both LK and RF methods diverge substantially from using just the observed AOD
data in the July 2011 averages (Figure 2). LK and RF predictions are notably different from
each other in the Appalachian Mountains and in parts of the Southwest, where LK predicts
higher values relative to RF (Figure 3). There are also apparent edge effects in some areas
such as south Florida, where LK predictions will tend to diverge more substantially from
those of RF. These may be partly due to issues with LK’s coefficient estimation in areas
where there are few data for a particular day (see Figures S3 and S4 in the Supplemental
Materials for plots of daily AOD predictions and daily differences between LK and RF).

Table 1. Summary statistics on the combined test AOD predictions across all days of July 2011. The
two right columns denote the number of days in which the method performed best or worst on the
basis of root-mean-square error (RMSE).

Method
# of Days Ranked

R2 RMSE (×100) Intercept Slope Best Worst

LatticeKrig 0.644 6.66 −0.01 0.94 7 12
Random Forest 0.619 6.90 −0.01 0.92 3 19
LK-RF Average 0.658 6.52 −0.01 0.97 4 0
SL: Overall 0.659 6.51 −0.01 0.97 4 0
SL: Daily 0.657 6.52 −0.01 0.96 3 0
SL: Distance-based 0.659 6.50 −0.01 0.96 10 0
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Figure 2. July 2011 average of observed and predicted daily AOD: (a) observed AOD; (b) lattice kriging (LK); (c) random
forest (RF); (d) average of LK and RF; (e) Super-learner (SL): overall; (f) SL: daily; (g) SL: distance-based. Grid cells with
observed AOD values greater than 1 are excluded from display.
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Figure 3. Difference between lattice kriging and random forest averaged daily AOD predictions for July 2011.

3.2. PM2.5 Prediction

The gap-filled AOD used in the PM2.5 analyses is based on the SL distance-based
method for combining RF and LK predictions on the basis of the results in the AOD
analysis. We first highlight a few notable results from the daily random forest models.
First, the daily random forest models suggest that RMSE is improved consistently but only
marginally by including the imputed AOD predictor vs. the four alternatives (Table 2,
M3a). The outlier model is M5, which trains solely on observations where AOD is observed
and predicts using the imputed AOD where AOD is missing. The results from model M5
are substantially worse than the other models, with a relatively biased prediction map
(Figure 4d). For the remainder of the results, we omit discussion of this model. Generally,
the gain in RMSE for the model using gap-filled AOD (M3) is small and ranges from 0.01
to 0.03 µg m−3 against the other models. The results for R2 are similar, with small gains of
approximately 0.002 to 0.006. Second, the daily random forest models tended to have better
PM2.5 prediction in locations where AOD was not observed as compared to areas where
AOD was observed, regardless of the features included. Third, cross-validated RMSE is
substantially larger in spatial cross-validation settings than in the case with folds consisting
of randomly selected locations.

The spatio-temporal random forest results in the second set of columns in Table 2
show somewhat different patterns. RMSE and R2 are generally improved over the daily
models for the random and varying spatially clustered cross-validation analyses, but there
is no longer a benefit to including imputed AOD. On the contrary, the model predictions
tend to do better when neither AOD nor GEOS-Chem are included on the basis of R2 and
RMSE. The exception to these results are in the constant spatially clustered cross-validation
setting—here, there is some very marginal improvement from including imputed AOD over
the other models. We posit that in spatio-temporal models, multiple days’ observations
in the same area as where we intend to make a prediction on a different day can largely
diminish the predictive power of AOD. However, when the same spatial area is consistently
missing, the model can no longer rely on other days’ observations for the same area to
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improve prediction accuracy. Notably, this setting mirrors qualities of producing full
maps of PM2.5 observations. Given that there is a fixed network of monitors (not all of
which operate on every day), PM2.5 prediction is primarily focused on areas where there
is never a monitor present. We emphasize that the percentage decrease in RMSE from
including the imputed AOD in this constant spatially clustered cross-validation setting for
the spatio-temporal random forest models is small at 1.25%, 0.67%, and 0.77% compared to
the models with no AOD or GEOS-Chem, just GEOS-Chem, or the combined AOD/GEOS-
Chem variable, respectively. Notably in this case, daily models slightly outperform the
performance of the spatio-temporal models. In the other cross-validation settings, RMSE
and R2 both improve substantially from fitting a full spatio-temporal model over a series
of daily models.

Results for RMSE and R2 by region (as defined by NOAA) and cross-validation setting
are also provided in Tables 3 and 4. RMSE results tend to be worst in the West, Southwest,
and Central regions across cross-validation settings. Notably, although RMSE is quite
low for the Northwest region, the R2 for this area is comparatively low, suggesting low
pollution levels but also poor prediction performance from the models. The spatio-temporal
models improve the regional RMSE and R2 as compared to the daily models, except for the
constant spatially clustered cross-validation setting, where there is variability in changes
in regional performance. Variable importance metrics for the m = 4 setting based on the
spatio-temporal models are presented in Table S1 using the permutation-based method [23].
Briefly, this importance metric denotes the increase in mean-squared error on the OOB
sample for each tree after permuting the values of the feature. On this basis, the convolution
layer of PM2.5 is the most important predictor for these models. When imputed AOD is
included, the relative importance of several other variables is slightly diminished. While
imputed AOD is not the most important feature, it appears substantively important on the
basis of a mean decrease in accuracy. Additional feature importance tables are provided in
the Supplemental Materials for m = 8 (Table S2). In general, for larger m, the convolution
layer of PM2.5 becomes more important—it is more likely to be selected as the optimal
feature for splitting a node as m increases, and it is a particularly strong predictor.

When comparing model M3 to models M1, M2, and M4, the average of monthly
mean differences are close to 0 µg m−3, but the monthly mean differences are apparently
spatially correlated (Figure 4). The model trained only on points where AOD is observed
(M5) leads to over-estimated average monthly values of PM2.5 relative to the model using
gap-filled AOD, with an average difference of 0.25 µg m−3. The standard deviation of daily
differences for all grid cells for July 2011 is 0.44 µg m−3 for M3 and M1, 0.32 µg m−3 for M3
and M2, and 0.38 µg m−3 for M3 and M4, suggesting small but meaningful variability in
the daily model predictions. Some of the largest daily differences between models tend
to be in areas with sparse air pollution monitors (Figure S11). Figure 5 shows the July
2011 averaged values from M3 with the gap-filled AOD as a feature in the spatio-temporal
random forest model.
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Figure 4. Differences between the random forest (RF) model that includes gap-filled AOD as a predictor (M3) and alternative
RF models for average July 2011 PM2.5 predictions (µg m−3): (a) M1: no AOD or GEOS-Chem included as predictors; (b)
M2: GEOS-Chem included as a predictor; (c) M4: Replacing missing values of AOD with GEOS-Chem; (d) M5: Training on
observed AOD, and predicting by replacing missing AOD values with the gap-filled values.

Figure 5. Average July 2011 PM2.5 predicted map (µg m−3) using the spatio-temporal random forest model that includes
gap-filled AOD as a predictor (model M3).
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Table 2. R2 and root mean square error (RMSE) result from the daily and spatio-temporal random forest models for three
different 10-fold cross-validation settings. Summary metrics are evaluated on all observations as well as separately on the
basis of AOD’s missingness status (observed or missing). The M3a and M3b random forest models include gap-filled AOD
as a predictor.

Daily Spatio-Temporal

Setting AOD Status M1a M2a M3a M4a M5a M1b M2b M3b M4b M5b

RMSE (µg m−3)

Random All 3.30 3.29 3.28 3.30 3.68 2.96 2.98 2.99 2.98 3.20
Random Missing 3.30 3.28 3.27 3.29 3.84 2.99 3.00 3.02 3.01 3.29
Random Observed 3.31 3.30 3.29 3.31 3.41 2.92 2.94 2.95 2.94 3.04
Constant cluster All 3.66 3.64 3.62 3.64 3.99 3.68 3.66 3.63 3.66 3.75
Constant cluster Missing 3.61 3.58 3.56 3.59 4.09 3.63 3.60 3.57 3.61 3.74
Constant cluster Observed 3.74 3.73 3.72 3.73 3.82 3.76 3.75 3.72 3.73 3.76
Varying cluster All 3.66 3.65 3.63 3.65 4.00 3.33 3.34 3.35 3.35 3.56
Varying cluster Missing 3.61 3.58 3.57 3.60 4.11 3.34 3.33 3.34 3.34 3.61
Varying cluster Observed 3.75 3.74 3.72 3.74 3.83 3.33 3.35 3.35 3.35 3.47

R2 (×100)

Random All 75.3 75.5 75.7 75.4 69.7 80.4 80.2 79.8 80.0 77.1
Random Missing 75.9 76.2 76.3 76.1 68.1 80.5 80.4 79.9 80.1 76.5
Random Observed 73.8 73.9 74.1 73.8 72.3 79.9 79.7 79.3 79.5 78.0
Constant cluster All 69.9 70.1 70.4 70.1 64.1 69.6 69.9 70.3 69.9 68.6
Constant cluster Missing 71.5 71.8 72.2 71.7 63.6 71.2 71.6 72.1 71.5 69.8
Constant cluster Observed 66.8 66.9 67.2 66.9 65.2 66.4 66.7 67.1 66.8 66.6
Varying cluster All 69.7 70.0 70.3 70.0 63.9 75.6 75.6 75.4 75.5 72.1
Varying cluster Missing 71.4 71.8 72.1 71.7 63.2 76.3 76.4 76.2 76.3 72.2
Varying cluster Observed 66.5 66.6 67.1 66.7 65.1 74.1 73.9 73.9 73.7 71.8

Table 3. Regional root-mean-square error (RMSE) results (µg m−3) for daily and spatio-temporal random forest model for
different 10-fold cross-validation settings. The M3a and M3b random forest models include gap-filled AOD as a predictor.

Daily Spatio-Temporal

Setting AOD Status M1a M2a M3a M4a M5a M1b M2b M3b M4b M5b

Random Central 3.70 3.67 3.65 3.68 4.15 3.56 3.56 3.58 3.56 3.78
East North Central 3.17 3.17 3.16 3.18 3.52 3.04 3.03 3.01 3.02 3.15
Northeast 3.31 3.27 3.26 3.29 3.74 2.97 2.96 3.00 2.97 3.23
Northwest 1.48 1.49 1.49 1.49 1.82 1.23 1.24 1.24 1.24 1.35
South 2.35 2.35 2.33 2.35 2.77 2.11 2.13 2.15 2.15 2.39
Southeast 3.55 3.54 3.53 3.56 4.22 3.39 3.41 3.40 3.43 3.72
Southwest 4.13 4.11 4.09 4.10 4.43 3.58 3.61 3.62 3.54 3.94
West 4.41 4.42 4.41 4.40 4.47 3.58 3.64 3.70 3.67 3.76
West North Central 2.91 2.92 2.92 2.92 3.08 2.34 2.37 2.35 2.35 2.50

Constant cluster Central 4.38 4.34 4.32 4.34 4.67 4.54 4.49 4.46 4.50 4.60
East North Central 3.36 3.36 3.34 3.36 3.67 3.46 3.41 3.38 3.43 3.48
Northeast 3.55 3.51 3.49 3.53 3.90 3.54 3.49 3.46 3.50 3.60
Northwest 1.48 1.48 1.50 1.49 1.84 1.46 1.46 1.46 1.46 1.53
South 2.47 2.47 2.46 2.47 2.90 2.49 2.47 2.47 2.48 2.64
Southeast 3.91 3.88 3.83 3.90 4.54 3.94 3.92 3.85 3.93 4.08
Southwest 4.29 4.27 4.26 4.27 4.60 4.34 4.34 4.35 4.32 4.47
West 5.20 5.21 5.21 5.19 5.28 5.10 5.11 5.08 5.08 5.08
West North Central 3.04 3.04 3.04 3.04 3.18 3.09 3.08 3.08 3.08 3.09

Varying cluster Central 4.39 4.34 4.32 4.34 4.70 4.29 4.26 4.26 4.27 4.50
East North Central 3.34 3.35 3.34 3.34 3.74 3.30 3.29 3.28 3.29 3.37
Northeast 3.53 3.49 3.49 3.51 3.94 3.26 3.23 3.27 3.25 3.49
Northwest 1.51 1.51 1.52 1.53 1.85 1.29 1.30 1.31 1.31 1.39
South 2.48 2.49 2.48 2.49 2.93 2.31 2.33 2.34 2.33 2.59
Southeast 3.92 3.89 3.84 3.92 4.54 3.76 3.74 3.70 3.75 4.03
Southwest 4.45 4.44 4.42 4.42 4.76 3.97 4.02 4.07 4.02 4.30
West 5.16 5.17 5.14 5.16 5.18 4.18 4.23 4.26 4.25 4.42
West North Central 2.97 2.97 2.97 2.97 3.11 2.40 2.43 2.45 2.45 2.57
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Table 4. Regional R2 (×100) results for daily and spatio-temporal random forest model for different 10-fold cross-validation
settings. The M3a and M3b random forest models include gap-filled AOD as a predictor.

Daily Spatio-Temporal

Setting AOD Status M1a M2a M3a M4a M5a M1b M2b M3b M4b M5b

Random Central 61.1 61.7 62.1 61.5 51.1 64.7 64.7 63.8 64.1 59.3
East North Central 69.4 69.6 69.7 69.3 63.3 72.8 73.2 72.6 72.5 70.7
Northeast 77.0 77.6 77.8 77.4 70.8 81.9 82.0 81.3 81.6 78.4
Northwest 44.6 44.2 44.0 44.5 28.2 61.2 60.9 60.0 60.1 53.6
South 68.0 68.1 68.4 68.0 57.9 74.5 74.0 73.2 73.1 67.5
Southeast 70.4 70.6 70.8 70.2 59.5 73.2 73.1 72.8 72.3 68.3
Southwest 46.6 47.3 47.7 47.4 42.4 61.1 60.6 59.3 61.0 51.9
West 50.7 50.5 50.8 50.9 49.2 68.7 67.7 65.7 66.4 64.8
West North Central 39.2 39.1 38.9 38.8 33.3 61.5 60.4 60.6 60.7 55.3

Constant cluster Central 48.0 49.0 49.4 49.2 40.1 45.0 46.0 46.7 45.9 43.5
East North Central 66.0 66.1 66.6 66.2 60.8 64.4 65.6 66.3 65.1 65.1
Northeast 73.8 74.4 74.7 74.1 68.1 74.0 74.7 75.1 74.5 73.3
Northwest 45.4 45.0 44.3 45.0 29.1 45.6 45.6 45.3 45.5 43.7
South 64.5 64.6 64.9 64.5 53.5 64.3 64.9 65.0 64.6 61.5
Southeast 64.4 64.9 65.9 64.5 53.5 64.1 64.4 65.6 64.2 62.5
Southwest 41.9 42.5 42.8 42.6 35.1 40.5 40.4 40.3 40.9 37.5
West 34.6 34.6 34.5 35.1 32.0 36.6 36.6 37.3 37.2 37.5
West North Central 34.0 34.1 34.1 34.0 28.8 32.1 32.4 32.6 32.4 31.6

Varying cluster Central 47.3 48.5 48.9 48.6 39.0 50.8 51.4 51.5 51.5 45.4
East North Central 66.5 66.5 66.7 66.5 59.1 68.5 69.1 69.3 69.0 67.4
Northeast 74.3 74.8 74.9 74.6 67.6 79.0 79.3 78.7 79.1 75.3
Northwest 42.5 42.4 42.0 41.9 26.7 58.1 57.7 57.0 56.8 52.1
South 64.3 64.2 64.4 64.1 52.7 70.2 69.9 69.6 69.8 63.1
Southeast 64.3 64.8 65.8 64.2 53.2 68.0 68.3 69.0 68.1 63.5
Southwest 37.5 37.8 38.5 38.5 30.6 53.0 52.0 50.9 52.8 43.7
West 33.8 33.6 34.4 34.1 32.8 58.8 57.7 57.3 57.5 52.4
West North Central 36.6 36.7 36.8 36.6 31.4 59.8 58.8 58.1 58.4 53.4

4. Discussion

We highlight the main findings of this study in three points. First, we emphasize the
importance of constructing testing and cross-validation data that mimic the missing data
patterns for both AOD and PM2.5 prediction. Previously reported metrics for AOD gap-
filling using RF may be over-stated if using out-of-bag (OOB) metrics [10,24], as using large
contiguous areas for testing suggests substantially lower R2. Different cross-validation
settings for PM2.5 model evaluation also suggest that performance varies considerably
based on the manner of holdout, echoing the findings of previous studies that “spatial”
cross-validation performance metrics are typically worse than random cross-validation
metrics. In our study, our spatial cross-validation procedures leave out spatially clustered
sets of monitors as in several recent studies [35,50,51]. Our results show roughly similar
performance metrics for PM2.5 estimation compared to previous RF results when using the
random cross-validation setting, with ≈0.80 (≈2.99) vs. 0.81 (2.78) R2 (RMSE) for summer
2011 in Hu et al. [17]. The small difference in performance in our model as compared to
that of Hu et al. [17] is likely because we fit the model solely to data in July 2011 rather than
the full year, and because we did not include additional variables such as convolutional
layers for land use terms, which have been shown to improve overall performance.

Second, we demonstrate how super learner approaches combining a large-scale spatial
statistical method and machine learning predictions can improve upon the performance of
each constituent predictor, and how the super learner method can be further modified for
the particular task of AOD gap-filling. Future work should examine extensions to more
machine learning and spatial statistical methods. For example, several recent studies have
highlighted a number of spatial statistical methods with promising predictive performance
and low computational costs [30,31,52–58], and using these in an ensemble approach may
provide further improvements. Spatial data present additional theoretical challenges for
super learner methods, given that the training data and testing data will generally not be
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independent of each other [48]. A limitation of the current study is the limited time frame
and the use of daily rather than spatio-temporal AOD gap-filling models. We focused on
July 2011 as there was, on average, less missingness in AOD in the summer than in other
months, and we limited our analysis to a single month due to the high computational cost
of fitting daily models with 10-fold cross-validation for the super learner. Future studies
may consider expanding the time frame of spatial prediction beyond a month and including
spatio-temporal statistical models that may better utilize the available observed data.

Finally, we demonstrate that imputed AOD using our proposed ensemble method can
have a very small impact on particular RF models for estimating PM2.5 concentrations, de-
pending on the cross-validation setting. With a convolution layer of PM2.5 and a rich set of
other features, we generally find that AOD (imputed or not) is not strictly needed for good
prediction of PM2.5 in RF models as judged by R2 and RMSE. However, population-level
metrics like R2 and RMSE may be misleading in masking improved small-scale predictions,
and we find subtle differences in the predicted values between models, with and without
gap-filled AOD as a predictor. Similarly, Huang et al. [25] find meaningful differences in
daily PM2.5 predictions in models with and without AOD as a predictor, particularly in
areas of the map with sparse PM2.5 monitors and on high-pollution days. Thus, although
gap-filling AOD in the proposed ensemble approach adds to the computational costs of
making PM2.5 predictions, as compared to fitting a model without AOD as a predictor,
there may be some marginal benefit to the quality of PM2.5 predictions. A limitation of
the current study is the lack of certain variables for AOD gap-filling and PM2.5 estimation;
previous work has found that the inclusion of cloud and snow fractions may improve AOD
gap-filling and produce meaningful visual improvements in PM2.5 estimation [10]. More-
over, finer resolution AOD products such as multi-angle implementation of atmospheric
correction (MAIAC)-derived AOD may provide greater predictive power for PM2.5 [59]
at the expense of increasing the computational costs of gap-filling. Future studies should
examine the computational costs and benefits of using the proposed method to gap-fill
AOD for predicting PM2.5 at the 1 km resolution.

5. Conclusions

This article considered a recently developed large-scale spatial statistical method (LK),
a popular machine learning method (RF), and various combinations of these methods for
gap-filling daily MODIS AOD on a 12 km × 12 km grid in the contiguous United States
in July 2011. Using large contiguous areas as holdouts for our performance comparison,
we found that ensemble approaches can improve daily AOD gap-filling as compared to
the individual methods on their own, on the basis of RMSE and R2. The ultimate goal
of making improvements in gap-filling AOD is to improve the performance of PM2.5
prediction models and to provide complete spatial coverage. For this task, we compared
several daily and spatio-temporal random forest models, with and without the inclusion of
gap-filled AOD as a predictor. These results were mixed, showing very small but consistent
improvements to RMSE and R2 by including the gap-filled AOD in the daily models, but
varying results in the spatio-temporal models. However, in the more realistic spatially
clustered cross-validation setting, where spatial clusters of the observed locations are
assigned to the same cross-validation fold for all days, we find small improvements for
PM2.5 from including the gap-filled AOD predictor. Furthermore, although the differences
in RMSE and R2 are small, daily prediction maps suggest some meaningful differences
between the considered models, particularly in areas with sparse monitoring locations.
Future research should extend this work by considering computationally efficient spatio-
temporal statistical approaches for gap-filling AOD (as compared to daily gap-filling
models), increasing the time frame of study, and considering gap-filling at finer resolutions
(e.g., MAIAC AOD at 1 km resolution).
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Supplementary Materials: All codes for replicating the analyses in this paper are provided at
https://github.com/bzki/aodpm25_paper. Additional figures, tables, and details are available
online at https://www.mdpi.com/2072-4292/13/1/126/s1. Figure S1: Daily split between training
and testing data for AOD experiments, Figure S2: RMSE and R2 across days for various methods in
AOD experiments, Figure S3: Daily observed and predicted AOD values, Figure S4: Daily differences
between LK and RF AOD predictions, Figure S5: Differences in average predictions for various
methods, Figure S6: Spatial cross-validation folds for PM2.5, Figure S7: Comparison of LK and RF
at difference distances between test and training data, Figure S8: Constant spatial clustering cross-
validation map for PM2.5, Figure S9: Average PM2.5 predicted map, Figure S10: Average differences
from gap-filled AOD RF model, Figure S11: Daily differences from gap-filled AOD RF model, Figures
S12–S14: Scatter plots of predicted and observed PM2.5, Tables S1 and S2: Feature importance tables
from RF models for PM2.5, Tables S3–S5: Intercept and slope estimates from PM2.5 cross-validation,
Section S3: Additional LatticeKrig modeling details.
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