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Abstract: Convolutional neural network (CNN) based methods have dominated the field of aerial
scene classification for the past few years. While achieving remarkable success, CNN-based methods
suffer from excessive parameters and notoriously rely on large amounts of training data. In this work,
we introduce few-shot learning to the aerial scene classification problem. Few-shot learning aims
to learn a model on base-set that can quickly adapt to unseen categories in novel-set, using only a
few labeled samples. To this end, we proposed a meta-learning method for few-shot classification of
aerial scene images. First, we train a feature extractor on all base categories to learn a representation
of inputs. Then in the meta-training stage, the classifier is optimized in the metric space by cosine
distance with a learnable scale parameter. At last, in the meta-testing stage, the query sample
in the unseen category is predicted by the adapted classifier given a few support samples. We
conduct extensive experiments on two challenging datasets: NWPU-RESISC45 and RSD46-WHU.
The experimental results show that our method yields state-of-the-art performance. Furthermore,
several ablation experiments are conducted to investigate the effects of dataset scale, the impact of
different metrics and the number of support shots; the experiment results confirm that our model is
specifically effective in few-shot settings.

Keywords: aerial scene classification; remote-sensing image classification; few-shot learning;
meta-learning

1. Introduction

Aerial images, taken from the air and space, provide sufficient detail about the earth’s
surface, such as its landforms, vegetation, landscapes, buildings, and other various re-
sources. Such abundant information is a significant data source for earth observation [1],
which opens the door to a broad range of essential applications spanning urban plan-
ning [2], land-use and land-cover (LULC) determination [3,4], mapping [5], environmental
monitoring [6] and climate modeling. As a fundamental problem in the remote sensing
community, aerial scene classification is crucial for these research fields. Xia et al. [7]
defined the aerial scene classification as automatically assigning a specific semantic label to
each image according to its content.

Over the past few decades, aerial scene classification enjoys much attention from
researchers, and many methods have been proposed. According to the the literature [7], the
existing approaches to aerial scene classification have mostly fallen into three categories—
methods adopting low-level feature descriptors [8–11], methods using middle-level visual
representations [12–15] and methods relying on deep learning networks [7,16–19].
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Methods adopting low-level feature descriptors. Most early researches [8–10] on
aerial image classification fall into this category. These methods use hand-crafted, low-
level visual features such as color, spectrum, texture, structure, or their combination to
distinguish aerial scene images. Among the hand-crafted features, the most representa-
tive feature descriptors include color histograms [8], texture features [9], and SIFT [10].
While this type of method performs well in certain aerial scenes with uniform structures
and spatial arrangements, it has limited performance for aerial images containing complex
semantic information.

Methods using middle-level visual representations. In order to overwhelm the in-
sufficiency of low-level methods, many middle-level methods have been explored for aerial
scene classification. Such methods mainly aim at combining the local visual attributes
extracted by low-level feature methods into high-order statistical patterns to build a holistic
scene representation for aerial scenes. Bag of Visual Words (BOVW) [12] and many of its
variants have been widely used. Besides the BOVW model, typical middle-level methods
include, but not limited to, Spatial Pyramid Matching (SPM) [13], Vector of Locally Aggre-
gated Descriptors (VLAD [14], Locality-constrained Linear Coding (LLC) [20], Probabilistic
Latent Semantic Analysis (pLSA) [15] and Latent Dirichlet Allocation (LDA) [21]. Com-
pared with low-level methods, the scene classification methods using middle-level visual
representations have obtained higher accuracy. However, middle-level methods will only
go so far; they require hand design features and lack adaptability; their generalization is
poor for complex scenes or massive data.

Methods relying on deep learning. Fortunately, with the emergence of deep learning,
especially convolutional neural networks [22,23], image classification approaches have seen
great success in both accuracy and efficiency, also in remote sensing fields. The methods
relying on deep neural networks automatically learn global features from the input data
and cast the aerial scene classification task as an end-to-end problem. More recently, while
the deep CNNs methods have become the new state-of-the-art solutions [16,18,24,25] for
the aerial scene classification area, yet, there are clear limitations. Specifically, the most
notorious drawback of deep learning methods is that they typically require vast quantities
of labeled data and suffer from poor sample efficiency, which excludes many applications
where data is intrinsically rare or expensive [26]. In contrast, humans possess a remarkable
ability to learn new abstract concepts from only a few examples and quickly generalize to
new circumstances. For instance, Marcus, G.F. [27] pointed out that even a 7-month-old
baby can learn abstract language-like rules from a handful of unlabeled examples, in just
two minutes.

Why do we need few-shot learning? In a world with unlimited data and computa-
tional resources, we might hardly need any other technique rather than deep learning.
However, we live in a real-world where data are never infinite, especially in the remote
sensing community, due to the high cost of collecting. Still, almost all existing aerial scene
datasets have several notable limitations.

On the one hand, the classification accuracy is saturated; to be more specific, the
state-of-the-art methods can achieve nearly 100% accuracy on the most popular UC Merced
dataset [12] and the WHU-RS19 [28] dataset. Yet, we argue, such a limited number of
categories in the two datasets are critically insufficient for the real world. On the other
hand, the scale of the scene categories and the image number per class are limited, and
the images lack scene variation and diversity. An intuitive way to tackle this issue is to
construct a large-scale dataset for aerial scene classification, and several more challenging
datasets, including the AID dataset [7], the PatternNet dataset [29], the NWPU-RESISC45
dataset [18], and the RSD46-WHU dataset [30,31], have been proposed. See Table A1
(Appendix A) for a detailed description of these common datasets.

Although the aerial scene datasets increase in scale, most of them are still considered
small from the perspective of deep learning. For similar situations in the machine learning
community, few-shot learning [32] offers an alternative way to address the data-hungry
issue from a different standpoint. Instead of expanding the dataset scale, few-shot learning
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aims to learn a model that can quickly generalize to new tasks from very few labeled
examples. Arguably, few-shot learning is a human-like way of learning. It assumes a more
realistic situation where not rely on thousands or millions of supervised training data.
Namely, few-shot learning can help to relieve the burden of collecting data, especially in
some specific domains in which collecting labeled examples is usually time-consuming
and laborious, such as aerial scene field or drug discovery. Figure 1 demonstrates a specific
1-shot scenario that it is possible to learn much information about a new category from just
one image.

island lake parking lot tennis courtstadium
Support samples

? ?
Query samples

Figure 1. Illustration of using few-shot learning to learn information from just one labeled image.

By seeing the potential that few-shot learning can alleviate the data-gathering effort,
improve computing efficiency, and bridge the gap between Artificial Intelligence and
human-like learning, we introduce the few-shot paradigm to the aerial scene classification
problem. The goal of this work is to classify aerial scene images with only 1 or 5 labeled
samples. More specifically, we adopt a meta-learning framework to address this problem.
To the best of our knowledge, only a few efforts have focused on the few-shot classification
problem in the aerial/remote scene regime. A deep few-shot learning method is proposed
in work [26] to tackle the small sample size problem of hyperspectral image classification.
The very recent work [33] developed a few-shot learning method based on Prototypical
networks [32] for the classification of RS scene. By far, we are the first to provide a testbed
for few-shot classification of aerial scene images. We re-implement several state-of-the-art
few-shot learning approaches (i.e., Prototypical Networks [32], MAML [34] and Relation
Network [35]) with a deeper backbone Resnet-12 for a fair comparison. In addition, we
re-implement a typical machine learning classification method D-CNN [16], to evaluate its
performance in the few-shot scenario.

The main contributions of this article are summarized as follows.

1. This is the first work to provide a unified testbed for fair comparison with several state-
of-the-art few-shot learning approaches in the aerial scene field. Our experimental
evaluation reveals that it is possible to learn much information for a new category from
just a few labeled images, which is a great potential for the remote sensing community.

2. The proposed method including a feature extraction module and a meta-learning
module. First, ResNet-12 is used as a backbone to learn a representation fθ of input on
base set. Then, in the meta-training stage, we optimize the classifier by cosine distance
with a learnable scale parameter in the feature space, neither fix θ nor introduce any
additional parameters. Our method is simple yet effective, achieves state-of-the-art
performance on two challenging datasets: NWPU-RESISC45 and RSD46-WHU.

3. We conduct extensive experiments and build a mini dataset from the RSD46-WHU to
further investigate what factors aspect the performance, including the effect of dataset
scale, the impact of different metrics and number of support shots. The experiment
results demonstrate that our model is specifically effective in few-shot settings.

The remainder of this paper is organized as follows. In Section 2, we discuss the related
work on CNN-based methods of aerial scene classification and various state-of-the-art
few-shot classification approaches that developed recently. In Section 3, we introduce some
preliminary of the few-shot classification as it may be new to some readers. The proposed
meta-learning method is described in Section 4. We illustrate the datasets and discuss the
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experiment results in Section 5. Moreover, finally, Section 6 concludes the paper with a
summary and an outlook.

2. Related Work
2.1. CNN-Based Methods of Aerial Scene Classification

Aerial scene classification has been well studied for the last few decades owing to its
broad applications. Since the emergence of the AlexNet [22] in 2012, deep learning-based
methods have made an enormous breakthrough, much defeated the traditional methods
based on low-level and middle-level methods, and became mainstream in the aerial scene
classification task.

One strand study attempted to use a transfer learning method to fine-tune the pre-
trained CNNs for aerial image classification. In [17], Hu et al. studied how to transfer
the activations of CNNs pre-trained on the ImageNet dataset to high-resolution remote
sensing classification. Cheng et al. [18] obtained better performance by using fine-tuned
AlexNet [22], VGGNet-16 [23], and GoogleNet [36] on the dataset NWPU-RESISC45. Sim-
ilarly, Nogueira et al. [24] carried out three strategies, namely full training, fine-tuning,
and using CNNs as feature extractors, for exploiting six common CNNs in three remote
sensing datasets. Their experiment results demonstrate that fine-tuning is generally the
best strategy in different situations.

Some further studies utilize the pre-trained CNNs for feature extraction and combine
the high-level semantic features with hand-crafted features. Zhao and Du [37] proposed a
CNN framework to learn local spatial patterns from multi-scale. Wang et al. [38] presented
an encoded mixed-resolution representation framework where multilayer features are
extracted from various convolutional layers. The study by Lu et al. [39] introduced an
adaptive feature strategy that fuses the deep learning feature and the SIFT feature to
overwhelm the scale and rotation variability, which is essential in remote sensing images
but cannot be captured by CNN-based methods.

More recent research has begun to concern the problem of within-class diversity
and between-class similarity in aerial scene images. For example, to tackle this issue,
Cheng et al. [16] trained a discriminative CNN model by optimizing a novel objective
function. Beyond a traditional cross-entropy loss, a metric learning regularization term and
a weight decay term are added to the proposed objective function. Li et al. [25] constructed
a feature fusion network that combining the original feature and attention map feature;
besides that, they adopted center loss [40] to improve feature distinguishability.

2.2. Few-Shot Classification via Meta-Learning

Deep learning-based approaches have achieved remarkable success in various fields,
especially in areas where vast quantities of data can be collected and where substantial
computing resources are available. However, deep learning is often suffered from poor
sample efficiency. Recently, few-shot learning is proposed to tackle this problem and have
been marked by exceptional progress. Few-shot learning aims to learn new concepts from
only small amounts of samples and quickly adapt to unforeseen tasks, which can be viewed
as a special case of meta-learning. In the following, we introduce some representative
few-shot classification literature, gathering into two main streams: optimization-based
methods and metric-based methods.

Optimization-based methods. This line of work is most understood as learning to
learn, which tackles the few-shot classification problem by effectively optimizing model pa-
rameters to new tasks. Finn et al. proposed a model-agnostic algorithm named MAML [34],
which targets to learn a good initialization of any standard neural network. In such a way,
it means to prepare that network for fast adaptation to any novel task through only one
or a few gradient steps. The authors also presented a first-order approximation version
of MAML by ignoring second-order derivatives to speed-up the network computation.
Reptile [41] expands on the results from MAML by performing a Taylor series expansion
update and finding a point near all solution manifolds of the training tasks. Many vari-
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ants [42–44] of MAML follow a similar idea that, with a good initialization, one is just a
few gradient steps away from a solution to a new task. These approaches face a critical
challenge that the external optimization needs to solve as many parameters as internal
optimization. Besides, there is a key debate. That is, whether a single initial condition is
sufficient to provide fast adaption for a wide range of potential tasks. And further, whether
an initial condition is restricted to relatively narrow distributions.

Metric-based methods. Another family of approach aims to address few-shot classi-
fication by learning to compare. The key insight of the idea is to learn a feature extractor
that mapping raw input into a representation suitable for predicting, such that, when
represented in this feature space, the query and support samples are easy for comparison
(e.g., with Euclidean distance or cosine similarity). Matching Networks [45] mapping
the support set via an attention mechanism to a function and then classifying the query
sample by a weighted nearest-neighbor classifier in an embedding space. Prototypical
Networks [32] follows a similar idea that learns a metric-based prediction rule over embed-
dings. The prototype of each category is represented by the mean embedding of samples,
such that the classification can be performed by computing distances to the nearest cat-
egory mean. Besides a usual embedding module, Relation Network [35] introduces an
additional parameterized CNN-based ’relation module’ for learnable metric comparison.
TADAM [46] presents an inspiring ProtoNet-based architecture that incorporates several
useful modifications for few-shot learning, including metric scaling, task-conditioning,
auxiliary task co-training. Ref. [47] extends the Prototypical Networks to a semi-supervised
setting by adding unlabeled samples into each episode. Three strategies are explored to
refine the samples’ mean location of the corresponding category. MetaOptNet [48] sug-
gests that discriminatively trained linear classifiers (e.g., SVM or linear regression) may
offer better performance than nearest neighbor classifiers in few-shot regimes. The linear
classifiers can learn better class boundaries using negative examples at a modest increase
in computational costs. Simon et al. [49] observed that high-order information is preferred
over low-order to improve the classifier’s capability in the low data regime; hence one
hopes a subspace method can form a robust classifier. The authors develop a dynamic
classifier that computes a subspace of feature space for each category, and the features of
query samples are projected into the subspace for comparison.

While meta-learning approaches have seen great success in few-show classification,
some pre-trained methods have recently gained competitive performance [50,51]. Our work
is more related to the second line of work by finding a suitable distance metric and
taking the pre-trained method’s strength by learning good feature embeddings. A sum-
mary of the few-shot classification methods mentioned in this section is listed in Table A2
(Appendix A).

3. Preliminary

Before introducing our overall framework in detail, we first look at some preliminary
of the few-shot classification as it may be new to some readers.

In standard supervised classification, we are dealing with a dataset D = {Dtrain, Dtest}.
The training set takes labeled pairs as inputs, denoted as Dtrain = {(xi, yi)}N

i=1, yi ∈
{1, ..., Ctotal}, where N is the number of training samples, Ctotal is the number of cate-
gories in Dtrain. We are interested in learning a model ŷ = fθ(x), parameterized by θ on
Dtrain, to predict the label ŷ ∈ {1, . . . , Ctotal} for an unlabeled sample xk on the test set
Dtest = {(xk)}K

k=1.
In few-shot classification, we instead consider a meta-set D = {Dbase,Dval,Dnovel},

and Cbase, Cval, Cnovel are chosen to be mutually disjoint, where C represents the category.
The vision is to learn a modelM on Dbase that can quickly adapt to unseen categories in
Dnovel with only a few support samples, usually 1 or 5. Dval is held-out for choosing the
hyperparameters and select the best model.

Following the standard FSL protocol [45,52], a model is often evaluated on a set of
N-way K-shot classification tasks, denoted as DT = {Ti}, also known as episodes. To be
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specific, each episode has a split of support-set Si and query-set Qi. The support-set Si
contains N unique categories with K labeled samples in each, meaning that Si consists
of N × K samples for training. The query-set Qi holds the same N categories, each with
Q unlabeled samples being to classify. An episode is often constructed in the same way
in training and testing. In other words, if we are supposed to perform 5-way 1-shot
classification at test-time, then training episodes could be comprised of N = 5, K = 1. Figure 2
shows a visualization of 5-way 1-shot episodes. Note that, an entire task/episode in FSL is
treated as a training instance in conventional machine learning.

1 2 3 4 5 ? ?

1 43 52 ? ?

1 2 3 4 5 ? ?

…

…

…

support samples query samples

1 2 3 4 5

…

meta-train (seen) 
sampled from !base

meta-test (unseen) 
sampled from !novel

? ?

Figure 2. Example: 5-way 1-shot classification episodes. The top represents the meta-training set of
many tasks/episodes; each blue box is an episode that contains N× K support samples and N×Q query
samples. In this case, N = 5, K = 1, Q is usually 15. The meta-test set is defined in the same way, as
shown at the bottom.

4. Proposed Method
4.1. Overall Framework

In this work, we propose a meta-learning method for few-shot classification of aerial
scene images. The framework consists of a feature extractor, a meta-training stage, and a
meta-testing stage. Figure 3 illustrates the overall procedure of our method. First, a feature
extractor is trained on base dataset Dbase to learn a representation of inputs for further
comparison in feature space. To achieve this, we train a typical classifier on all base cate-
gories by minimizing a standard cross-entropy loss and removing its last fully-connected
(FC) Layer to get a 512-dimensional feature representation fθ . Then, we consider training
a meta-learning classifierM over a set of episodes in the meta-training stage. Concretely,
unlike some prior works [50,51], we do not freeze fθ for further fine-tuning; instead, we
treat it as an initial weight and optimize it directly by minimizing the generalization error
across episodes. For a single episode, the query features are compared with the category mean
of support features by scaled cosine distance. The goal of meta-training is to minimize the
N-way prediction loss in the query set. Finally, in the meat-testing stage, the meta-learning
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classifierM is estimated on a set of episodes sampled from the novel set Dnovel , usually
referred to as a meta-test set.

Meta-testing Stage

ℳ ( ⋅ |#novel)

test episodes

#j

$j

…… ỸNovel dataset

Meta-training Stage

Base dataset

fθ Ỹ

M training episodes

ℳ ( ⋅ |#base)

#1

$1

#2

$2

#M

$M

…

μ

Similarity

Metric

category
mean

Randomly
selected

Feature Extractor 

C ( ⋅ |Wbase) Ỹ
all categories fθ

fθ

Base dataset

Figure 3. Overall framework of our method. The top represents the feature extractor trained on the
base dataset; by removing the FC layer, the network generates a feature encoder fθ . The meta-training
procedure aims to learn a meta classifier by optimizing the parameter θ from multiple episodes. In the
meta-testing stage, the performance of the meta-classifier is evaluated once a new episodes sampled
from unseen categories is provided.

4.2. Feature Extractor

We train a feature extractor fθ with parameters θ on the base set Dbase that encodes
the input data to a 512-dimensional feature vector suitable for comparison. Here we
employ ResNet-12 to learn a classifier on all base categories and remove the last fully
connected layer to get fθ , which is described below; though, other backbones can also
be used. Before feeding to the network, all input images in Dbase are resized to 80× 80.
The architectural setting of ResNet-12 we use, illustrated in Figure 4, consists of four
ResNet blocks. Three convolutional layers configure each ResNet block with a 3 × 3
kernel, followed by BN and Leaky ReLU. As shown in the figure below, {Ci}4

i=1 denotes
the channels of convolutional layers in each ResNet block, which is 64, 128, 256, 512,
respectively. We then adopt a Leaky ReLU and 2× 2 max pooling layer right after each
residual block. Lastly, by feeding the 5× 5× 512 vector generated by the ResNet Block-4 to
the 5× 5 average pooling layer, we can finally get a 512-dimensional feature representation,
as mentioned in the beginning.
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input image

BN, Leaky ReLU

3 × 3 conv, C1, /1

BN

1 × 1 conv, C1, /1

resize
80 × 80 × 3

Leaky ReLU

2 × 2 max pooling, C1, /2

3 × 3 conv, C1, /1
BN, Leaky ReLU

3 × 3 conv, C1, /1
BN, Leaky ReLU

40 × 40 × 64
ResNet Block-1

5 × 5 average pooling, 512

20 × 20 × 128
ResNet Block-2

10 × 10 × 256
ResNet Block-3

5 × 5 × 512
ResNet Block-4

fθ

C2 = 128

C3 = 256

C4 = 512

Figure 4. The structure of ResNet-12 with four ResNet blocks.

4.3. Meta-Training Stage

Meta-learning aims to improve performance by extracting meta-knowledge from a
set of tasks, aslo called episodes, which has been widely used in the few-shot classification
problems. According to the conventional N-way K-shot setting, our goal is to train a meta-
learning modelM(· | S) that minimizes the N-way prediction loss. To accomplish this, we
sample many episodes from training data in base categories. An episode has K input-output
pairs randomly selected from each category, namely a total of N × K samples for N-way
classification training and N ×Q query samples for test. Although only a limited number
of support samples per episode are used for training, the parameters of classifierM are
shared across many episodes. Thus learning suchM from a large number of tasks reduces
the sample requirement burden. During meta-training stage, an additional meta-validation
set is held out to choose the hyper-parameters of the modelM(· | S). Figure 5 illustrates
the workflow of the proposed meta-learning stage.

Given an episode with the support-set S , we denote Sc as a subset of S with all samples
in category c [32] defined a prototype ωc as the mean vector over embeddings belonging
to Sc (the centroid of category c), an embedding is generate by the pre-trained feature
extractor fθ with learnable parameters θ we described in Section 4.2. We can write down
the ωc as follows:

ωc =
1
|Sc| ∑

(xi)∈Sc

fθ(xi) (1)
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One intuitive way to predict the probability that a query sample x belongs to category
c is to compare the distance between the feature embedding fθ(x) and the centroid ωc of
category c. Two common distance metrics are Euclidean distance and cosine similarity,
here we employ the cosine similarity, and thus the prediction can be formalized as follows:

p(y = c|x) = exp(cos( fθ(x), ωc))

∑c′ exp(cos( fθ(x), ωc′))
(2)

where cos(·, ·) denotes the cosine similarity of two vectors.

forest

chaparral
fθ

cos

μ

α

label

score

fθ

… …

…

airplane airport chaparral

…

Base support set !i

? ? ?

…

Base query set "i

!i

"i

Figure 5. The architecture of meta-training stage for a N-way K-shot classification problem.

Inspired by the work [46], we introduce a learnable scalar parameter α to adjust the
original value range [−1, 1] of cosine similarity. In our experiments, α is initialized to 10,
and we observe that the scaling similarity metric is more appropriate for the following
softmax layer. Then, the predictive probability becomes:

p(y = c | x) =
exp(α · cos( fθ(x), ωc))

∑c′ exp(α · cos( fθ(x), ωc′))
(3)

4.4. Meta-Testing Stage

Once the meta-learning modelM(· | Sbase) is learned, its generalization is evaluated
on a held-out set Dnovel . Note that, all categories in novel-set Dnovel are unseen in the
meta-training stage. At meta-test time, we are given new episodes sampled from Dnovel ,

often referred to as a meta-test set Dtest
T =

{
(Snovel ,Qnovel)

(j)
}J

j=1
. The learned model is

adapted to predict unseen categories with the new support set Snovel .

5. Experiments and Analysis

In this section, we first present some implementation details and dataset description.
Then, we compare our method with three state-of-the-art few-shot methods and one typical
CNN-based method, D-CNN. In addition, we conduct a new dataset mini-RSD46-WHU
to investigate how the scale of the dataset impacts the results. At last, we also carry out
experiments to evaluate the 5-way accuracy as a function of shots.

5.1. Implementation Details

Following the few-shot experimental protocol proposed by Vinyals, O. [45], we carry
out the experiments of N-way classification with K shots, here N = 5, K = 1 or 5. In the
meta-training procedure, a few-shot training batch is composed of several episodes where
an episode is a selection of 5 randomly categories drawn from Dbase. We set 4 episodes per
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batch to compute the average loss, namely the batch size is 4, the amount depends on the
size of the GPU memory. The support set in each training episode are expected to match the
same number of shots as in the meta-test stage. That is, for example, if we want to perform
5-way 1-shot classification at test-time, then the training episodes could be constituted of
N = 5, K = 1. Note that each category contains K query samples during meta-training stage
and 15 query samples during meta-testing.

In traditional deep learning, an epoch is an entire dataset passes forward and backward
through the neural network once. In few-shot learning, we sample episodes randomly from
the dataset. Although there are only limited training samples in each episode, when the
number of episodes is large enough(e.g., in our work, an epoch contains 1000 episodes), one
can assume that the entire dataset has been probably traversed.

We employ Resnet-12 as our backbone; by removing the fully connected layer, the
network generates a 512-dimensional feature vector for each input image. For this step, we
use SGD optimizer with momentum 0.9, the learning rate is initialized to 0.1, and the decay
factor is set to 0.1. The feature extractor was trained for 100 epochs with batch size 128 on
4 GPUs, the weight decay for ResNet-12 is 0.0005. For ProtoNet [32], MAML [34], and
RelationNet [35], we first follow the original literature and adopt a four-layer convolutional
backbone (Conv-4). For a better comparison, we we re-implement these three methods
with ResNet-12 backbone to investigate if a deeper backbone benefits the performance. In
addition, we re-implement a typical machine learning classification method D-CNN [16],
to evaluate its performance in the few-shot scenario. ResNet-12 and the same settings are
used in the D-CNN re-implementation. All our code was implemented in Pytorch and
run with 4 NVIDIA RTX 2080 Ti. Note that, training in DSN-MR [49] with a ResNet-12
backbone requires 4 GPUs with ∼10 GB/GPU.

5.2. Datasets Description

We evaluate our proposed method on two challenging datasets: NWPU-RESISC45 [18]
and RSD46-WHU [30,31]. Besides, to answer the question of how the dataset scale impacts
the performance, we construct a mini dataset from the RSD46-WHU dataset. The details of
the considered datasets are described as follows:

The NWPU-RESISC45 dataset was proposed by Cheng et al. [18] in 2017 and became
a popular benchmark in the RS classification research. It involves 45 categories with
700 remote scene images in each category, each with a size of 256× 256 pixels. These
aerial images are collected by experienced experts from Google Earth; the spatial resolution
ranges from approximately 30 to 0.2 m per pixel. According to the split division setting
proposed by Ravi et al. [52], we split the 45 categories into 25, 8, 12 for meta-training,
meta-validation and meta-testing, respectively. Note that, the validation set was held-out
for hyper-parameter selection of the meta-training stage. The set split for meta-training
are the same 25 categories of Dbase. It is further divided into three sets: meta-train-support,
meta-train-val, meta-train-query . The number of images in each category is shown in Table 1.

Table 1. NWPU-RESISC45 Dataset split.

Dataset Split # Categories Images per Category

base

meta-train-support 25 350
meta-train-val 25 175
meta-train-query 25 175

val meta-validation 8 700

novel meta-test (unseen) 12 700

The RSD46-WHU dataset contains 46 categories, each with images ranging from
428 to 3000, for a total of 117,000. Like many other RS datasets, the images are collected by
hand from Google Earth and Tianditu, with the ground resolution spanning from 0.5 m to
2 m. Similar to the NWPU-RESISC45 dataset, that the 46 categories in RSD46-WHU dataset
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are divided into 26, 8, 12 for meta-training, meta-validation, and meta-testing, respectively.
It is relevant to mention that we have dropped about 1200 images in total because some
images are not in the size of 256× 256 pixels or contain incorrect content. The details of
our modified dataset-split are listed in Table 2.

Table 2. RSD46-WHU Dataset split.

Dataset-Split Meta-Train-Support Meta-Train-Val Meta-Train-Query

base

Airplane 1515 757 757
Airport 825 413 413
Artificial dense forest land 1405 702 702
Artificial sparse forest land 1414 706 707
Bare land 501 250 250
Basketball court 1491 745 745
Blue structured factory building 1536 768 767
Building 1729 865 864
Construction site 1639 819 819
Cross river bridge 1124 562 561
Crossroads 1024 512 512
Dense tall building 1534 767 767
Dock 1574 787 786
Fish pond 807 403 403
Footbridge 1312 656 655
Graff 1505 753 752
Grassland 1416 708 708
Low scattered building 1199 600 599
Lrregular farmland 1568 784 784
Medium density scattered building 526 263 262
Medium density structured building 1773 887 886
Natural dense forest land 1500 750 750
Natural sparse forest land 1491 746 745
Oiltank 805 402 402
Overpass 1252 626 625
Parking lot 1528 764 764

val

Plasticgreenhouse 1015
Playground 1913
Railway 3111
Red structured factory building 2993
Refinery 2657
Regular farmland 3209
Scattered blue roof factory building 3050
Scattered red roof factory building 2936

novel

Sewage plant-type-one 538
Sewage plant-type-two 428
Ship 3014
Solar power station 3032
Sparse residential area 2981
Square 3309
Steelsmelter 2933
Storage land 2114
Tennis court 1554
Thermal power plant 1263
Vegetable plot 2884
Water 2713

We further conduct a new dataset mini-RSD46-WHU to investigate how the scale of
the dataset impacts the results. The mini-RSD46-WHU dataset is formed from the RSD46-
WHU dataset by randomly selecting 500 images in each category. Except for category
Sewage plant-type-two only has 428 images, because that is all it holds in the original
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dataset. We follow the same division setting of the RSD46-WHU dataset; the only change
is the number of images in each category. Table 3 shows the details.

Table 3. mini-RSD46-WHU Dataset split.

Dataset Split # Categories Images per Category

base

meta-train-support 26 250
meta-train-val 26 125
meta-train-query 26 125

val meta-validation 8 500

novel meta-test (unseen) 12 500

5.3. Results and Comparisons

Following the most common setting in few-shot classification, namely 5-way 1-shot,
and 5-way 5-shot, we conduct experiments to evaluate the effectiveness of our method.
The proposed method is compared with various state-of-the-art few-shot learning methods
and one conventional deep learning method.

For 5-way 1-shot experiment, one labeled support sample per category is randomly
selected as the supervised sample at the test time. Likewise, 5 support samples per category
are provided for 5-shot setting. Following the evaluation protocols of FSL [32,52], 15 query
images per category are batched in each episode for evaluation. We computed the mean
classification accuracy of 2000 randomly generated episodes from the novel (meta-test) set.

We note that the original backbone of Prototypical Networks (ProtoNet) [32], MAML [34],
and RelationNet [35] is Conv-4, while a deeper backbone like Resnet-12 used in others
may benefit the performance. Thus, we re-implement these three methods with ResNet-12
backbone for a fair comparison. Also, the performance of a conventional classification
algorithm D-CNN [16] is analyzed in few-shot classification scenarios.

On both datasets, the results of average 5-way accuracy (%) with 95% confidence
interval of 1-shot and 5-shot are reported in Tables 4 and 5 respectively. The symbol *
indicates our re-implementation of ProtoNet, MAML, and RelationNet with ResNet-12
backbone. As we can see, our method outperforms the other models under both 5-way
1-shot and 5-way 5-shot settings. D-CNN shows inferior performance both in the 1-shot
and 5-shot cases, and this result is reasonable due to D-CNN is not designed specifically
to few-shot classification. Typical CNNs-based methods most likely lead to overfitting
when meeting so few supervised samples, whereas meta-based methods have achieved
considerable performance.

Table 4. Few-shot classification results on NWPU-RESISC45. The symbol * indicates our re-
implementation of ProtoNet, MAML, and RelationNet with ResNet-12 backbone. Marked in bold are
the best results for each scenario.

Method Backbone 1-Shot 5-Shot

ProtoNet [32] Conv4 51.17 ± 0.79 74.58 ± 0.56
ProtoNet * ResNet12 62.78 ± 0.85 80.19 ± 0.52
MAML [34] Conv4 53.52 ± 0.83 71.69 ± 0.63
MAML * ResNet12 56.01 ± 0.87 72.94 ± 0.63
RelationNet [35] Conv4 57.10 ± 0.89 73.55 ± 0.56
RelationNet * ResNet12 55.84 ± 0.88 75.78 ± 0.57
TADAM [46] ResNet12 62.25 ± 0.79 82.36 ± 0.54
MetaOptNet [48] ResNet12 62.72 ± 0.64 80.41 ± 0.41
DSN-MR [49] ResNet12 66.93 ± 0.51 81.67 ± 0.49
D-CNN [16] ResNet12 36.00 ± 6.31 53.60 ± 5.34
Ours ResNet12 69.46 ± 0.22 84.66 ± 0.12
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Table 5. Few-shot classification results on RSD46-WHU. The symbol * indicates our re-
implementation of ProtoNet, MAML, and RelationNet with ResNet-12 backbone. Marked in bold are
the best results for each scenario.

Method Backbone 1-shot 5-shot

ProtoNet [32] Conv4 52.57 ± 0.89 71.95 ± 0.71
ProtoNet * ResNet12 60.53 ± 0.99 77.53 ± 0.73
MAML [34] Conv4 52.73 ± 0.91 69.18 ± 0.73
MAML * ResNet12 54.36 ± 1.04 69.28 ± 0.81
RelationNet [35] Conv4 55.18 ± 0.90 68.86 ± 0.71
RelationNet * ResNet12 53.73 ± 0.95 69.98 ± 0.74
TADAM [46] ResNet12 65.84 ± 0.67 82.79 ± 0.58
MetaOptNet [48] ResNet12 62.05 ± 0.76 82.60 ± 0.46
DSN-MR [49] ResNet12 66.53 ± 0.70 82.74 ± 0.54
D-CNN [16] ResNet12 30.93 ± 7.49 58.93 ± 6.14
Ours ResNet12 69.08 ± 0.25 84.10 ± 0.15

A bar chart of few-shot classification results on both datasets are shown in
Figures 6 and 7. We observe that our method gets the best performance among all popular
methods despite its simple design.
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Figure 6. Few-shot classification results on the NWPU-RESISC45 dataset. The striped bars indicate
the approaches in our re-implementation with Resnet-12 backbone. The performance is reported
with 95% confidence intervals.

For MAML, a representative method for model initialization, we adopt a first-order
approximation version for the experiments. The original paper of MAML reports that the
performance of the first-order approximation is almost identical to the full version. We take
the first-order approximation version for its efficiency; the performance of MAML may get
narrowly enhance by the full version. Similar to our method, ProtoNet and RelationNet
are both metric-based methods. ProtoNet uses Euclidean distance while RelationNet com-
pares an embedding fϕ and query samples using an additional parameterized CNN-based
’relation module’. MetaOptNet [48] and DSN-MR [49] are also metric-based approaches.
MetaOptNet provides an end-to-end method with regularized linear classifiers i.e., ridge re-
gression and SVM. On the other hand, DSN-MR provides another enlightening perspective:
a subspace of the feature space is computed for each category, and then the query sample
is projected into the subspace, where the distance measurement is performed. Our method
computes the class centers as the same in ProtoNet, yet we employ a cosine distance with
a learnable scaling factor for classifying which contributes a lot to achieve better perfor-
mance. We conduct an ablation experiment to investigate the impact of metric in Section 5.4.
TADAM [46] assumes a task-conditioned feature extractor should be more discriminative
for a given task. They presented a dynamic feature extractor that can be optimized by
a given support set S . However, this strategy introduces additional complexity to the
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architecture; they solve this problem by adopting an additional logit head (i.e., the normal
M-way classification, where M is the number of all categories in the base set) for auxiliary
co-training. We take a different strategy that trains a normal M-way classification on the
seen categories(base-set) but does not introduce any additional parameters. Instead, we
remove the last FC layer to get an encoder fθ , whose weights are then used as initialization.
It gives a good boost in the meta-training stage for further optimization.

RSD46-WHU 1-shot

5-
w

ay
 a

cc
 (%

)

0

10

20

30

40

50

60

70

80

90

1-shot

ProtoNet ProtoNet* MAML MAML* RelationNet
RelationNet* TADAM MetaOpt DSN-MR D-CNN
Ours

RSD46-WHU 5-shot

5-
w

ay
 a

cc
 (%

)

0

10

20

30

40

50

60

70

80

90

5-shot

ProtoNet ProtoNet* MAML MAML* RelationNet
RelationNet* TADAM MetaOpt DSN-MR D-CNN
Ours

Figure 7. Few-shot classification results on the RSD46-WHU dataset. The striped bars indicate the
approaches in our re-implementation with Resnet-12 backbone. The performance is reported with
95% confidence intervals.

As shown in Figures 6 and 7, the striped bars indicate our re-implementation of
MAML, ProtoNet, and RelationNet with ResNet-12 backbone. We observed that a deeper
backbone (Resnet-12) slightly improves MAML and RelationNet; moreover, RelationNet
even gets worse in the 1-shot case for both datasets. On the other hand, the Prototypical
Network (ProtoNet) is improved by a large margin when the backbone architecture is
replaced with Resnet-12, which shows that ProtoNet is a powerful and robust approach.

An interesting phenomenon we observed is shown in Figure 8. We plot the first
90 epochs of the generalization of our model on base and novel categories. Base generaliza-
tion indicates the training accuracy from unseen data in the base categories, and the novel
generalization means test performance from data in novel categories. As shown, while the
model achieves better performance on unseen data in the base set, the novel generalization
drops instead. Why the test performance decreases? We suppose lacking supervised data is
the reason causing the over-fitting problem, which leads to this phenomenon. This problem
will be discussed further in Section 5.4.

5.4. Analysis
5.4.1. Effect of Dataset Scale

To investigate how dataset scale impacts the performance, we conduct a variant of
the RSD46-WHU dataset with only 500 images in each category, called mini-RSD46-WHU.
The overall accuracies of 5-way 1-shot and 5-shot are reported in Table 6. We adopt the
same backbone and training strategy on both datasets. As we can see, apparently, the
performance improves when the scale of dataset gets larger. The overall accuracy of 5-way
1-shot and 5-shot on the original dataset increased by 6.86% and 5.78% compared to the
mini dataset.

Table 6. Comparison between mini and full RSD46-WHU.

Dataset 1-Shot 5-Shot

RSD46-WHU 69.08 ± 0.25 84.10 ± 0.15
mini-RSD46-WHU 62.22 ± 0.25 78.32 ± 0.18
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Figure 8. Generalization discrepancy in meta-learning stage.

5.4.2. Effect of Metrics

We investigate the impact of different metric strategies for the few-shot classification,
i.e., based on the Euclidean distance and cosine similarity. The two choices are compared
in Table 7; furthermore, we study the effect of scaling parameter α by adding it to both
metrics. The scaling parameter α is empirically initialized as 0.1 for Euclidean distance and
10 for cosine similarity. As shown in Tabe 7, the performance improves to 69.02 ± 0.22%
and 68.56 ± 0.25%, respectively, in the 5-way 1-shot case. This shows a gain of 8.61% and
8.87% with a simple cosine similarity instead of Euclidean distance. In the case of 5-shot,
the improvement is slight, 0.69% and 0.74%, respectively. Further, we can see that, for
both datasets in 1-shot and 5-shot case, the scale parameter gives about ∼0.3% to ∼0.5%
gain compared with using cosine similarity only. However, the scale parameter has barely
improved or gotten worse for the performance of Euclidean distance.

Table 7. The effect of different metrics on test performance with 95% confidence intervals when
training on NWPU-RESISC45 and RSD46-WHU. Marked in bold are the best results for each scenario.

NWPU-RESISC45 RSD46-WHU

Metric 1-Shot 5-Shot 1-Shot 5-Shot

Euclidean 60.41 ± 0.23 83.61 ± 0.13 59.69 ± 0.27 83.31 ± 0.16
Euclidean + scale 60.34 ± 0.23 83.46 ± 0.13 59.97 ± 0.26 83.30 ± 0.16
Cosine 69.02 ± 0.22 84.30 ± 0.12 68.56 ± 0.25 83.82 ± 0.15
Cosine + scale 69.46 ± 0.22 84.66 ± 0.12 69.08 ± 0.25 84.10 ± 0.15
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5.4.3. Effect of Shots

To further evaluate the 5-way accuracy as a function of shots, we conduct the experi-
ments by providing our model with 1, 5, 10, 15, 20, and 25 labeled support samples on both
datasets. The results are presented in Figure 9. As we expected, the prediction accuracy is
greatly improved when the shot is increasing from 1 to 5. However, the performance does
not benefit much more when the shot continues to increase. These findings confirm that
our model is specifically effective in very-low-shot settings.
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Figure 9. The effect of shots on test performance are reported with 95% confidence intervals when
training on NWPU-RESISC45 and RSD46-WHU. All experiments are from 5-way classification with a
ResNet-12 backbone.

From the experiments in Section 5.3, we observe from Figure 8 that the model with the
best accuracy often appears in the first 40 epochs. For a further analysis of the generalization
discrepancy, we plot the generalization curve with different shots on both NWPU-RESISC45
and RSD46-WHU datasets, see Figures 10 and 11. As we can see, the same phenomenon
appeared again: when the generalization gets better on the unseen data of base, indicating
that the model learns the objective better, whereas the test performance gets worse on
the novel task. In other words, this phenomenon still exists when the support labeled
instances increases; over-fitting may not be the very reason for the test performance drops.
This generalization discrepancy may be caused by the objective difference between the
novel set and the base set. That is, in the meta-training stage, our model learns too
specific on base-set, which has adverse effects on the novel-set. Our investigations suggest
that the generalization discrepancy might be a potential challenge in few-shot learning.
Some careful regularization terms might be helpful to narrow the gap of generalization
discrepancy, which we leave for future work.
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Figure 10. The effect of shots on test performance are reported with 95% confidence intervals when
training on NWPU-RESISC45 and RSD46-WHU. All experiments are from 5-way classification with a
ResNet-12 backbone.
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Figure 11. The effect of shots on test performance are reported with 95% confidence intervals when
training on NWPU-RESISC45 and RSD46-WHU. All experiments are from 5-way classification with a
ResNet-12 backbone.
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6. Conclusions

The topic of few-shot learning has attracted much attention in recent years. In this
paper, we bring few-shot learning to aerial scene classification and demonstrate that useful
information may be learned from a few instances. To pursue this idea, we proposed a
meta-learning framework which aims to train a model that generalizes well on unseen
categories when providing a few samples. The proposed method first employs ResNet-12
to learn a representation on base-set, and then in the meta-training stage, we optimize the
classifier by cosine distance with a learnable scale parameter. Our experiments, conducted
on two challenging datasets, are encouraging in that our method can achieve a classification
performance of around 69% for a new category by just providing one instance, besides
approximately 84% for 5 support samples. Furthermore, we have conducted several
ablation experiments to investigate the effects of dataset scale, the impact of different
metrics and the number of support shots. At last, we observe an interesting phenomenon
that there is potentially a generalization discrepancy in meta-learning. We suggest that
further research in this phenomenon may be an opportunity to achieve better performance
in the future.
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Appendix A

Table A1. Comparison of the six common aerial datasets.

Dataset # Categories Images per Category Total Images Image Sizes Year

UC Merced dataset [12] 21 100 2100 256 × 256 2010
WHU-RS19 [28] 19 50 950 600 × 600 2010
AID dataset [7] 30 220–420 10,000 600 × 600 2016
NWPU-RESISC45 [18] 45 700 31,500 256 × 256 2016
RSD46-WHU [30,31] 46 500–3000 117,000 256 × 256 2016
PatternNet dataset [29] 38 800 30,400 256 × 256 2017
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Table A2. Characteristics of few-shot learning methods. a-b-c-d denotes a 4-layer convolutional network with a, b, c, and d
filters in each layer.

Methods Backbone Year Characteristics

Optimization-based MAML [34] 32-32-32-32 2017 model-agnostic, learn a good initialization for
fast-adapting to new tasks

Reptile [41] 32-32-32-32 2018 first-order approximation of MAML
LEO [42] WRN-28-10 2019 introduce low-dimensional latent space to MAML

MTL [43] ResNet-12 2019 learn Scaling and Shifting parameters by adopting
hard task training strategy

Metric-based MathingNets [45] 64-64-64-64 2016 cosine similarity
ProtoNet [32] 64-64-64-64 2017 Euclidean distance
RelationNet [35] 64-96-128-256 2018 additional CNN relation module
TADAM [46] ResNet-12 2018 scaled Euclidean distance, task-specific
MetaOptNet [48] ResNet-12 2019 ridge regression, SVM
DSN-MR [49] ResNet-12 2020 subspace, SVD
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