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Abstract: Recently, with the popularity of space-borne earth satellites, the resolution of high-
resolution panchromatic (PAN) and multispectral (MS) remote sensing images is also increasing
year by year, multiresolution remote sensing classification has become a research hotspot. In this
paper, from the perspective of deep learning, we design a dual-branch interactive spatial-channel
collaborative attention enhancement network (SCCA-net) for multiresolution classification. It aims
to combine sample enhancement and feature enhancement to improve classification accuracy. In the
part of sample enhancement, we propose an adaptive neighbourhood transfer sampling strategy
(ANTSS). Different from the traditional pixel-centric sampling strategy with orthogonal sampling
angle, our algorithm allows each patch to adaptively transfer the neighbourhood range by finding
the homogeneous region of the pixel to be classified. And it also adaptively adjust the sampling
angle according to the texture distribution of the homogeneous region to capture neighbourhood
information that is more conducive for classification. Moreover, in the part of feature enhancement
part, we design a local spatial attention module (LSA-module) for PAN data to highlight the spatial
resolution advantages and a global channel attention module (GCA-module) for MS data to improve
the multi-channel representation. It not only highlights the spatial resolution advantage of PAN
data and the multi-channel advantage of MS data, but also improves the difference between features
through the interaction between the two modules. Quantitative and qualitative experimental results
verify the robustness and effectiveness of the method.

Keywords: deep learning; multiresolution classification; sample enhancement; feature enhancement;
attention mechanism; remote sensing images

1. Introduction

With the rapid development of earth observing technology, space-borne passive earth
observation systems can jointly acquire two different images of the same scene [1]. i.e., a
panchromatic image (PAN) with high spatial resolution but less spectral information, and
a multi-spectral image (MS) with low spatial resolution but more spectral information [2].
Compared with the original single resolution images, the combination of these different
resolution images (for brevity, we call it “multi-resolution images” ) enable users to obtain
higher spatial and spectral information simultaneously. MS data is helpful for the identifi-
cation of land covers, while PAN data is beneficial for accurately describing the shape and
structure of objects in images. Therefore, the intrinsic complementarity between PAN and
MS data conveys a vital potential for multi-resolution image classification tasks [3].

In general, the commonly used methods in PAN and MS multi-resolution classification
can be roughly divided into two categories: one is first to utilize pan-sharpening to the MS
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data, and then classifying it [4–8]; the other is first to extract their respective features from
PAN and MS data, and then fuse them for classification [9–13].

The former method is mainly to classify a fused image with the high spectral resolution
and high spatial resolution, which requires an excellent pan-sharpening algorithm [14] to
add the spatial details of PAN image to the MS image. Over the years, various excellent pan-
sharpening algorithms have been proposed, including classical Component Substitution
(e.g., Intensity-Hue-Saturation (IHS) Transformation [15,16], Principal Component Analysis
(PCA) [17,18], and Gram Schmidt(GS) Transformation [19]); and Multi-Resolution Analysis
(e.g., Wavelet Transform [20,21], Support Value Transform [22]).

The above methods all have good performance, and many pan-sharpening algorithms
also provide many helpful inspirations for the development of image information fusion
field. However, overreliance on pan-sharpening results also brings many limitations to
these methods. For example, when the fusion image appeared noisy, distortion, etc., it will
produce inevitable adverse effects and reduce the final classification accuracy [23].

The latter method (feature fusion then classify) usually extracts features from PAN
and MS data separately, and then fuse them for classification. Zhang et al. [12] combined
the mid-level bag-of-visual words model with the optimal segmentation scale to bridge
the high-level semantics information and low-level detail information. These features are
then sent into Support Vector Machine (SVM) for images classification. Moser et al. [11]
combines a graph cut method with the linear mixed model, and iterates the relationship
between PAN and MS data to generate the context classification map. Mao et al. [13]
proposed a unified Bayesian framework to discover semantic segments from PAN images
first, and then assign corresponding cluster labels from MS images for a significant classifi-
cation result. Although these algorithms extract some features from PAN and MS data for
classification, these features are only shallow features. They are easily affected by noise,
which leads to unsatisfactory classification results.

During the past few years, deep learning (DL) methods have been widely used in
various fields of remote sensing [24–29]. By establishing a suitable sample database and
designing the hierarchical structure of the entire network carefully, it is proved that the DL
algorithms can also handle the complex remote sensing data well. Zhao et al. [25] proposed
a superpixel-based multiple local network model, which first perform the superpixel
algorithm to generate multiple local regions samples. Multiple local network model was
used to extract features of different regions samples for classification. Finally, Zhao et al.
used the corresponding PAN image to fine-tune this classification results. But the algorithm
use multiple local network models to extract features, all the input to the network comes
from MS data, which shows that it does not explore the complementarity between MS
and PAN data. Liu et al. [24] proposed a two-branch classification network based on
a stacked auto-encoder (SAE) and a deep convolutional neural network (DCNN), each
branch independently extracts the features of MS data and PAN data, and then through
several fully-connected (FC) layers to get the final classification result. This algorithm uses
a dual-path network to extract the features of MS and PAN data independently. However,
the network design is too simple, and the feature representation cannot be extracted
effectively for different data characteristics. Zhu et al. [27] used the spatial attention
module and the channel attention module to extract the features of the PAN and MS data,
respectively, then fuses them for classification. The above algorithms are well combined
with the DL methods to solve the multi-resolution classification problem and improve the
accuracy of multi-resolution classification, which inspires us to mine the potential of deep
learning further.

Although the application of DL methods in this field has achieved impressive perfor-
mance, some easily ignored problems still deserve our attention:

(1) Multi-resolution classification tasks usually perform pixel-by-pixel classification of
remote sensing images containing various irregular objects in the same large scene. All
sample patches have only one fixed-angle neighbourhood information, which may not be
able to learn robust and distinctive feature representations. Besides, the training samples
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are usually image patches centred on the pixel to be classified. It will cause pixels with
very close Euclidean distance but belonging to different categories to obtain very similar
patch information [8,11], thereby confusing the training of the classification network.

(2) These multi-resolution images have different resolutions and spectral channels in
the same scene, and usually contain local distortions, unavoidable noises, and imaging
viewpoint changes. Therefore, We not only need a more powerful module to extract more
robust feature representations, but also need a dual-branch network to extract features
that can highlight the characteristics of their respective data. Finally, how to effectively
eliminate the differences in the features obtained by the two branches and then fuse
common information is also a problem that needs to be solved.

In view of the above two problems, Our main contributions includes two correspond-
ing aspects as follows:

(1) We propose an adaptive neighbourhood transfer sampling strategy (ANTSS) to
capture sample patches. For the pixel to be classified, we adaptively migrate the patch
area of the pixel according to its homogeneous structure. Moreover, the clipping angle
of the patch is not fixed and is adaptively determined by the edge texture structure of its
homogeneous area, so that it can better deal with objects of different shapes. And this
patch tends to contain more texture information that is homogeneous with the pixel to
be classified, thus effectively avoiding the above-mentioned edge categories sampling
problem and providing better positive feedback for its classification.

(2) We propose an interactive attention feature fusion spatial-channel collaborative
Network (SCCA-Net). In the design of the network structure, we introduce the attention
mechanism module into the field of remote-sensing data to expect for more robust features.
We design local spatial attention (LSA-module) and global channel attention (GCA-module)
especially for PAN and MS data respectively, thus highlighting the spatial resolution
advantages of PAN and the multi-channel advantages of MS. Finally, the interaction
module effectively reduces the difference in the characteristics obtained by the PAN branch
and the MS branch. Then we also use GCA-module to further enhance more in-depth
feature representation from the fused features for classification.

The rest of this paper is organized as follows: Section 2 briefly introduces some related
work. Section 3 elaborates the proposed method in detail. Section 4 first introduces the
details of datasets used and the experimental setup, and then shows the experimental
results and the corresponding analysis. Finally, Section 5 draws the conclusion of this paper.

2. Related Work

In this section, the sampling strategy and attention model related to our method will
be introduced in detail.

2.1. Sampling Strategy

Recently, the application of deep learning in the field of remote sensing is gradually
developing, but remote sensing data are often relatively large. In practical applications,
it is often necessary to use raw data to make training samples. As show in the Figure 1,
Liu et al. [24] and Li et al. [3], take the pixel to be classified as the centre and crop out
the sample patch at an orthogonal sampling angle. The traditional pixel-centric sampling
strategy is simple and easy to implement, and the sample patch containing some neigh-
bourhood information can also extract the characteristics of some samples. However,
pixel-by-pixel sampling will not only generate many similar redundant samples but also
bring some confusing samples with high similarity but different categories.
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Figure 1. The overall process of traditional pixel-central sample sampling. (a,c) are sample patches that are similar but do
not belong to the same category; (b,d) are sample patches of the same category but with closer Euclidean distance.

Zhao et al. [25] uses the superpixel algorithm to aggregate MS data, and then takes
out multiple local patches around each superpixel as a supplement to the neighbourhood
information. The algorithm uses superpixels to generate sample patches, reduces many
redundant samples in the training sample set, and uses auxiliary input to enhance the
neighbourhood information of the category. Zhu et al. [27] employs Difference of Gaussian
(DoG) scale-space [25] to capture texture structure of the multiresolution image, and then
adaptively adjust the size of the patch according to the texture structure range. The
algorithm captures the complete texture structure through multi-scale sample patches,
which can better extract category features for classification.

However, these methods also have some problems that cannot be ignored. First of
all, both traditional methods and multi-scale sampling strategies use orthogonal sliding
windows to crop images. When faced with irregular edge texture structure, the orthogonal
sliding window cannot effectively extract the texture information of the category. Secondly,
when sampling two adjacent types of ground objects, some confusing samples with very
similar neighbourhood information , but completely different categories are often obtained.
Therefore, we propose an adaptive neighbourhood transfer sampling strategy (ANTSS),
which can transfer the neighbourhood patch of the pixel to a region containing more ho-
mogeneous information, thereby effectively avoiding the above-mentioned edge category
sampling problem. Moreover, it can adaptively adjust the clipping angle of the patch to
obtain complete texture information according to the distribution of homogeneous regions.

2.2. Attention Module

The attention mechanism has been widely focused since it was proposed, which has
been proven to be a potential means to reinforce deep CNN-module [30]. Attention allows
us to selectively process the vast amount of information with which we are confronted,
prioritizing some aspects of information while ignoring others by focusing on a certain
location or aspect of the visual scene [31–33]. In the image processing neighborhood,
it can be roughly divided into two directions: channel attention (Enhance important
channels in the network feature maps and suppress unnecessary channels) and spatial
attention (Highlight areas of interest in the network feature space and suppress unnecessary
background information).

Channel Attention: SE-Net [30] presents for the first time an effective mechanism to
learn channel attention and achieves promising performance. The SE-module first employs
a global average pooling for each channel independently, then two fully-connected (FC)
layers with non-linearity followed by a Sigmoid function are used to generate weight
of each channel. Subsequently, GSoP [34] introduces a second-order pooling for more
effective feature aggregation. The GSoP-module first calculates the covariance matrix and
then performs two consecutive operations of linear convolution and nonlinear activation
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to obtain the output tensor. The output tensor scales the original input along the channel
dimension to obtain the weight of each channel Furthermore, ECA-Net [35] employs fast 1D
convolution learn the relationship between local channels. The ECA-module apply global
average pooling aggregates each channel, and then adaptively selects the one-dimensional
convolution kernel according to the channel dimension to calculate the channel weight.

Spatial Attention: Specifically, scSE [36] and CBAM [37] compute spatial attention
using a 2D convolution of kernel size k× k, then combine it with channel attention. The
CBAM-module performs the average pooling and maximum pooling of the channel dimen-
sions, respectively and then uses convolution to obtain the attention weight of the spatial
dimension. Moreover, Dual Attention Network (DAN) [38] and Criss-Cross Network
(CCNet) [39] simultaneously consider non-local channel and non-local spatial attentions
for semantic segmentation. In the DAN-net, the positional attention module is used to
learn the spatial interdependence of features, and the channel attention module is designed
to simulate the channel interdependence.

Our SCCA network aims to capture global channel interaction and multi-scale fusion
of spatial features. Furthermore, based on the complementarity of multiresolution data, the
channel attention branch and the spatial attention branch cooperate to transmit the shared
information of the feature to obtain better classification accuracy.

3. Methodology

In this section, the adaptive neighbourhood transfer sampling strategy (ANTSS)
and the interactive spatial-channel cooperative attention fusion network (SCCA-Net) are
explained and analyzed in detail.

3.1. Adaptive Neighborhood Transfer Sampling Strategy

Deep learning (DL) is base on data-driven algorithms, which performance is directly
affected by the quality of the training sample. Therefore, how to obtain effective samples is
the first problem to be solved. As we know, remote sensing images are taken at high altitude,
with large scenes and complex distribution of ground objects. In remote-sensing pixel-level
classification tasks, the traditional sampling strategy is to extract pixel-centric (the pixel to
be classified) orthogonal image patches. A patch provides neighbourhood information for
its central pixel to determine the category of this central pixel. The traditional sampling
strategy will obtain highly similar patches when pixels with very close Euclidean distances
but belonging to different categories. Furthermore, due to the different distribution angles
of ground objects, it is may not reasonable to set all patches with an orthogonal sampling
angle to extract features.

Based on this, we put forward an adaptive neighbourhood transfer sampling strat-
egy (ANTSS) that allows each patch to adaptively determine the neighbourhood range
according to the homogeneity of the pixel to be classified. This strategy shifts the original
patch centre (i.e., the pixel to be classified) to the homogeneous region to obtain more
neighbourhood information with homogeneity to this pixel. It is expected to provide
more positive feedback neighbourhood information for the classifier and makes patches
obtained on the boundary of the two categories not repeat too much. The overall process
of determining the neighbourhood range and sample angle of the patches can be referred
to Figure 2(1). The main steps are in detail as follows:

(1) We should first determine the effective area of each homogeneous region in the
image. Since the homogeneous region can be approximated as the aggregation of the same
pixels category in the remote sensing image. Here, we choose a simple linear iterative
clustering (SLIC) [35] superpixel algorithm to generate homogeneous region. The main
reason is that SLIC as a local clustering algorithm, can aggregate a definite range of
neighboUrhood pixels according to pixel characteristics. By performing SLIC-superpixel
clustering, we determined the concrete distribution of homogeneous region in the image.
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Figure 2. The overall process of determining the neighbourhood pixels and centre position of the patches. (1) The
mathematical analysis of the concrete sampling process is shown below the figure. The lower left sub-figure (1) represent
sampling process of two pixels located in different superpixel regions; the lower right sub-figure (2) represents sample
sampling process of pixels at different locations in the same superpixel region. (2) The actual sampling results are shown in
the upper right: (a) and (d) are the original sampling results; (b) and (e) are the sample patches after neighborhood transfer,
(c) and (f) are the sample patch after the sampling angle is rotated

After obtaining the homogeneous region distribution in the image, we need to provide
an indicative patch extraction for all pixels. Although the shape distribution of each homo-
geneous region is different, the centroid is the geometric centre of sectional graphics, which
represents the relative position of the graphics in space. The relative relationship between
the two centroids is also equivalent to the relative relationship between two homogeneous
regions. When the pixels in the homogeneous area shift to the same centroid, while ob-
taining more homogeneous neighbourhood information, it also reduces the proportion of
negative feedback information in the patch. Moreover, the sampling angle of the patch can
be adaptively adjusted to capture more texture distribution information according to the
spatial relationship between the centroid and the pixels. Assume that a superpixel contains
N pixels, the centroid coordinates can be expressed as:

Cj
x =

1
n

n

∑
i=1

Pi
x

Cj
y =

1
n

n

∑
i=1

Pi
y

(1)

where [Cj
x, Cj

y] is defined as centroid coordinates of the Sj
p homogenous region, and [Pi

x, Pi
y]

is ith pixel coordinates in the same homogenous region.
(2) We next determine the definite neighbourhood range and sampling angle of each

pixel according to the calculated centroid coordinates. As shown in the Figure 2(1), P and
Q are two pixels with very close Euclidean distances but belonging to different categories,
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C1 and C2 are the centroid of the corresponding homogeneous regions respectively. With
the transform of spatial relationships, we can calculate the new centre positions P1 and Q2

Furthermore, base on the relative position relationship between the pixel and the centroid,
the sampling angle of the patch can be determined. Taking P as an example, the specific
calculation of the neighbourhood transfer distance is as follows:

Firstly, for each pixel under the same homogeneous region, we need a measure of the
spatial position relationship. Here we choose the Euclidean distance between the centroid
and the pixel to represent the relative spatial position of a pixel in the homogeneous region.
When the pixel is close to the edge of the homogeneous region, the Euclidean distance
between the pixel and the centroid will increase, and the possibility of negative sampling
will be greater. The Euclidean distance di between the pixel P and the centroid C1 is
calculated as follows:

di =
√
(Px − C1

x)
2 + (Py − C1

y)
2 (2)

where [Px, Py] represent the coordinates of the pixel P, and [C1
x, C1

y ] represent the coordinates
of the centroid C1.

Secondly, to better distinguish pixels at different distances, we use two concentric
circles to divide the superpixel into two regions. As shown in the Figure 2(2), one is
to use the shortest distance between the edge pixel in the homogeneous region and the
centroid as the radius r to generate concentric inscribed circles Cin. The other is to use the
farthest distance between the edge pixel and the centroid as the radius R to generate a
concentric circumcircle Cout. When the pixel is located in Cin, there is more homogeneous
neighbourhood information around the pixel, so there is no need to pass the neighbourhood
range. On the contrary, when the pixel is located between Cin and Cout, the neighbourhood
range needs to transfer towards the centroid to capture more homogenous neighbourhood
information to the original centre pixel P for feature extraction.

Finally, for pixels with different Euclidean distances, their neighborhood transfer
distances should also be not the same. Furthermore, to maintain the diversity of samples,
the neighborhood migration distance of pixels should not simply linearly increasing with
Euclidean distance. This will constrain the sampling space, resulting in repeated sampling
and generating redundant samples. Therefore, we introduce a two-dimensional Gaus-
sian space and adaptively calculate the neighborhood transfer distance according to the
Gaussian normal distribution. The neighbourhood transfer distance f (x) is calculated
as follows:

f (x) =

 di+1
4

1√
2π

exp
(
− (

4(R−di)+1
R−r )2

2

)
, r < di < R

0, other
(3)

where f (x) is obey standard statistics normal distribution function, di+1
4 represent the

maximum distance of sample transfer, and 4(R−di)+1
R−r is the Euclidean distance inverse

proportional function. When the pixel di is larger, the value of the inverse proportional
function is smaller. Then the value of the Gaussian normal distribution is more extensive,
and the corresponding neighbourhood transfer distance is more massive.

(3) Base on the transfer distance fx of the neighbourhood range and spatial angles θ1,
we can calculate the new centre position P1 of the patch. Then rotate clockwise θ1 degree
to extract the neighbourhood range according to the set patch size.{

P1
x = Px − b f (di)× di × sin θc

P1
y = Py − b f (di)× di × sin θc

(4)

where [P1
x , P1

y ] is new center position coordinates.
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3.2. Spatial Attention Module and Channel Attention Module

In the field of computer vision, the attention module has an excellent performance
in enhancing image characteristics. Attention not only tells ‘where’ to focus but also tells
‘which’ to improve. In multi-resolution tasks, both MS data and PAN data have their
individual data characteristics. MS data is rich in spectral information, and PAN data
has a high spatial resolution. To improve the representation ability of feature, we use
two different attention modules to highlight their respective feature representation. For
PAN data, we use the spatial attention module to learn the ‘where’ of the spatial axis, to
highlight the homogeneous regions of the pixels to be classified in the feature map. For
MS data, we apply the channel attention module to learn the ‘which’ of the channel axis to
focus on important features and suppress unnecessary features.

Based on this, we propose a local attention module (LSA-module) for PAN data
and global channel attention module (GCA-module) for MS data. The local attention
module (LSA-module) as shown in the Figure 3 and the global channel attention module
(GCA-module) as shown in the Figure 4. The details of the attention modules are as follows:

3.2.1. Spatial Attention Module

We produce a spatial attention mask by exploring the inter-spatial relationship of
features. In the LSA-module, we capture the spatial context information of the feature map
to focus on ‘where’ is an informative part. Our structure tends to combine a bottom-up
feedforward operation and a top-down feedback operation into one feedforward operation.
The bottom-up feedforward operation produces strong semantic information with low
spatial resolution features, while the subsequent top-down operation combines high-
resolution location information with strong semantic information to infer each pixel.

The detail process of the LSA-module is illustrated in Figure 3. Let the input of
CA-module be fpan ∈ R4W×4H×N , where 4W, 4H and N are width, height and channel
dimension (i.e., number of filters). fpan first do a spatial-wise maxpooling operation to
aggregate the feature maps channel dimensions. Thus obtain a one-dimensional spatial-
wise feature descriptors: βpan ∈ R4W×4H×1.

βpan = Smax( fpan) =
1
N

N

∑
i=1

f i
pan (5)

where Smax(·) is a maxpooling operation, which purpose is to preserve the feature impor-
tant texture information and spatial position while reducing the channel dimension of the
feature map. f i

pan represent the ith channel in the feature map.

( )mapF  ( )( )maxS 

(4 ,4 , )panf w h n 1 (4 ,4 , )panf w h n(4 ,4 ,1)pan w h

1(2 ,2 ,1)w h

2(4 ,4 ,1)w h (4 ,4 ,1)mask w h

Figure 3. The proposed spatial attention module (LSA-module) for PAN branch.

We next apply a top-down feedforward operation to integrate spatial context informa-
tion between features. In the spatial dimension of the patch, a global view of the image
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background can provide useful contextual information. However, not all background
information is useful for improving the classification performance, and some meaningless
background noise may even damage the classification accuracy. The network model is
limited by the receptive field of the convolution kernel, and it is often unable to extract the
global context information well. Therefore, we use the local spatial attention mechanism
to enhance the useful local area in the feature to enhance the feature expression of each
pixel. We use maxpooling to reduce the spatial resolution of the feature map, and then
use convolution to build a nonlinear mapping to infer the relationship between pixels to
generate a powerful semantic information mask β1.

β1 = Fmap(βpan) = Conv3×3(Fmax(βpan)) (6)

where Fmap(·) contains two nonlinear operations Conv3×3(·) and Fmax(·), which Fmax(·) is
a maxpooling operation with a stride of 2, and Conv3×3(·) is a convolution operation with
a kernel size of 3. β1 is a one-dimensional feature descriptors: β1 ∈ R2W×2H×1.

Then, we use a top-down feedforward operation to combine high-level masks with
high semantic information and low-level masks with high spatial resolution. Through
convolution and pooling, we get a mask β1 rich in semantic information. However, remote
sensing images have different scales of features, and a single mask often fails to reflect
all features well. When the feature target is too small, the convolved β1 is often difficult
to completely represent the target content. And some features have significant spectral
information, and the shallow high-resolution features can complete the classification. Thus,
we use the bilinear interpolation to increase the size of β1, and then add βpan to obtain a
high-resolution mask β2 with strong semantic information.

β2 = Conc(Fin(β1), Conv1×1(βpan)) (7)

where Fin(·) is a bilinear interpolation operations, and Conc(·) represent the addition
operation.

Subsequently, we use the activation function to get the weight distribution βmask of
the spatial element, which value is distributed between [0, 1].

βmask = σ(β2) (8)

where σ(·) is sigmoid activation function, that role is to normalize the input.
Finally, we element-wise the spatial attention weight βmask with the original feature

maps fpan to obtain a spatial-enhanced feature maps f 1
pan.

f 1
pan = βmask � fpan (9)

3.2.2. Channel Attention Module

As we all know, for different types of ground features, different channel response
levels are different. Each channel map of feature is considered as a feature detector, channel
attention focuses on ‘which’ is meaningful given an input image. By exploiting the inter-
relationship between channel maps, we could emphasize interdependent feature maps
and improve the feature representation of specific semantics. Therefore, we build a global
channel attention module (GCA-module) to explore interdependencies between channels.

The structure of the global channel attention module is illustrated in Figure 4. Let
the input of GCA-module be fms ∈ RW×H×C, where W, H and C are width, height and
channel dimension (i.e., number of filters), respectively. Precisely, we directly calculate the
global channel correlation matrix Mcc (c represents the row of the matrix and c represents
the column of the matrix) from the original features fms ∈ RW×H×C. We reshape fms to
two-dimensional matrix Fcn (n is equal to w× h), which represents spatial pixel intensity
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distribution between global channels. Subsequently, we perform a matrix multiplication
between Fcn and the transpose of FT

nc to obtain a global channel correlation matrix Mcc.

M = Cor( fms) = FFT = Re( fms)× Re( fms)
T (10)

where Cor(·) is a matrix multiplication operation, Re(·) is reshape operation. Our purpose
is to explore the dependence between the matrix F. Here, each element of the matrix F can
be regarded as a class-specific response, and different semantic responses are associated
with each other.

( )Cor  
( )Conv 

( )

( , )M c c
( , , )msf w h c

1 ( , , )msf w h c( ,1)H c ( ,1)ms c 1( ,1)c ( ,1)mask c

Figure 4. The proposed channel attention module (GCA-module) for MS branch.

After obtaining the correlation matrix Mcc of the feature maps, We average the el-
ements in each row of the matrix M to obtain the channel correlation vector HC1. Each
element in the vector H represents the spatial aggregation response of each channel in the
feature map.

Hi1 =
1
c

c

∑
j=1

(Mij) (11)

where Hi1 is the value of the ith column of the vector H and Mij is the value of the ith
column and jth row of the matrix M.

Subsequently, multiply the correlation M and the vector H to obtain the global channel
correlation mask αms. In the matrix multiplication operation, each row of M is element-
wise multiplication by the entire column of H , which is equivalent to a global correlation
comparison of all channels.

αms = M×H (12)

where αms ∈ RC×1.
Next, we use fast 1-D convolution to generate the attention mask α1 by exploring

the dependencies between channels. Since the channels are related to each other, and the
mask αms includes specific global channel information. Therefore, we hope that there is
a correspondence between the mask αms and the attention mask α1. We did not use two
fully-connected layers, but directly used convolution to build a non-linear mapping to
obtain the attention mask. In this way, the dependency between channels is extracted while
avoiding reducing the dimensionality of αms.

α1 = Conv(α) (13)

where Conv(·) is a convolution operation, and α1 ∈ RC×1

Then, we use the activation function to get the weight distribution αmask of the feature
channel, which value is distributed between [0, 1].

αmask = σ(α1) (14)

where σ(·) is sigmoid activation function.
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Finally, we element-wise the channel attention weight αmask with the original feature
maps fms to obtain a channel-enhanced feature maps f 1

ms

f 1
ms = αmask � fms (15)

3.3. A Spatial-Channel Collaborative Attention Network (SCCA-Net)

In this part, based on the proposed above spatial attention module and channel
attention module, we design a spatial spectrum collaborative network (SCCA-Net) for
enhancement of multi-resolution classification. Since the complementary characteristics
of multi-resolution data, we propose an attention collaboration network block. It aims
to extract the characteristics of their respective data while alternate communicate the
commonality information of PAN and MS. We multiply the spatial attention weight of the
PAN branch with the original MS feature map element-wise to obtain a spatially enhanced
MS feature map. Furthermore, in order to avoid the disappearance of the gradient caused
by the network being too deep, we introduce the idea of Densenet [40], which concatenate
the spatially enhanced MS feature map and the channel enhanced MS feature map. While
transmitting the feature map of the shallow network, also brings a gradient cross-level flow.
The proposed network framework as shown in Figure 5, and the details are as follows:

GCA- module

LSA- module

(4 ,4 ,1)panf s s

( , ,4)msf s s ( , , )msf s s c

(4 ,4 , )panf s s n
1 (4 ,4 , )panf s s n

2 (2 ,2 , )panf s s n

1 ( , , )msf s s c 2 ( , ,2 )msf s s c

1Attention block 2Attention block 3Attention block

4 ( , ,4 )msf s s c

4 ( , , )panf s s n

Cross entropy

6 ( , ,4 )msf s s c

6 ( , ,2 )panf s s n

GCA- module GCA- module1 ( , , )fusf s s m

1Fusion block 2Fusion block

Pre- adjustment

2 1 1
( , ,2 )
2 2

fusf s s m
3 1 1

( , ,4 )
4 4

fusf s s m

Classification

(4 ,4 ,1)PAN h w

(4 ,4 ,1)MS h w

Sampling

Figure 5. The proposed a spatial-channel attention enhancement network (SCCA-Net) for multiresolution classification.
The network is divided into four parts: the first is to pre-adjust the feature map; the second is to stack attention blocks for
feature extraction; then the feature fusion is performed; and finally the three fully-connection layers is used for classification.

Data input: According to the above ANTSS Section 3.1 sampling strategy, we will
obtain two different multi-resolution data patches. In this paper, the length (width) ratio of
PAN and MS data is 4:1, so the PAN patch size is (128, 128, 1) and MS patch is (32, 32, 4).
All patches need to be normalized before entering the network.

The pre-adjustment: Before stacking the network modules, we must first perform pre-
network adjustments (including convolution, batch normalization (BN) and rectified linear
units (Relu)) on PAN and MS data to soften the input and improve the feature extraction
effect of subsequent modules.

Stacking attention blocks: We combine the LSA-module of the PAN branch and the GCA-
module of the MS branch to form attention-block and use three attention-block to form a
module stacking layer, which is used as a feature extractor. In particular, we element-wise
the spatial mask of the PAN branch with the original MS feature maps to obtain the spatially
enhanced MS feature maps. Then, concatenate the channel enhancement MS feature map,
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and spatially enhancement MS feature map are used as the input of the next attention block.
In this process, the two branch weights are not shared and independent of each other. Two
attention modules collaborative to enhance the original information advantages of the
respective image data types while further reducing the negative correlation differences of
features. On one branch, the attention masks of the different modules capture different
types of attention, and they are added to their respective features in the form of soft weights.
The shallow mask mainly suppresses the unimportant information such as the background
of the image, and as the network deepens, the mask gradually enhances the important
information of interest.

Feature fusion and classification: To effectively fuse the features of these two branches,
we performed the following operations for the output of the third attention block. In the
third attention block, we no longer concatenate the previous layer features, but directly
import the block as input. We concatenate the output f 6

pan(s, s, 2n) of the PAN branch and
the output f 6

ms(s, s, 4c) of the MS branch to obtain the fusion feature f 1
f us(s, s, m) (m is equal

to 4c + 2n). In the in-depth convolution process, the network is more inclined to capture
high-level semantic information, and they are more class-specific in the channel. So we
only use GCA-module to enhance the channel of the feature map. Through several fully
connected layers, the class probability of the pair of patches is finally estimated. In this
paper, the cross-entropy error used as the ultimate loss function and defined as follows:

C = − 1
N

n

∑
i=1

[yi log(y1
i ) + (1− yi) log(1− yi)] (16)

where n denotes the batch size, yi is the label for the ith input pair, while y1
i is the class

probability for the ith input pair. We train this end-to-end network using the stochastic
gradient descent (SGD) strategy.

4. Experimental Study

In this section, the proposed method will be evaluated on the dataset of different areas,
and we also compare our method with several state-of-art algorithms. The experimental
results and analysis as follow:

4.1. Data Description

In this part, we use four datasets to verify the robustness and effectiveness of the
proposed method. Each dataset of multiresolution in the experiment contains a pair of
corresponding PAN and MS data. The three first data sets (Figure 6a–c) are obtained by the
GaoFen I sensor; the last data set (Figure 6d) is obtained by the QuickBird sensor.

Xi’an Level 1A image set: Figure 6a shows the Level 1A data, which has been calibrated
and radiometrically corrected: processed include data analysis, homogenization radiation
correction, denoising, MTFC, CCD stitching, band registration, etc. It was acquired on 29
August 2015, in Xi’an, China. The MS component consists of 4548× 4541× 4 pixels with a
spatial resolution of 8 m, while the PAN component consists of 18,192 × 18,164 pixels with
a spatial resolution of 2 m. The data was divided into 12 categories, which includes five
kinds of buildings, two kinds of roads, lowvegetation, tree, bareland, farmland, and water.

Huhehaote Level 1A image set: Figure 6b is Level 1A data, which was acquired in
Huhehaote China on 23 May 2015. The MS component consists of 2001× 2101× 4 pixels
with a spatial resolution of 4m, while the PAN component consists of 8004× 8404 pixels
with a spatial resolution of 1 m. The scene was divided into 11 categories, which includes
six kinds of buildings, road, tree, bareland, farmland, and water.

Nanjing Level 1A image set: Figure 6c is Level 1A data, this one acquired in Nanjing
China on 21 April 2015. The MS component consists of 2000× 2500× 4 pixels with a spatial
resolution of 4 m, while the PAN component consists of 8000× 10,000 pixels with a spatial
resolution of 1 m. This data was divided into 11 categories, which includes five kinds of
buildings, two kinds of vegetation, two kinds of roads, bareland, and water.
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Xi’an Ubarn image set: Figure 6d shows the Xi’an Urban area, which acquired in Xi’an,
China, on 30 May 2008. The MS component consists of 800× 830× 4 pixels with a spatial
resolution of 2.44 m, while the PAN component consists of 3200 × 3320 pixels with a
spatial resolution of 0.61 m. This scene was divided into 7 categories, which consist of
building, road, tree, soil, flatland, water, and shadow. Flat land represents all kinds of land
except soil.
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0.58%

0.61%

0.83%

1.32%

1.01%

0.89%

1.85%

3.02%

0.92%

0.79%

87.09%

Water

Road1

Bareland

Vegetation

Building1

Building2

Building3

Farmland

Building4

Building5

Building6

Unlabeled

0.80%

1.57%

1.80%

0.80%

2.43%

2.45%

1.08%

1.22%

1.54%

0.96%

0.80%

84.48%

Water

Road1

Bareland

Vegetation

Building1

Building2

Building3

Building4

Building5

Road2

Lowvegetation

Unlabeled

1.69%

1.58%

1.18%

1.71%
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(a)

(b)
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Figure 6. First column: MS image. Second column: PAN images (The PAN image is reduced to the same size as their MS
image for a more convenient display). Third column: Ground truth image. Last column: The class labels corresponding to the
ground truth image. (a) Xi’an Level 1A image set (4548× 4541 pixels). (b) Huhehaote Level 1A image set (2001× 2101 pixels).
(c) Nanjing Level 1A image set (2000× 2500 pixels). (d) Xi’an Ubarn image set (800× 830 pixels).

The experiments in this paper are running on Workstation with RTX1080Ti 11GB GPU
and 128GB RAM under Ubuntu 16.04 LTS. The proposed network is trained on PyTorch.

4.2. Experimental Setup

For evaluating the classification performance, the metrics including overall accuracy
(OA), average accuracy (AA), and kappa statistic (Kappa) are calculated to perform quan-
titative analysis. Since the PAN data is often tricky to mark, the groundtruth image is
corresponding to its MS data pixel by pixel. Therefore, we first intercept the MS sam-
ple patch from the MS image by ANTSS, and map the centre point of this patch to the
corresponding PAN data; then we intercept the PAN sample patch with it as the centre.
Corresponding to the flow chart of Figure 6, the detailed hyper-parameters of the proposed
SCCA-Net are shown in Table 1. To avoid similar samples input to the test network affect-
ing the accuracy of the final classification result, the test sample patch whose IoU ratio to
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the training sample patch is greater than 0.8 is not input to the network for testing. The
input size of the PAN and MS patches are (4S× 4S; 1) and (S× S; 4), respectively.

Table 1. The Hyper-Parameters of Each Network Layer.

Types Input PAN MS Output

Prejust 4S× 4S, 1
(S× S, 4)

[
Conv2d, 5× 5
BatchNorm

Relu

]  Conv2d, 3× 3
BatchNorm

Relu

 4S× 4S, 3
(S× S, 6)

Attention− block1
4S× 4S, 3
(S× S, 6)


Maxpool

Conv2d, 5× 5
BatchNorm

Relu




Conv2d, 3× 3
BatchNorm

Relu
Conv2d, 3× 3
BatchNorm

Avgpool
Conv1d, 3
Sigmoid


2S× 2S, 6
(S× S, 12)

Interpolation
Conv2d, 1× 1
BatchNorm

Relu



Attention− block2
2S× 2S, 6
(S× S, 12)


Maxpool

Conv2d, 3× 3
BatchNorm

Relu




Conv2d, 3× 3
BatchNorm

Relu
Conv2d, 3× 3
BatchNorm

Avgpool
Conv1d, 3
Sigmoid


S× S, 12

(S× S, 24)
Interpolation
Conv2d, 1× 1
BatchNorm

Relu



Attention− block3
S× S, 12

(S× S, 24)


Maxpool

Conv2d, 3× 3
BatchNorm

Relu




Conv2d, 3× 3
BatchNorm

Relu
Conv2d, 3× 3
BatchNorm

Avgpool
Conv1d, 3
Sigmoid


S× S, 24

(S× S, 48)
Interpolation
Conv2d, 1× 1
BatchNorm

Relu



f usion− block1 S× S, 72



Conv2d, 3× 3
BatchNorm

Relu
Conv2d, 3× 3
BatchNorm

Avgpool
Conv1d, 3
Sigmoid


× 2 1

2 S× 1
2 S, 72
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Table 1. Cont.

Types Input PAN MS Output

f usion− block2 1
2 S× 1

2 S, 72



Conv2d, 3× 3
BatchNorm

Relu
Conv2d, 3× 3
BatchNorm

Avgpool
Conv1d, 3
Sigmoid


× 2 1

4 S× 1
4 S, 144

Avg 1
4 S× 1

4 S, 144 Avgpool 1× 1, 144

f c 1× 1, 144 f c, [144, 36, class] 1× 1, class

In the training of the network, we randomly select 5% of the labeled data of each
category as the training dataset, and the remaining samples are used as the test dataset.
The initial learn rate is 0.001, the weight decay is 0.0005, the iteration number is 50,000, and
the batch size is 64. In order to ensure that the proposed framework is sufficiently variable,
we code 10 times for different random training samples, and take the average result as the
final result for each metric.

4.3. The Comparison and Analysis of Hyper-Parameters

In this section, we make a detailed comparison and analysis of the hyperparameters
in this paper: the selection of kernel size k in GCA-module. Except for different hyperpa-
rameters selected, each set of data is trained and tested applying an SCCA-net with the
same other parameters.

Effect of Kernel Size Selection

As shown in Figure 4, our GCA-module involves a parameter k, which represents
a kernel size of 1D convolution. In this part, we mainly evaluate its effect on our GCA-
module and validate the effectiveness of the proposed selection of kernel size. To this end,
we employ SCCA-net as a backbone network and train them with our GCA-module by
setting k be from 1 to 9. The results are illustrated in Figure 7, from it we have the following
observations.

First, in the quantitative comparison of different data sets, when the size of the
convolution kernel k = 3, the best classification result can be obtained. For the convolution
kernel size k, it represents the number of interactive channels in the feature map. Generally,
it can be expected that larger-sized channels are suitable for remote interactions, while
smaller-sized channels are good for short-term interactions. Since our network has a
relatively shallow number of layers, the number of channels in the feature map is relatively
small. However, when k = 1, it is equivalent to independently learning the weight of
each channel. This shows that attention weights require to consider the relationship
between channels appropriately. Moreover, when k = 5, 7, 9, although the relationship
between channels is considered, the result is not the highest. This shows that the number
of interaction channels and the effectiveness of the attention model does not increase
linearly. The excessive number of interactive channels will be mixed with some negative
channel information, resulting in the attention weight value is not optimal. Finally, when
k = 3, there is a direct correspondence between channels and masks, and smaller-sized
channels are prefer to use smaller-sized convolution kernels. Therefore, we set the size of
the convolution kernel to k = 3.
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Figure 7. Results of our GCA-module with various numbers of k using SCCA-net as backbone
network.

4.4. Performance of The Proposed Sampling Strategy and Attention Module

In this section, taking Xi’an urban images as an example, we do a detailed comparison
and analysis of the proposed adaptive neighbourhood transfer sampling strategy (ANTSS)
and two kinds of attention models, respectively.

4.4.1. Validation of the Proposed Adaptive Neighborhood Transfer Sampling Strategy
(ANTSS) Performance

In this part, we verify the effectiveness of the ANTSS strategy by comparing several
sampling strategies in remote sensing classification tasks. ANTSS adaptively selects the
most appropriate neighbourhood patch base on the surrounding pixel distribution and
adjusts the angle of the patch according to the shape of the object to be classified. Except for
the ACO-SS adaptive determines the size of a patch (patch size S respectively are 12, 16 and
24), the rest of the sampling strategy patches size S is 32. ANTSS∗ use the ANTSS method
to transfer the sample neighbourhood, but use an orthogonal sliding window to crop all
patches evenly. The proportion of training samples selected by these methods is the same.
All sampling strategies use Resnet18 [41] as the backbone network, and network-related
hyper-parameters are also the same for fair.

The results of the experiment are shown in Table 2; it can be seen that our ANTSS
obtained the highest classification result. Comparing ANTSS∗ with Pixel-Centric and
SML-SS, all the results of ANT − SS∗ are better than these two methods, which means
that the neighbourhood information range should be different for different categories. By
transfer the neighbourhood range of the sample to the homogeneous region, we have
obtained patches that are more helpful for network classification. Moreover, comparing
ANTSS∗ with ANTSS, we can see that the classification results of all categories have been
improved, which shows that our adaptive sampling angle can obtain complete texture
structure information to improve the feature expression ability. Therefore, it is unreasonable
for the traditional central sampling strategy in remote sensing images to use orthogonal
sampling angles for all samples. Moreover, the patch neighbourhood information may be
mixed with many other categories of information when the neighbourhood range is fixed,
which will have a negative effect on determining the category of the centre pixel. Since our
ANTSS sampling strategy can effectively avoid the above problems, thus improving the
overall classification performance.
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Table 2. Quantitative comparison over different sampling strategies on the Xi’an Urban image data.

Sampling
Strategies

Pixel-Centric
(S = 32)

SML-SS
(S = 32)

ACO-SS
(S = 12, 16, 24)

ANTSS
(S = 32)

ANTSS*
(S = 32)

c1(%) 97.73 95.76 98.11 99.36 99.45
c2(%) 97.62 97.29 99.91 99.47 99.32
c3(%) 96.74 94.25 99.90 99.14 98.74
c4(%) 95.88 95.73 99.29 99.44 99.07
c5(%) 97.98 98.42 99.81 99.83 99.65
c6(%) 97.85 97.66 98.43 99.66 99.52
c7(%) 98.54 96.35 99.61 99.64 99.46

OA(%) 97.67 96.73 99.08 99.56 99.41
AA(%) 97.48 96.21 99.29 99.51 99.32

Kappa(%) 97.28 94.12 98.88 99.44 99.28

4.4.2. Validation of the Proposed Spatial-Channel Cooperative Attention Network
(SCCA-Net) Performance

In this part, we want to verify whether the proposed modules are more suitable for
our remote-sensing image classification task. Thus, we use several different attention
models (SE-module [30] and CBAM-module [37]) to compare our proposed attention
models (respectively are LSA-Net, GCA-Net, SCCA-Net). Here, the sampling strategy
of these network models is ANTSS, and each pair of comparison models has the same
hyper-parameters and iteration times. The Xi’an Urban data set is used as the input for
these network models, each attention model all uses a dual-branch network, and the same
stacked attention model is used on both branches. In the SCCA-Net, the PAN image of
Xi’an Urban data set is used as the input of the LSA-model and the MS image of Xi’an
Urban data set is used as the input of GCA-Net.

The experimental comparison results are shown in the Table 3, from which we have
the following observation results. Firstly, our LSA-Net achieves higher classification results
than CBAM-Net and SE-Net. Because the training samples of remote sensing images
usually have some differences in the same category, and there are also some similarities
between different categories. When the network tends to be deeper, the ordinary atten-
tion network will easily fall into an optimal local state, which will cause the network to
be unstable after training. Secondly, comparing our GCA-Net and LSA-Net, the former
obtained better classification results. This show that in deep convolution, the network
extracts high-level semantic information features and the channel response between differ-
ent categories is more important. Besides, the SCCA-Net obtained the best classification
results, indicating that different network modules should be designed for different data to
extract more robust feature representations. And the information flow between features can
prevent the network from falling into a local optimum, from better integrating the charac-
teristics of their respective features. Experiments show that our SCCA-Net can extract more
stable features from complex remote sensing data, and the collaborative work between
modules can bring about the flow of gradient information and enhance the classification
performance of the network.
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Table 3. Quantitative comparison over different network models on the Xi’an Urban image data.

Network Models SE-Net CBAM-Net LSA-Net GCA-Net SCCA-Net

c1(%) 96.83 99.16 99.50 99.55 99.50
c2(%) 94.94 99.47 99.71 99.76 99.74
c3(%) 97.94 98.90 98.65 98.67 99.13
c4(%) 93.42 99.13 98.83 98.90 99.08
c5(%) 99.90 99.63 99.79 99.72 99.89
c6(%) 98.86 99.47 99.14 99.15 99.69
c7(%) 98.01 98.40 99.77 99.55 99.64

OA(%) 97.85 99.16 99.38 99.41 99.61
AA(%) 97.13 99.10 99.35 99.28 99.52

Kappa(%) 97.22 99.03 99.33 99.36 99.50

4.5. Performance of Experimental Results and Comparison Algorithm

In this part, we will compare various methods on four data sets to verify the effective-
ness of our proposed method in detail.

4.5.1. Experimental Results with Xi’an Level 1A Images

In this part, taking Xi’an Level 1A Images as an example, we compare the various
methods to verify the effectiveness of the proposed method in detail. Three state-of-the-art
methods, namely DMIL [24], SML-CNN [25] and DBFA-net [27] in this paper are used as
the compared methods. These methods are multiresolution classification methods based on
neural network, which is reasonable and suitable to use them as the comparison algorithms.
For these networks, we follow the experimental setup in their respective papers to achieve
their best results. Moreover, we also designed 3 sets of ablation experiments combining
the current excellent classification modules, namely: Pixel-Centric+SE-Net(Res18) [30],
ANTSS+SE-Net(Res18), and ANTSS+CBAM(Res18) [37]. Here, Pixel-Centric+SE-Net and
ANTSS+SE-Net in Table 4 denotes that SE-model extract the features of the PAN branch and
the MS branch, and then concatenate the features of two branches for final classification.
Besides, Pixel-Centric+SE-Net uses the traditional pixel-centric sampling strategy, and
ANTSS+SE-Net uses our proposed ANTSS sampling strategy. ANTSS+CBAM-Net [37] is
used SA-module to extract features in the PAN branch while use CA-module to extract
features in the MS branch, which also uses the ANTSS sampling strategy. We compared
our SCCA-Net with other methods; the specific analysis is as follows:

Compare Pixel-Centric+SE-Net with ANTSS+SE-net: AS shown in Table 4 and Figure 8.
Based on the same backbone network, the ANTSS+SE-net obtain higher results than SE-Net.
After adding our proposed ANTSS sampling strategy, most of the category accuracy has
been improved. In particular, the accuracy of c2(road1), c4(bareland) and c5(lowvegetation)
are significantly improved, from 88.41% to 90.76%, 86.70% to 89.33%, and 81.55% to
88.62%respectively. It can be seen from the groundtruth map that c2 and c4 are widely
distributed and intertwined between each category, so the original neighbourhood range
does not reflect the true nature of this category well. The results indicate that our ANTSS is
not only feasible on the specific SCCA-Net, but also can be promoted in other networks.
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Table 4. Quantitative Classification Results of Xi’an Level 1A Images.

Methods
Pixel-Centric

(S = 32)
+SE-Net

ANTSS
(S = 32)
+SE-Net

ANTSS
(S = 32)

+CBAM-Net

ACO-SS
(S = 12, 16, 24)
+DBFA-Net

DMIL
(S = 16)

SML-CNN
(S = 16)

ANTSS
(S = 32)

+SCCA-Net

c1(%) 97.23 97.27 97.92 98.78 97.94 97.90 98.75
c2(%) 88.41 90.76 94.88 98.41 83.86 81.5 97.01
c3(%) 92.33 93.74 95.97 92.92 85.48 86.68 96.33
c4(%) 86.70 89.33 93.31 92.04 76.93 87.89 97.78
c5(%) 81.65 88.62 88.81 85.31 76.10 83.34 89.56
c6(%) 91.38 93.78 95.89 99.08 90.49 93.66 99.28
c7(%) 96.06 96.37 96.75 97.85 88.83 94.60 96.30
c8(%) 85.47 88.66 91.24 94.52 91.00 90.42 99.79
c9(%) 90.80 92.73 94.13 98.61 96.33 92.94 96.55
c10(%) 97.66 97.23 97.90 95.76 97.83 95.96 99.53
c11(%) 95.21 96.86 98.11 96.84 96.82 98.10 96.79
c12(%) 89.04 92.71 93.49 98.12 92.35 92.95 96.74

OA(%) 92.89 94.32 95.35 95.91 91.91 92.88 97.13
AA(%) 92.09 93.71 94.51 95.69 89.50 91.34 96.53

Kappa(%) 91.71 93.15 94.17 94.70 90.82 91.92 96.74
Test Time(s) 600.70 721.41 857.16 1125.78 900.56 702.96 2061.31

(i) (j)

(a) (b) (c) (d)

(e) (f) (g) (h)

(k) (l)

Figure 8. Classification maps of different methods on the Xi’an Level 1A Images (4548× 4541), each method has two
classification maps: one is image with ground truth, while the other is overall image. (a,b) Pixel-Centric+SE-Net(Res18).
(c,d) ANTSS+SE-Net(Res18). (e,f) ACO-SS+DBAF-Net. (g,h) DMIL. (i,j) SML-CNN. (k,l) ANTSS+SCCA-Net.
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And it is noted that due to the limited performance of the SE-module, sampling strat-
egy does not raise too much accuracy, some categories obtained lower accuracy. Compared
with the other results in Table 4, the overall OA, AA, and Kappa of the above two methods
are not high. So we also need some network modules with better performance to classify.

Compare SCCA-Net with ANTSS+SE-Net: From the Table 4, our SCCA-Net gets the
highest classification results in most categories, and the overall accuracy (OA), Average
accuracy (AA) and Kappa of SCCA-Net are also the highest. This shows that SCCA-
Net combines the advantages of ANTSS and attention module so that the classification
accuracy can be further improved. However, the accuracy of c7(tree) and c11(building4)
in SCCA-Net is lower than that of ANSS+SE-Net. Specifically, the accuracy of c7(tree)
and c11(building4) is slightly lower 0.06 and 0.07 than ANSS+SE-Net, respective. Further
inspection of the classification results of c7 reveals that the network divides part of c5
into c7. We analyze that because the spectral characteristics of these categories are very
similar, and the spatial scale differences are relatively small. It is difficult for the network
to distinguish them completely. Moreover, the accuracy of c11 in our classification network
is not relatively high, which may be because our network suppresses the water category
too much in the process of channel enhancement, resulting in low classification accuracy.

Compare SCCA-Net with ANTSS+CBAM: As above, the SCCA− NET∗ obtained better
results than CBAM(Res18) based on the same central pixel sampling strategy, the accu-
racy of most categories has improved significantly. Our SCCA-Net makes up for the
shortcomings of the general attention network that is easy to fall into local optimum, and
enhances the feature extraction ability to deal with complex remote-sensing patches. The
accuracies of some categories (e.g., c5(lowvegetation), c8(building1), c10(building3)) have
been improved much. Since their information is more comfortable confuse with other
categories, and our SCCA-Net uses different attention modules to extract the respective
data characteristics of multi-resolution. The spatial texture feature of the category is ex-
tracted through the LSA-module and mapped to the MS feature maps, which enhances its
spatial characteristics, and uses GCA-module to adjust the response of the feature channel
to complete the classification of difficult categories.

However, the accuracy of our SCCA-Net in c7(tree), and c11(building4) is slightly
lower than that of ANSS+CBAM. Through the analysis of the confusion matrix of the
classification results, we found that the classification accuracy of c7(tree) decreased mainly
because our network misclassified some c5(lowvegetation) as c7(tree). Since the category
difference between c5(lowvegetation) and c7(tree)in multiresolution images is minimal,
they are distinguished mainly by geographic location information and some spatial texture
information. Therefore, when we use the PAN feature spatial detail information to enhance
the spatial resolution of MS feature while improving the network’s ability to discriminate
c5(lowvegetation) as c7(tree), it also produces a part of misclassified samples.

Compare SCCA-Net with DBFA-Net, DMIL, and SML-CNN: Moreover, our SCCA-Net
is also superior to the results of the three state-of-the-art remote sensing image classifica-
tion methods. DMIL respectively uses the stacked-DCNN model to extract the features
of PAN data, and the stacked-Auto-Encoders (SAE) model extracts the features of MS
data. However, the network is relatively shallow, and it is not able to adequately extract
robust and significant feature representations when dealing with remote sensing data with
complex characteristics. Therefore, the accuracy of most categories of DMIL is lower than
SCCA-Net. SML-CNN first use the six local regions of the superpixel (four corner regions,
an original region and a central region) as input, and then designed six-multiple CNN
model for feature extraction, finally, it used the multi-layer Auto-Encodering to fuse the
output of the network for classification. Compared with DMIL, it obtained better results,
but it has very low accuracy at categories with less training samples (e.g., c2(road1): 0.815%,
c3(road2): 0.8668%, c4(bareland): 0.8789%, c5(lowvegetation): 0.8334%).

It is worth noting that ACO-SS + DBAF-Net first adaptively generates multi-scale
training samples according to the texture structure of the image, and then uses spatial and
channel attention mechanisms to extract the features of PAN and MS data respectively.
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Therefore, the classification accuracy of most ACO-SS + DBAF-Net categories is higher
than that of DMIL and SML-CNN. However, due to the external differences between MS
and PAN data, the features extracted by DBAF-Net are also very different. Therefore, the
overall classification performance of the network is lower than our SCCA-Net.

Test time: Finally, we also compared the efficiency of all algorithms, such as DMIL,
SML-CNN and ACO-SS + DBAF-Net. Among these algorithms, our running time is the
longest. Because we use a attention mechanism to enhance feature representation, the
network structure is more complicated. At the beginning of the design of the network, our
goal was to use different attention module for different remote sensing data. Moreover,
we added branches of information flow between the two attention modules to reduce the
differences between the two while maintaining the unique characteristics of each data. It
does improve not only the accuracy of network classification but also brings additional
computational costs. So our next research goal is how to maintain high precision while
further improving the efficiency of the algorithm.

4.5.2. Experimental Results with Huhehaote Level 1A Images

The comparison of the results of the other three data set is similar to the Xi’an Level
1A data set. For the three datasets, the SCCA-Net obtains the highest AA, OA, and Kappa.

The quantitative and qualitative results of the Huhehaote 1A level data set are
shown in the Table 5 and Figure 9. By comparison, the classification results of c2(road1),
c3(barland) and c6(building2) are relatively poor, and they belong to the more difficult
categories in all categories. This result indicates that we need to improve the discrimina-
tion ability of these class features through precise strategies. Through the analysis of the
groundtruth map and the classification result, it can be seen that c2(road1) is widely dis-
tributed and interleaved with multiple categories, and it is easy to misclassify it according
to the ordinary method. The experimental results of our method show that ANTSS and
SCCA-Net all achieved more significant improvements in these categories. The accuracy of
most categories of SCCA-Net has reached the highest level, but some categories are slightly
less effective. We think it may be due to data fusion that the discriminative power of the
features of these categories is reduced, thereby reducing the classification results.

Table 5. Quantitative Classification Results of Huhehaote Level 1A Images.

Methods
Pixel-Centric+

(S = 32)
+SE-Net

ANSS+
(S = 32)
+SE-Net

ANTSS
(S = 32)

+CBAM-Net

ACO-SS+
(S = 12, 16, 24)
+DBFA-Net

DMIL
(S = 16)

SML-CNN
(S = 16)

ANSS+
(S = 32)

+SCCA-Net

c1(%) 98.48 99.34 99.28 99.21 95.61 99.18 98.84
c2(%) 88.11 90.36 94.02 92.24 91.25 91.04 94.72
c3(%) 91.31 94.45 96.01 94.04 92.53 93.14 95.37
c4(%) 92.12 95.13 95.43 97.60 92.35 91.59 96.24
c5(%) 90.41 94.28 94.82 99.97 91.91 92.74 98.09
c6(%) 94.69 95.98 95.64 91.14 92.40 94.72 96.12
c7(%) 90.88 95.76 97.17 96.11 97.21 91.37 98.84
c8(%) 89.61 89.42 96.97 96.42 98.30 95.48 96.57
c9(%) 88.70 92.69 95.14 92.60 92.15 93.41 97.63
c10(%) 94.49 93.81 95.47 92.27 84.09 92.99 96.93
c11(%) 93.45 94.37 93.73 97.51 92.38 88.82 98.11

OA(%) 92.20 94.78 95.62 94.80 92.60 93.20 96.80
AA(%) 91.89 94.32 95.79 95.38 92.74 93.13 96.95

Kappa(%) 90.63 93.87 95.09 94.18 91.72 92.39 96.42
Test Time(s) 198.76 226.04 362.02 454.21 322.94 346.86 386.28
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(g) (h)
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(a) (b)
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Figure 9. Classification maps of different methods on the Hohhot Level 1A Images(2001× 2101), each method has two
classification maps: one is image with ground truth, while the other is overall image. (a,b) Pixel-Centric+SE-Net(Res18).
(c,d) ANTSS+SE-Net(Res18). (e,f) ACO-SS+DBAF-Net. (g,h) DMIL. (i,j) SML-CNN (k,l) ANTSS+SCCA-Net.

4.5.3. Experimental Results with Nanjing Level 1A Images

For the Nanjing 1A level data set, the quantitative and qualitative results are shown in
Table 6 and Figure 10. It can be seen that c2(road1) and c11(lowvegetation) belong to the
more difficult category in all categories. Since c2(road1) is widely distributed and adjacent
to other categories, if a traditional sampling strategy is used, it is easy to obtain patches
with different categories but the similar neighbourhood. And the category features of
c2(road1) and c10(road2) are very similar, which makes the network easy to fall into the
local optimum and lead to misclassification.

c11(lowvegetation) is similar to c4(vegetation) in terms of spectrum information and
geographic shape, when the discriminative performance of the network is poor, they
cannot be distinguished well. We use ANTSS to generate the training data set, which
can well separate some pixels that generate confusing samples. Moreover, our SCCA-Net
combining the channel and spatial attention mechanism can enhance the extracted feature
representation and improve the discriminative representation of the network. Our methods
obtained the highest OA, AA, KAPPA in most categories and the highest classification
accuracy in most categories. But we did not achieve the highest accuracy on c3(bareland)
and c10(road2), which may be because the spectral characteristics of these categories are
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pronounced, and the additional spatial detail information leads to network performance
decline.

Table 6. Quantitative Classification Results of Nanjing Level 1A Images.

Methods
Pixel-Centric+

(S = 32)
+SE-Net

ANSS+
(S = 32)
+SE-Net

ANTSS
(S = 32)

+CBAM-Net

ACO-SS+
(S = 12, 16, 24)
+DBFA-Net

DMIL
(S = 16)

SML-CNN
(S = 16)

ANSS+
(S = 32)

+SCCA-Net

c1(%) 95.95 96.80 96.85 96.97 96.10 95.87 96.01
c2(%) 78.80 93.40 92.85 93.69 87.22 89.35 94.92
c3(%) 87.25 96.85 97.89 98.36 94.16 95.97 96.53
c4(%) 95.20 94.81 96.23 97.16 90.76 94.73 98.00
c5(%) 89.34 97.36 97.07 96.28 94.80 95.96 96.82
c6(%) 89.55 99.41 99.31 98.12 97.77 96.77 99.55
c7(%) 94.42 94.89 94.17 97.59 90.65 93.60 98.58
c8(%) 85.09 98.25 97.75 99.16 95.56 93.36 98.09
c9(%) 95.19 96.61 96.94 95.36 92.78 91.65 98.30
c10(%) 93.17 97.01 96.97 97.02 92.76 91.98 96.69
c11(%) 87.48 90.72 92.77 75.23 77.87 86.36 93.54

OA(%) 91.98 95.61 95.57 95.71 91.60 93.64 97.16
AA(%) 90.55 95.18 96.26 94.99 91.86 93.24 96.94

Kappa(%) 90.71 94.91 94.86 95.03 90.24 92.62 96.71
Test Time(s) 187.16 178.55 425.04 306.15 339.95 226.03 395.64

(a) (b) (c) (d)

(k) (l)

(e) (f) (g) (h)

(i) (j)

Figure 10. Classification maps of different methods on the Nanjing Level 1A Images (2000× 2500), each method has two
classification maps: one is image with ground truth, while the other is overall image. (a,b) Pixel-Centric+SE-Net(Res18).
(c,d) ANTSS+SE-Net(Res18). (e,f) ACO-SS+DBAF-Net. (g,h) DMIL. (i,j) SML-CNN (k,l) ANTSS+SCCA-Net.
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4.5.4. Experimental Results with Xi’an Urban Images

For the Xi’an Urban data set, the quantitative and qualitative results are shown
in Table 7 and Figure 11. Because the data itself is small, ACO-SS+DBAF-Net has al-
most reached the upper-performance limit, so our SCCA-NET improvement is not appar-
ent. Among all categories, the classification results of c3(road) and c7(water) are slightly
lower than other categories. Through ground facts, we can know that c3(road) is widely
distributed and irregular in shape, and often closely connected with c1(building). Our
ANTSS Sampling strategy can solve the problem of unequal sample distribution, which
can improve the recognition ability of the network through SCCA-Net. Finally, because
there are fewer categories of Xi’an features, and each category is relatively simple com-
pared with the above data set, our SCCA-Net has obtained high experimental results.
Although our method did not get the highest result on c7(water), the accuracy of the
highest ACO− SS + DBAF− Net is 99.61%, the difference not big.

(a) (b) (c) (d)

(k) (l)

(e) (f) (g) (h)

(i) (j)

Figure 11. Classification maps of different methods on the Xi’an Urban area Images(800× 830), each method has two
classification maps: one is image with ground truth, while the other is overall image. (a,b) Pixel-Centric+SE-Net(Res18).
(c,d) ANSS+SE-Net(Res18). (e,f) ACO-SS+DBAF-Net. (g,h) DMIL. (i,j) SML-CNN (k,l) ANSS+DBSCCA-Net.
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Table 7. Quantitative Classification Results of Xi’an Urban area Images.

Methods
Pixel-Centric+

(S = 32)
+SE-Net

ANSS+
(S = 32)
+SE-Net

ANTSS
(S = 32)

+CBAM-Net

ACO-SS+
(S = 12, 16, 24)
+DBFA-Net

DMIL
(S = 16)

SML-CNN
(S = 16)

ANSS+
(S = 32)

+SCCA-Net

c1(%) 96.11 98.32 98.86 98.11 93.68 92.77 98.68
c2(%) 92.20 96.12 99.36 99.91 95.15 95.29 99.97
c3(%) 94.46 98.46 98.87 99.90 96.43 92.25 99.61
c4(%) 91.13 96.81 97.88 99.29 93.47 92.27 99.38
c5(%) 99.62 99.67 99.75 99.81 98.59 98.81 99.88
c6(%) 98.80 99.07 99.01 98.43 96.65 97.66 99.70
c7(%) 98.82 98.87 99.71 99.61 98.67 97.35 99.58

OA(%) 96.25 98.62 99.08 99.08 96.09 95.20 99.65
AA(%) 95.88 98.19 99.06 99.29 94.89 95.58 99.51

Kappa(%) 96.11 98.23 98.81 98.88 93.21 94.69 99.58
Test Time(s) 113.80 77.54 94.26 364.79 263.19 165.57 324.25

5. Conclusions

In this paper, we propose spatial-channel collaborative attention enhance network
for multiresolution remote sensing image classification. And experiments on several data
sets have verified the effectiveness of our ANTSS strategy, LSA-module and GCA-module.
However, our algorithm still has some shortcomings. Firstly, before using ANTSS to
generate training samples, we use the SLic-superpixel algorithm to perform superpixel
segmentation. Therefore, our method needs a good superpixel algorithm to segment mul-
tiresolution data. Secondly, due to the SCCA-Net is more complicated, the computational
complexity is relatively high, so the running time is longer. In the future, we will focus on
how to build a more concise channel-spatial collaborative attention module while main-
taining the same accuracy to improve the efficiency of multi-resolution remote sensing
image classification.

Author Contributions: Validation, J.S. and L.J.; writing—original draft preparation, J.Z.; writing—
review and editing, H.Z.; Funding acquisition, W.M.; Supervision, W.M., Y.W. and B.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the State Key Program of National Natural Science of
China under Grant 61836009, in part by the National Natural Science Foundation of China under
Grant U1701267, Grant 61671350 and Grant 62006179, in part by the China Postdoctoral Science
Special funded project under Grant 2020T130492, and in part by the China Postdoctoral Science
Foundation funded project under Grant 2019M663634.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nunez, J.; Otazu, X.; Fors, O.; Prades, A.; Pala, V.; Arbiol, R. Multiresolution-based image fusion with additive wavelet

decomposition. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1204–1211. [CrossRef]
2. Jia, X.; Richards, J.A. Cluster-space representation for hyperspectral data classification. IEEE Trans. Geosci. Remote Sens. 2002,

40, 593–598.
3. Li, S.; Kang, X.; Fang, L.; Hu, J.; Yin, H. Pixel-level image fusion:A survey of the state of the art. Inf. Fusion 2017, 33, 100–112.

[CrossRef]
4. Israa, A.; Javier, M.; Miguel, V.; Rafael, M.; Katsaggelos, A. A survey of classical methods and new trends in pansharpening of

multispectral images. EURASIP J. Adv. Signal Process. 2011, 1, 79.
5. Giuseppe, M.; Davide, C.; Luisa, V.; Giuseppe, S. Pansharpening by Convolutional Neural Networks. Remote Sens. 2016, 8, 594.
6. Zhong, J.; Yang, B.; Huang, G.; Zhong, F.; Chen, Z. Remote Sensing Image Fusion with Convolutional Neural Network.

Sens. Imaging 2016, 17, 10. [CrossRef]
7. Liu, Y.; Chen, X.; Wang, Z.; Wang, Z.; Jane, K.W.; Wang, X. Deep learning for pixel-level image fusion: Recent advances and

future prospects. Inf. Fusion 2018, 42, 158–173. [CrossRef]

http://dx.doi.org/10.1109/36.763274
http://dx.doi.org/10.1016/j.inffus.2016.05.004
http://dx.doi.org/10.1007/s11220-016-0135-6
http://dx.doi.org/10.1016/j.inffus.2017.10.007


Remote Sens. 2021, 13, 106 26 of 27

8. Shackelford, A.K.; Davis, C.H. A hierarchical fuzzy classification approach for high-resolution multispectral data over urban
areas. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1920–1932. [CrossRef]

9. Moser, G.; Serpico, S.B. Joint classification of panchromatic and multispectral images by multiresolution fusion through Markov
random fields and graph cuts. In Proceedings of the 2011 17th International Conference on Digital Signal Processing (DSP),
Corfu, Greece, 6–8 July 2011; pp. 1–8.

10. Pham, M.; Mercier, G.; Michel, J. Pointwise Graph-Based Local Texture Characterization for Very High Resolution Multispectral
Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1962–1973. [CrossRef]

11. Moser, G.; De Giorgi, A.; Serpico, S.B. Multiresolution Supervised Classification of Panchromatic and Multispectral Images by
Markov Random Fields and Graph Cuts. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5054–5070. [CrossRef]

12. Zhang, J.; Li, T.; Lu, X.; Cheng, Z. Semantic Classification of High-Resolution Remote-Sensing Images Based on Mid-level
Features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2343–2353. [CrossRef]

13. Mao, T.; Tang, H.; Wu, J.; Jiang, W.; He, S.; Shu, Y. A Generalized Metaphor of Chinese Restaurant Franchise to Fusing Both
Panchromatic and Multispectral Images for Unsupervised Classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4594–4604.
[CrossRef]

14. Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of Multispectral Images to High Spatial Resolution: A Critical Review
of Fusion Methods Based on Remote Sensing Physics. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1301–1312. [CrossRef]

15. Tu, T.; Su, S.; Shyu, H.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 177–186. [CrossRef]
16. Tu, T.; Huang, P.S.; Hung, C.; Chang, C. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS

imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 309–312. [CrossRef]
17. Wold, S.; Esbensen, K.H.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]
18. Candes Emmanuel, J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis. J. ACM 2011, 58, 11.
19. Huang, F.; Yan, L. Study on the Hyperspectral Image Fusion Based on the Gram Schmidt Improved Algorithm. Inf. Technol. J.

2013, 12, 6694–6701. [CrossRef]
20. Pradhan, P.S.; King, R.L.; Younan, N.H.; Holcomb, D.W. Estimation of the Number of Decomposition Levels for a Wavelet-Based

Multiresolution Multisensor Image Fusion. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3674–3686. [CrossRef]
21. Zheng, S.; Shi, W.; Liu, J.; Tian, J. Remote Sensing Image Fusion Using Multiscale Mapped LS-SVM. IEEE Trans. Geosci.

Remote Sens. 2008, 46, 1313–1322. [CrossRef]
22. Yang, S.; Wang, M.; Jiao, L. Fusion of multispectral and panchromatic images based on support value transform and adaptive

principal component analysis. Inf. Fusion 2012, 13, 177–184. [CrossRef]
23. Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.; Restaino, R.; Wald, L. A Critical Comparison

Among Pansharpening Algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [CrossRef]
24. Liu, X.; Jiao, L.; Zhao, J.; Zhao, J.; Zhang, D.; Liu, F.; Yang, S.; Tang, X. Deep Multiple Instance Learning-Based Spatial Spectral

Classification for PAN and MS Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 461–473. [CrossRef]
25. Zhao, W.; Jiao, L.; Ma, W.; Zhao, J.; Zhao, J.; Liu, H.; Cao, X.; Yang, S. Superpixel-Based Multiple Local CNN for Panchromatic

and Multispectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4141–4156. [CrossRef]
26. Ma, W.; Zhang, J.; Wu, Y.; Jiao, L.; Zhu, H.; Zhao, W. A Novel Two-Step Registration Method for Remote Sensing Images Based

on Deep and Local Features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4834–4843. [CrossRef]
27. Zhu, H.; Ma, W.; Li, L.; Jiao, L.; Yang, S.; Hou, B. A Dual Branch Attention fusion deep network for multiresolution remote

Sensing image classification. Inf. Fusion 2020, 58, 116–131. [CrossRef]
28. Bergado, J.R.; Persello, C.; Stein, A. Recurrent Multiresolution Convolutional Networks for VHR Image Classification. IEEE Trans.

Geosci. Remote Sens. 2018, 56, 6361–6374. [CrossRef]
29. Zhu, H.; Jiao, L.; Ma, W.; Liu, F.; Zhao, W. A Novel Neural Network for Remote Sensing Image Matching. IEEE Trans. Neural

Netw. Learn. Syst. 2019, 30, 2853–2865. [CrossRef]
30. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze and Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell.2019,

42, 2011–2023. [CrossRef]
31. Carrasco, M. Visual attention: The past 25 years. Vis. Res. 2011, 51, 1484–1525. [CrossRef]
32. Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal.

Mach. Intell. 1998, 20, 1254–1259. [CrossRef]
33. Beuth, F.; Hamker, F.H. A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Vis. Res.

2015, 116, 241–257. [CrossRef] [PubMed]
34. Gao, Z.; Xie, J.; Wang, Q.; Li, P. Global Second Order Pooling Convolutional Networks. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–21 June 2019.
35. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural

Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
14–19 June 2020.

36. Roy, A.G.; Navab, N.; Wachinger, C. Recalibrating Fully Convolutional Networks With Spatial and Channel ‘Squeeze and
Excitation’ Blocks. IEEE Trans. Med. Imaging 2019, 38, 540–549. [CrossRef] [PubMed]

37. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

http://dx.doi.org/10.1109/TGRS.2003.814627
http://dx.doi.org/10.1109/JSTARS.2014.2386902
http://dx.doi.org/10.1109/TGRS.2016.2547027
http://dx.doi.org/10.1109/JSTARS.2016.2536943
http://dx.doi.org/10.1109/TGRS.2016.2545927
http://dx.doi.org/10.1109/TGRS.2007.912448
http://dx.doi.org/10.1016/S1566-2535(01)00036-7
http://dx.doi.org/10.1109/LGRS.2004.834804
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.3923/itj.2013.6694.6701
http://dx.doi.org/10.1109/TGRS.2006.881758
http://dx.doi.org/10.1109/TGRS.2007.912737
http://dx.doi.org/10.1016/j.inffus.2010.09.003
http://dx.doi.org/10.1109/TGRS.2014.2361734
http://dx.doi.org/10.1109/TGRS.2017.2750220
http://dx.doi.org/10.1109/TGRS.2017.2689018
http://dx.doi.org/10.1109/TGRS.2019.2893310
http://dx.doi.org/10.1016/j.inffus.2019.12.013
http://dx.doi.org/10.1109/TGRS.2018.2837357
http://dx.doi.org/10.1109/TNNLS.2018.2888757
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://dx.doi.org/10.1016/j.visres.2011.04.012
http://dx.doi.org/10.1109/34.730558
http://dx.doi.org/10.1016/j.visres.2015.04.004
http://www.ncbi.nlm.nih.gov/pubmed/25883048
http://dx.doi.org/10.1109/TMI.2018.2867261
http://www.ncbi.nlm.nih.gov/pubmed/30716024


Remote Sens. 2021, 13, 106 27 of 27

38. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019; pp. 3146–3154.

39. Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. CCNet: Criss-Cross Attention for Semantic Segmentation.
In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019; pp. 603–612.

40. Huang, G.; Liu, Z.; Der Maaten, L.V.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE
Conference On Computer Vision And Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

41. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.


	Introduction
	Related Work
	Sampling Strategy
	Attention Module

	Methodology
	Adaptive Neighborhood Transfer Sampling Strategy
	Spatial Attention Module and Channel Attention Module
	Spatial Attention Module
	Channel Attention Module

	A Spatial-Channel Collaborative Attention Network (SCCA-Net)

	Experimental Study
	Data Description
	Experimental Setup
	The Comparison and Analysis of Hyper-Parameters
	Performance of The Proposed Sampling Strategy and Attention Module
	Validation of the Proposed Adaptive Neighborhood Transfer Sampling Strategy (ANTSS) Performance
	Validation of the Proposed Spatial-Channel Cooperative Attention Network (SCCA-Net) Performance

	Performance of Experimental Results and Comparison Algorithm
	Experimental Results with Xi'an Level 1A Images
	Experimental Results with Huhehaote Level 1A Images
	Experimental Results with Nanjing Level 1A Images
	Experimental Results with Xi'an Urban Images


	Conclusions
	References

