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Abstract: Changes in stratospheric ozone have to be assessed continuously to evaluate the effec-
tiveness of the Montreal Protocol. In the southern hemisphere, few ground-based observational
datasets exist, making measurements at the Network for the Detection of Atmospheric Composition
Change (NDACC) station at Lauder, New Zealand invaluable. Investigating these datasets in detail
is essential to derive realistic ozone trends. We compared lidar data and microwave radiometer
data with collocated Aura Microwave Limb sounder (MLS) satellite data and ERA5 reanalysis data.
The detailed comparison makes it possible to assess inhomogeneities in the data. We find good
agreement between the datasets but also some possible biases, especially in the ERA5 data. The
data uncertainties and the inhomogeneities were then considered when deriving trends. Using two
regression models from the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS)
project and from the Karlsruhe Institute of Technology (KIT), we estimated resulting ozone trends.
Further, we assessed how trends are affected by data uncertainties and inhomogeneities. We find
positive ozone trends throughout the stratosphere between 0% and 5% per decade and show that
considering data uncertainties and inhomogeneities in the regression affects the resulting trends.

Keywords: stratospheric ozone; trends; ozone profiles; microwave radiometry; lidars

1. Introduction

Stratospheric ozone protects life on earth from harmful solar UV radiation and is
involved in multiple radiative, chemical, and dynamic processes (e.g., [1-7]). Changes in
stratospheric ozone have to be assessed continuously to verify how it reacts to the decline
of ozone-depleting substances (ODSs) and to a changing climate. Anthropogenic ODS
emissions caused a strong decrease in stratospheric ozone observed from the 1960s. The
Montreal Protocol (1987) succeeded in reducing ODS emissions. Consequently, concentra-
tions of stratospheric chlorine have been decreasing since 1997 [8]. Recent studies report
that stratospheric ozone over Antarctica is responding to these changes and starting to
recover [9-15]. Outside of the polar regions, however, differences in magnitude and uncer-
tainty of ozone trends are reported [16-18]. Even though consensus exists that stratospheric
ozone has stopped declining in the late 1990s [7,19-24], a general increase in stratospheric
ozone has proved difficult to detect, and positive ozone trends at midlatitudes have recently
been recorded only in the upper stratosphere (e.g., [7,17,18]).

Stable long-term measurements of stratospheric ozone are indispensable to assess-
ing changes in stratospheric ozone. Ground-based measurements are crucial not only
to validate satellite data but also because they provide stable measurements with few
instrumental changes over many decades. In the southern hemisphere (SH) midlatitudes,
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continuous stratospheric ozone measurements are rare. Ozone observations at Lauder,
New Zealand are therefore invaluable to derive stratospheric ozone trends at southern
midlatitudes. The Lauder ozone measurements are part of the Network for the Detection
of Atmospheric Composition Change [25] and have provided stable, continuous mea-
surements since the early 1980s. Recently, Lauder stratospheric ozone data have been
used in several trend studies and reports, such as Steinbrecht et al’s [17] study and the
comprehensive report on Long-term Ozone Trends and Uncertainties in the Stratosphere
(LOTUS) [18]. However, the collocated time series of various ground-based instruments at
Lauder have not been compared in detail. Investigating the time series in detail is required
to assess their suitability for trend estimations.

The aim of the present study is to investigate ozone time series at Lauder and to verify
whether they are suitable for trend estimation. For this purpose, we compare coincident
measurements of microwave radiometer, lidar, ERA5 reanalysis data, and satellite data
from the Aura Microwave Limb Sounder (Aura MLS) at Lauder to identify possible inho-
mogeneities. If one dataset deviates from the others, it might be the result of measurement
biases, which are then considered in the trend estimation. Further, we compare two trend
analysis methods, the LOTUS regression [18] and the KIT model developed at the Karlsruhe
Institute of Technology (KIT) [26]. Both models are based on multiple linear regression,
using slightly different regression parameters. Further, they handle data uncertainties in a
different way: The KIT model considers data uncertainties, whereas these have not been
considered in the LOTUS model for ground-based data so far [18]. Finally, we assess how
inhomogeneities in the time series and data uncertainties affect the trend estimates.

2. Ozone Datasets

We use stratospheric ozone data (1997 to 2019) from a microwave radiometer (MWR)
and a lidar, both located at Lauder, New Zealand (45°S, 169.7°E, 370 m above sea level
(a.s.1.)). Both instruments are part of NDACC, and the data are archived on the NDACC
website [25]. In addition, we use ozone profiles from the MLS on the Aura satellite [27] and
ERADJ reanalysis data [28]. We limit our analyses to altitudes from 14 to 50 km and refer for
convenience to the lower stratosphere (14 to 20 km), the middle stratosphere (20 to 30 km),
the upper-middle stratosphere (30 to 39 km), and the upper stratosphere (39 to 50 km).

2.1. Microwave Radiometer

The Microwave Ozone Profiling Instrument (MOPI) is an MWR that measured strato-
spheric ozone at Lauder from 1992 to 2016. It measures ozone emission of ozone molecules
due to rotational transitions at 110.836 GHz at a 20-minute resolution. The measured
spectra are then used to retrieve ozone volume mixing ratio (VMR) profiles from 20 to
68 km, with a vertical resolution of around 7 to 8 km at 10 hPa [29]. Measurements are
performed in clear-sky and some overcast conditions and are averaged to obtain up to
two daytime and two nighttime retrievals per day [29]. We use the most recently retrieved
MWR data (version 6) that are available on NDACC [25] (last access: 1 April 2020) and
at https://doi.org/10.21336/ gen.bpqv-7z42 [30]. The MOPI instrument and data have
been described by Nedoluha et al. [29], and basic technical details about the measurements
and the instrument are given in Parrish et al.’s [31] and Parrish’s [32] studies. The data
have been validated by Boyd et al. [33], showing a general agreement within 5% with Aura
MLS data.

2.2. Lidar

The stratospheric ozone lidar at Lauder is a differential absorption lidar (DIAL)
that has been measuring since November 1994. It emits laser pulses at wavelengths
of 308 and 353nm, of which the first is strongly absorbed by ozone molecules. The
ratio of the backscattered signal at both wavelengths and the signal travel time provides
information about the vertical ozone distribution. The system has been described in
Swart et al. [34]. Very good agreement with ozonesonde and satellite data has been shown
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by Keckhut et al. [35]. Further, the lidar data have been validated within multiple NDACC
intercomparison studies (e.g., [36-38]). We use the lidar data available on NDACC (2020)
(processing version 8.3, last access: 31 March 2020) and at https://doi.org/10.21336/ gen.
0x48-sm13 [39]. The lidar retrieves ozone during clear sky nights, with an average of
five profiles per month within our study period. The sparse sampling might result in
the distortion of monthly means. For trend estimation, we therefore applied a seasonal
fitting on daily lidar means. We then show trend estimates of both monthly lidar time
series. We use the term “lidar fit” when referring to the lidar data with seasonal fit, whereas
“full lidar” refers to regular monthly lidar means. For the seasonal fit, a seasonal model is
fit to the 15th of each month at each altitude level using a specific window length, following
Wilhelm et al.’s [40] method as described in Bernet et al. [41]. Instead of their proposed
window length of 2 years, we used a length of 1.5 years. We judged this to be sufficient for
the lidar data, which is generally well distributed within a month. Monthly means were
excluded wherever less than 50 measurements were available in the window.

Lidar ozone profiles were initially given in number density and converted with
coincident ERA5 pressure and temperature profiles to VMR. We limited the lidar data to
altitudes from 14.2 to 38.6 km, where the averaged measurement uncertainty within our
study period remains below 5%. To compare the vertically highly resolved lidar profiles
with less resolved MWR profiles, the lidar data were convolved with the MWR averaging
kernels according to Connor et al. [42]. To do this, the rows of the averaging kernels were
interpolated to the highly resolved lidar grid and scaled to conserve the measurement
response [43].

2.3. Aura MLS

The Microwave Limb Sounder (MLS) on board the Aura satellite has been providing
profiles of stratospheric ozone since August 2004 [44]. It retrieves ozone from radiance
measurements at 240 GHz. The ozone data have been validated by Froidevaux et al. [45].
We use Aura MLS data version 4.2. [27], which is described in detail by Livesey et al. [46].
The satellite crosses Lauder twice a day at a spatial coincidence of £1° latitude and
£8° longitude.

2.4. ERA5

ERADS is the atmospheric reanalysis from the European Centre for Medium Range
Weather Forecasts (ECMWEF) [47]. We derived six hourly ozone VMR profiles on model
levels from ERA5-complete ozone mass mixing ratio profiles provided by Copernicus
Climate Change Service (C3S) [28]. The reanalysis model assimilates various ozone satellite
measurements to derive ozone profiles, as described by Hersbach et al. [47]. When com-
paring ERAS profiles with MWR profiles, the ERAS profiles were convolved with MWR
averaging kernels as described above.

3. Time Series Comparison

Deseasonalized anomalies of MWR, lidar, and ERA5 data show that stratospheric
ozone at Lauder varies naturally within around 10% in the middle and upper stratosphere
(Figure 1a—). The anomalies are defined as the difference between a monthly mean and the
overall mean value of each month, illustrating the interannual variability of the data. Occa-
sionally, larger anomalies are observed, especially in the lower stratosphere (Figure 1d). All
datasets agree on specific natural anomalies. This includes, for example, increased ozone
between 30 and 40 km from 2009 to 2013, as also reported by Nedoluha et al. [29], an ozone
minimum in November 1997 [48], and an ozone minimum in 2007 between 20 and 30 km.
Aura MLS and ERAS5 agree closely, which is expected because Aura MLS data is assimilated
in ERA5. However, we also observe some differences between the datasets. For example,
ERADS deviates from MWR in the middle stratosphere from 2011 to 2014, and the ERA5
deviates from the lidar after 2015 in the lower and middle stratosphere.
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Figure 1. Relative anomalies of monthly ozone volume mixing ratio (VMR) at Lauder, New Zealand,
for microwave radiometer (MWR), lidar, ERA5 reanalysis, and Aura MLS data. The relative anomalies
(dots) show for each month the deviation from the monthly mean climatology (1997 to 2019). The
bold lines show data smoothed with a moving window of three months. Relative anomalies are
averaged over four altitude ranges, representing approximately (a) the upper stratosphere, (b) the
upper-middle stratosphere, (c) the middle stratosphere, and (d) the lower stratosphere.

To better evaluate such differences, we compared monthly means of MWR and lidar
profiles with coincident ERA5 profiles with a time coincidence of +3 h. In addition,
we compared monthly means of the two ground-based instruments (MWR and lidar),
with a time coincidence of £6 h. These relative differences are shown in Figure 2. The
MWR and lidar data mostly agree well, with slightly more MWR ozone in the middle
stratosphere and more ozone observed by the lidar in the upper-middle stratosphere to
upper stratosphere (Figure 2a). However, ERA5 strongly underestimates ozone in the
upper stratosphere compared to MWR (Figure 2b). Further, ERAS reports slightly larger
ozone values than MWR in the upper-middle stratosphere, except from 2009 to 2014. The
same pattern is also observed when comparing ERA5 with lidar data (Figure 2c): ERA5
underestimates ozone in the upper stratosphere and overestimates ozone in the upper-
middle stratosphere. For lidar data, we further observe that the difference compared to
ERADS increases after the data gap in 2014 in the lower stratosphere. This might be due to
potential lidar changes after the data gap or due to increased ERA5 anomalies after 2015,
which are also reported by Hersbach et al. [47]. We therefore consider this change for both
lidar and ERA5 data when determining trends with the KIT trend model (see Section 4.1.2).
Changes in lower stratospheric lidar data in 2018 might be related to the addition of two
low-altitude channels in the lidar retrieval in October 2018. Further, a change in lidar is
observed compared to ERA5 in 2004, with better agreement in the middle stratosphere
after 2004. This change is not observed in the comparison between lidar and MWR data
(Figure 2a), which suggests that it is due to a change in ERA5 data. This confirms ERA5
anomalies observed by Hersbach et al. [47], who attribute the change to the assimilation of
Aura MLS measurements in ERA5 ozone data from that time. We later account also for this
change when determining ERAS5 trends, as described in Section 4.1.2.
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Figure 2. Relative ozone differences between (a) MWR (M) and lidar (L) data, (b) MWR and ERA5
(E) data, and (c) lidar and ERAS data. Lidar and ERAS profiles in (a,b) have been convolved with
MWR averaging kernels.

4. Trend Estimations
4.1. Trend Models

We use two multiple linear regression models and compare the trend estimates
using both methods. The first model is the LOTUS regression model (available at
https://arg.usask.ca/docs/LOTUS_regression/), which was developed within the LO-
TUS activity on stratospheric ozone trends and uncertainties and is described in detail
in SPARC/IO3C/GAW [18]. The second model is a multiple linear trend model devel-
oped at the Karlsruhe Institute of Technology (KIT), described by von Clarmann et al. [26].
Both models fit monthly ozone data with a multiple linear regression function by min-
imizing a cost function. They account for autocorrelation between residuals within an
iterative process and use the following predictors: the Quasi biannual oscillation (QBO),
the El Nifio Southern Oscillation (ENSO), solar activity as well as four periodic oscil-
lations to account for seasonality [18,49]. The KIT model uses normalized Singapore
winds at 30 and 50 hPa for QBO (available at https://www.geo.fu-berlin.de/met/ag/
strat/produkte/gbo/singapore.dat); the multivariate ENSO Index (MEI, available at
https://psl.noaa.gov/enso/mei/data/meiv2.data); and solar flux data measured at a
wavelength of 10.7 cm [50]. The LOTUS model uses two orthogonal components of the
QBO derived with a principal component analysis from Singapore wind data (from
https:/ /www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/qbo.dat); the same MEI data
as the KIT model; and solar flux data from https://omniweb.gsfc.nasa.gov/form/dx1
.html. The LOTUS model further uses two additional predictors: tropopause pressure
(from ftp:/ /ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived /tropopause/ pres.tropp.
mon.mean.nc) and aerosol optical depth (AOD). The AOD data is used from the God-
dard Institute for Space Studies (https://data.giss.nasa.gov/modelforce/strataer/) and
extended after 2012 by extrapolating the last value [18]. The AOD, however, should be
negligible because no significant volcanic erruption occurred in our study period. For
the LOTUS regression, we use a piecewise linear term (PWLT) as predictor, with a linear
increase starting in 1997 [18].
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We determine linear trends by fitting the regression functions to monthly ozone
data. We start the trend estimates in 1997, when a turnaround due to decreasing ODSs is
expected [8]. MWR data is not available after 2016, so we limit the trend estimates to that
year to compare trends in all datasets over the same period. Trends are considered to be
significantly different from zero at 95% confidence intervals when they exceed twice their
standard deviation.

4.1.1. Weighted Regression

The KIT model uses the uncertainties of the monthly means to weight the regres-
sion [26,49]. The weighting is performed by using a full error covariance matrix in the cost
function, where the diagonal elements represent the monthly uncertainties. This improves
the regression fit and results in more realistic trend uncertainties. The feature of weighted
regression is also available in the LOTUS model but has not been used for final trend results
in SPARC/IO3C/GAW [18] due to the difficulty of correcting for unknown variances in
the data (heteroscedasticity correction). This is mainly problematic when using merged
datasets in which the sampling frequency and thus the monthly standard errors change
over time [18]. In our case, the sampling frequency is rather constant over time, and we
therefore apply the weighted LOTUS regression to the ozone time series to compare it with
the unweighted regression.

To weight the regression, the diagonal elements of the covariance matrix are set to the
monthly uncertainties of the data. We estimate monthly uncertainties for MWR data by

I ) 2
OMWR = \/ Orund + 0’52]/5 + 0% (1)

where 0;,,, is the random measurement error, 0sys is a systematic error, and 0% is the
standard error of the monthly mean, given by

og=o0on 2, ()

Nl—=

where ¢ is the standard deviation of the monthly mean and n the number of measurements
per month. The lidar monthly uncertainties are given by

Olidar = \/ Us,Zys =+ ‘7%/ (3)

where 055 is the systematic measurement uncertainty from photon-counting statistics. For
the fitted lidar data, an additional error term resulting from the seasonal fit is included:

Tlidarfit = 1/ O%ys + 0% + U%it' 4)

For ERAS data, the standard error is small due to the high temporal resolution. To our
knowledge, no comprehensive ozone cross-comparisons have yet been published of the new
ERADS data that derive systematic uncertainties. We therefore add a systematic uncertainty
of 5% to the standard error of each ERA5 monthly mean. This corresponds approximately
to the averaged difference between ERA5 and MWR profiles in our study period.

4.1.2. Bias Correction

An additional feature of the KIT model is the possibility of accounting for biases within
the trend estimation. This is helpful if the data shows some jumps or inhomogeneities,
for example after instrumental changes. We therefore apply this approach to account for the
jumps that we identified in the lidar and ERA5 data (Section 3) when estimating trends. For
this purpose, a fully correlated block is added to the error covariance matrix in the weighted
regression. The block, corresponding to the biased subset, is filled with the square of the
estimated bias uncertainty. This enables a fit of the bias and is mathematically equivalent
to adding the bias as an independent fit variable [51]. The bias can thus be estimated from
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the data itself and does not depend on an a priori choice of bias [52]. The bias uncertainty
chosen determines how much freedom the programme has when estimating the bias from
the data. Following Bernet et al.’s [49] suggestion, we use an altitude-independent bias
uncertainty of 5 ppm. They assessed this value to be appropriate for fitting the bias from
the data independently of the a priori zero bias.

In the present study, we apply this bias correction to lidar and ERA5 data, for which
we identified inhomogeneities as described in Section 3. To this end, we identified change
points in the data based on the inspection of Figure 2. We considered a change point in
the lidar data after the instrumental break in 2014, when we identified anomalies in the
lower stratosphere compared to previous data. For ERA5, we consider change points in
2004 and in 2015 that have been identified by Hersbach et al. [47] and confirmed in our
comparison with the lidar data (see Section 3). The data block after the change point is then
assumed to be biased compared to the previous data, and a bias is fitted from the data in
the subsequent block. The programme estimates a bias for the biased block at each altitude,
leading to the bias profiles shown in Figure 3. Note that to obtain the corrected time series,
these bias profiles have to be subtracted from the original time series in the biased subsets.

Fitted bias profiles

50 4
—— Lidar fit > 2014
— Lidar full > 2014
ERAS <2004
40 —— ERA5>2014
£
Q
el
2 -
~—
<
20 -
T T T T T T T 1

-04 -03 -02 -0.1 0.0 0.1 0.2 0.3 0.4
Fitted bias (ppm)

Figure 3. Bias profiles as estimated by the KIT regression for lidar and ERA5 data. The lidar
bias compares to data before 2014, whereas the data block from 2004 to 2015 is the reference for
ERADS biases.

4.1.3. Artificial Test Case

To illustrate weighted regression, we present an artificial test case in Figure 4. The
corresponding estimated trends for four different scenarios using the KIT and the LOTUS
model are given in Table 1. The artificial time series has a trend of 0.1 ppm per decade.
We added anomalies to the summer months of 2012, 2014, and 2015. Such anomalies
could represent for example months with few measurements and larger uncertainties. The
trend of this biased time series is then overestimated (case B), with a trend estimate of
0.13 ppm (KIT) or 0.14 ppm (LOTUS) per decade instead of the true trend of 0.1 ppm per
decade (Table 1). We therefore adapted the uncertainties for these months to weight the
regression, as shown in Figure 4b. Considering the adapted uncertainties in the covariance
matrix changes the trend fit for both models (case C), which is then closer to the true trend
(Table 1). The weighted LOTUS trend (case C) is slightly overcorrected, suggesting that
further investigations might be necessary to use the LOTUS weighting with confidence.
When the bias fit in the KIT model is applied (case D), the trend corresponds to the true
trend, which has also been demonstrated by Bernet et al. [49].

Further, we found that the weighting is less effective if a data jump with a subsequent
biased block is added to the artificial time series (not shown). In such a case, the KIT bias
fitting corrects the trend estimate, as shown by Bernet et al. [41]. The simple weighting,
however, is not sufficient to correct for such a jump. Moreover, we found that the LOTUS
model would require additional adjustments to estimate trends with a data jump, including
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for example a heteroscedasticity correction to account for the varying residuals, as described
by Damadeo et al. [53] and SPARC/IO3C/GAW [18]. Further investigations would be
necessary to derive solid conclusions about such corrections in the LOTUS model.

We conclude that using weighted regression changes trend fits in both regression
models. Depending upon the model being used, the trend may differ by 0.06 ppm per
decade in this case.

Table 1. Trends for the artificial time series with different corrections as shown in Figure 4, using the
KIT and the LOTUS trend model.

Case Characteristics KIT Trends LOTUS Trends
(ppm decade™1) (ppm decade™ 1)
(A) True 0.10 £0.07 0.10 £0.00
(B) Biased 0.13£0.07 0.14 £0.03
©) Biased and weighted 0.11 +0.07 0.08 +0.03
(D) Bias-corrected 0.10£0.12 -
Weighted trends with artificial time series
() f
Ao
~ 84
=
a
>
S Tt e T o U AN oo
6 -
~ b ]
e 7 !
£ 050 | P
5 noohl —— (A) True
5 025 WAV - - s
M 0.25 1

T T T T === (C) Biased weighted

KRS R RS R PN

Figure 4. (a) Artificial time series with a trend of 0.1 ppm per decade (case A) and with added anoma-
lies in 2012, 2014, and 2015 (case B). (b) Uncertainties used for the trend estimation, with increased
uncertainties in 2012, 2014, and 2015 when using the weighted trend. The straight lines shown in
the magnified rectangle in panel (a) show the estimated linear trends derived with the KIT model,
for the true time series (case A), for the time series with added anomalies but weighted with the
regular uncertainties (case B), and for the time series with added anomalies weighted with adapted
uncertainties (case C). In case D, a bias was fitted within the KIT model for the anomalous periods.

Case D agrees best with the true trend (case A).

4.2. Ozone Trend Estimates

Trend profiles have been estimated using the LOTUS regression (Figure 5) and the
KIT regression model (Figure 6). Both trend models report generally positive ozone trends
between 0% and 5% per decade in the middle and upper stratosphere. Only ERA5 shows a
negative trend peak at 30 km. This seems to be an artefact that is probably related to the start
of Aura MLS assimilation in 2004, leading to a jump in ERA5 data as shown in Figure 2c.
MWR trends are almost zero between 25 and 30 km, and peak in the upper stratosphere.
Lidar trends vary between 0% and 3% per decade in the middle stratosphere. They are
negative (lidar full) or close to zero (lidar fit) at 20 km and increase strongly in the lower
stratosphere. Differences between the full lidar trends (lidar full) and trends using lidar data
with the seasonal fit (lidar fit) are small in the middle stratosphere. In the lower stratosphere,
however, the lidar trend with seasonal fit (lidar fit) is unrealistic high, indicating that the
seasonal fit may not be able to handle the large variability at these altitudes.
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Figure 5. Ozone trends at Lauder from January 1997 to December 2016 for MWR, full lidar data
(lidar full), ERAS5 data, and lidar data where a seasonal fit was applied (lidar fit). The trends
have been estimated using the LOTUS regression model. Panel (a) shows the unweighted trend
estimates, whereas monthly means have been weighted by their uncertainties in the regression fit in
(b). Shaded areas represent 2-standard-deviation (¢) uncertainties, and bold lines mark trends that
are significantly different from zero at 95% confidence intervals (|trend| > 20).

Lauder trends KIT (1997-2016)
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Figure 6. Ozone trends estimated with the KIT regression model for MWR, full lidar, ERA5, and sea-
sonal lidar data (1997 to 2016). Trends are weighted but uncorrected with respect to biases in panel (a).
Panel (b) shows weighted bias corrected trends for lidar and ERA5. Uncorrected MWR trends are
also shown in (b) (pale color) for comparison.

When using weighted LOTUS regression (Figure 5b), MWR and fitted lidar trends
are consistent in the middle stratosphere. They agree better than the unweighted trends
(Figure 5a), suggesting that the weighting improves the lidar trend estimate. Further,
the negative lidar trend peak when using full lidar data at 20 km is not visible in the
weighted trend estimate. The weighted trends for full lidar data are noisier throughout the
stratosphere than the fitted lidar data. This might be due to the larger variability of the full
lidar monthly means and uncertainties compared to the fitted lidar data. The seasonality
of the uncertainties might also affect the weighted trends. In the lower stratosphere,
the weighted lidar trends are high at the lowest altitude levels. These trends are probably
overestimated when expressed in percent due to the small amount of ozone volume
mixing ratio in the lower stratosphere. A small trend difference at these altitudes may be
overweighted when expressed in percent, whereas the same trend difference would be less
visible in the middle stratosphere where the ozone volume mixing ratio is larger. This effect
may be further amplified by the large uncertainties that we use at these altitudes due to
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increased measurement uncertainties and the large ozone variability. Finally, weighted
ERA5 and MWR LOTUS trends do not differ much from the unweighted LOTUS trends.

The KIT trend profiles (Figure 6a) are similar to the LOTUS trends (Figure 5). However,
small differences in the middle stratospheric lidar trends exist, which might be related to
different model setups including differences in predictors. Further, the KIT full lidar trend
profile is less variable than the weighted LOTUS profile which suggests differences in the
weighting procedures for uncertainties which are more variable in time.

To account for inhomogeneities in the time series, the lidar and ERA5 trend profiles
were corrected for observed anomalies as described in Section 4.1.2. The bias-corrected lidar
and ERAS trend profiles are shown in Figure 6b. The corrected lidar profiles differ from
the uncorrected trend profiles (Figure 6a) mainly in the lower stratosphere, with a better
agreement to the MWR profile between approximately 20 and 25 km. This corresponds
to the altitudes where the bias was observed (Figure 2c), suggesting that the bias was
successfully considered in the corrected trend estimate. Below 20km, the lidar trends
are unrealistic high, which may be related to natural variability, the large instrumental
uncertainties used at these altitudes, and a possible overweighting when expressing trends
in percent, as described above. In the corrected ERA5 trend profile, the negative ERA5
trends at 30 km and in the lower stratosphere are reduced, and the corrected ERA5 profile
agrees more closely with the MWR and lidar trend profiles.

5. Discussion of Results

We have shown that the Lauder ozone datasets agree remarkably well on ozone
anomalies from 1997 to 2019. Further, the two ground-based ozone datasets at Lauder
agree well, with differences mostly below 10%. The good agreement proves the quality
of both ground-based datasets. Differences from ERA5 are larger, especially in the upper
stratosphere, where ERAS5 strongly underestimates ozone compared to MWR and lidar data.
By comparing the various Lauder datasets, we identified data-specific inhomogeneities,
especially in ERA5 data. Such data inhomogeneities in the time series may impact trend
estimates and their uncertainties. We observe inhomogeneities in ERA5 data in 2004 and
2015. For the lidar, we observe small changes in the data after pausing measurements
in 2014. Whereas the lidar and MWR can be considered suitable for trend estimations,
the ERA5 data requires corrections for biases when estimating trends. Indeed, trends from
reanalysis data should generally be handled with care because of unconsidered changes
in observing systems of assimilated data (e.g., [54]). To improve the lidar trend, we also
considered the change observed after the instrumental break in 2014 by fitting a bias to the
anomalous period using the trend model from von Clarmann et al. [26].

We have presented two regression models and determined trends using unweighted,
weighted, and bias-corrected regression. Unweighted lidar and MWR trends agree well
in the middle stratosphere and differ in the lower stratosphere, whereas unweighted
ERADS trends disagree in the middle stratosphere, apparently as the result of biases in the
data. In most stratospheric ozone trend studies, data uncertainties are not considered when
estimating trends [18]. However, considering the uncertainties of the time series can improve
the trend estimates and their uncertainties. We therefore use weighted regression with the
KIT model and apply weighted regression within the LOTUS trend model to account
for the time dependence of data uncertainties. Logically, the weighted regression should
be more reliable than the unweighted regression, as also shown with our artificial time
series. However, the weighted LOTUS full lidar trends show larger variability with altitude,
suggesting that additional model adjustments might be required when weighting with
varying uncertainties. Further investigations might be necessary to derive sound conclusions
about the use of the LOTUS model with the option of weighted regression. For example,
a heteroscedasticity correction, as suggested by SPARC/IO3C/GAW [18] and presented by
Damadeo et al. [53], might improve the weighted trend estimates. Bias-corrected trends are
presented using the KIT regression. For this, we corrected lidar and ERA5 trends by fitting a
bias to anomalous periods. This bias correction affects the lidar trend estimate, which then
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agrees more closely with the MWR trend profile in the lower-middle stratosphere. Moreover,
the bias-corrected ERAS5 trend profile agrees more closely with the MWR and lidar trends
than the uncorrected profile. Our trend results generally show that weighted and corrected
trend estimates change the trend values and their uncertainties slightly. Nevertheless,
the changes generally lie within the trend uncertainties.

Our lidar and MWR trends in the middle and upper stratosphere agree on values
between 2% and 3% per decade. Further, all our datasets report positive stratospheric ozone
trends, with the exception of a negative trend peak reported by the uncorrected ERA5 trend
profile at around 30 km and a negative trend when using full lidar data at 20 km. However,
this negative lidar trend is not visible in the weighted LOTUS and bias-corrected KIT trend,
suggesting that it is caused by data inhomogeneities. Depending on the regression model
used, trends are significantly positive in the middle and the upper stratosphere. Our trends
in the middle and upper stratosphere are consistent with other studies. In the upper
stratosphere, significant positive trends were reported at Lauder from Fourier transform
infrared (FTIR) observations (2001 to 2012, Vigouroux et al. [55]). Similar trends were also
reported from combined ground- and space-based data at Lauder by Nair et al. [56] (1997 to
2012) and from various Lauder instruments presented in SPARC/IO3C/GAW [18]. In the
lower stratosphere, negative to near-zero trends are reported by SPARC/IO3C/GAW [18]
for SH midlatitudes using a range of satellite records. Further, ozonesonde and FTIR
observations at Lauder [18] indicate negative lower-stratospheric trends, which are also
reported by Zerefos et al. [57] based on Solar Backscattered Ultraviolet (SBUV) satellite data
(1998 to 2015). These results are consistent with our negative to near-zero ERA5 trend in the
lower stratosphere and the unweighted full lidar trend, but they disagree with our corrected
lidar trends. These conflicting results might be due to unconsidered inhomogeneities in
lower-stratospheric lidar data, but they also indicate that the chosen uncertainties for
weighted trends may not be appropriate in the lower stratosphere where interannual
variability is high. To further clarify lower-stratospheric lidar trends, one could investigate
absolute trends from ozone number densities instead of volume mixing ratios and use
additional data from ozonesondes. Generally, additional analyses are required to derive
lower-stratospheric ozone trends with confidence. Indeed, whether lower-stratospheric
ozone concentrations increase or continue to decrease is an ongoing discussion [58-61].

Our study concentrates on lidar and MWR datasets with high spatial or temporal
resolutions in the middle stratosphere and on ERAS reanalysis data at Lauder. Other ozone
measurements at Lauder from ozonesondes, FTIR, and Umkehr are available but provide
data with limited altitude range (ozonesonde) or with smaller vertical resolution (Umkehr
and FTIR). Nevertheless, comparing lidar and MWR data with these datasets might be
useful to further identify possible data inhomogeneities. The same is true for additional
comparision with merged satellite datasets. In future studies, the use of corrected trend
estimates could be further improved by automatizing the detection of inhomogeneities.
This could be achieved, for example, by defining thresholds of differences when comparing
multiple datasets [49] or by constructing an ozone composite using a comprehensive
Bayesian approach as presented by Ball et al. [62].

6. Conclusions

We presented stratospheric ozone time series from a microwave radiometer (MWR),
a lidar, Aura MLS satellite data, and ERA5 reanalysis data from Lauder, New Zealand.
We investigated and compared the time series to verify whether they can be used for trend
estimation. We then presented ozone trend estimates using two regression models with
weighted and unweighted regression.

The lidar and MWR data at Lauder agree well and were judged to be suitable for trend
estimation. Nevertheless, accounting for small instrumental changes in the lidar data might
improve the trend estimates. In contrast, the ERA5 data show some biases and have to be
corrected when estimating trends. The LOTUS and the KIT regression methods have both
been tested to obtain best estimates of the true ozone trend. Considering data uncertainties



Remote Sens. 2021, 13, 109 12 of 15

by using weighted regression changes trend estimates, but further investigations might
be required for the use of the weighted LOTUS regression model. We identified data
inhomogeneities and recommend considering them in the trend estimation to obtain
optimal trend estimates. The ozone data at Lauder report positive ozone trends throughout
the middle and upper stratosphere between 0% and 5%, which confirms ozone recovery at
these altitudes. In the lower stratosphere, trends differ when uncertainties are included
in the weighted regression, suggesting that further analyses are required to derive robust
corrected trends in the lower stratosphere.

In summary, our study compares ozone datasets at the Lauder site and shows that they
are generally suitable for trend estimation. The agreement of observed ozone anomalies
from the four datasets is remarkable and indicates that lidar, MWR, Aura MLS, and ERA5
data at Lauder are highly reliable. However, we also show that some inhomogeneities in
the data influence the trend estimates and that differences in how data uncertainties are
treated will affect the calculated trend. The results of our study are useful for other ozone
trend studies that aim to understand differences in stratospheric ozone trend estimates.
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