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Abstract: Understanding how delta islands grow and change at contemporary, interannual timescales
remains a key scientific goal and societal need, but the high-resolution, high frequency morphodynamic
data that would be most useful for this are as yet logistically prohibitive. The recorded water levels
needed for relative elevation analysis are also often lacking. This paper presents a new approach
for hindcasting intertidal marsh-top elevations (HIME) to resolve ecogeomorphic change, even in a
young, rapidly changing fluvial delta setting, at sub-decadal temporal resolution and at the spatial
resolution of widely available optical remote sensing imagery (e.g., 30 m Landsat). The HIME method
first calculates: (i) the probability of land exposure in a set of historical imagery from a user-defined
discrete timespan (e.g., months or years); (ii) the probability of water level non-exceedance from
water level records, which need not be complete nor coincident with the imagery; and (iii) the
systematic variation in local mean water level with distance along the primary hydraulic gradient.
The HIME method then combines these inputs to estimate a marsh-top elevation map for each
historical timespan of interest. The method was developed, validated, applied, and results analyzed
to investigate time-lapse evolution of the Wax Lake Delta in Louisiana, USA, every three years,
over two decades (1993–2013). The hindcast maps of delta island extents and elevations evidenced
ecogeomorphic system self-organization around four stable attractors, or elevation platforms, at about
−0.3 m (subtidal), 0.2 m, 0.4 m, and 0.9 m (supratidal) NAVD88. The HIME results also yielded a time
series of net subaerial sediment accumulation, and specific locations and magnitudes of gains and
losses, at scales from 30 m to delta-wide (~100 km3) and 6 to 21 years. Average subaerial net sediment
accumulation at the Wax Lake Delta (WLD) was estimated as 0.6 cm/yr during the study period.
Finally, multiple linear regression models were successfully trained on the HIME elevation maps
to model evolving delta island morphologies based on simple geometric factors, such as distance
down-delta and position on a delta island; the models also successfully reproduced an average delta
topset slope of 1.4 cm. Overall, this study’s development and application of the HIME method added
detailed insights to recent, transient ecogeomorphological change at the WLD, and demonstrated
the potential of the new approach for accurately reconstructing past intertidal topographies and
dynamic change.

Keywords: delta; freshwater wetland; tidal wetland; Wax Lake Delta; ecogeomorphology; water-line
method; marsh elevation; sedimentation; multiple stable states
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1. Introduction

Surface elevation is a geomorphologically and ecologically important variable in fluvial, floodplain,
tidal, marsh, and delta environments. Sediment elevations high enough to experience regular subaerial
exposure facilitate vegetation colonization. Enhanced vegetation growth and lateral vegetation
expansion help stabilize sediments. Vegetation further aids sediment trapping at, and accretion to, the
elevations suitable for its growth, closing the loop of a sediment-vegetation eco-geomorphological
positive feedback. Sediment erosion between vegetation patches makes eroding areas less hospitable
for vegetation colonization, while also providing part of the sediment source for nearby accumulation
among vegetation, forming a second positive feedback loop, but in the opposite sense. Together,
these two linked ecogeomorphological feedbacks are thought to create “stable attractors” of marsh
elevation, i.e., elevations to which marshes will accrete, from slightly lower elevations, or erode,
from slightly higher elevations. When sufficiently strong, these feedbacks lead to a wetland system
self-organizing into discrete and spatially contrasting (i.e., patterned) vegetated and non-vegetated
areas, or multiple vegetated and non-vegetated sediment platforms. Mathematically, the balance
of accretion and erosion at a stable attractor should satisfy the condition that the vertical rate of
elevation change over time is zero, i.e., dz/dt ≈ 0. Geomorphic stable attractors have therefore been
diagnosed empirically by the resulting symptom of sediment accumulation at specific (attractor) marsh
elevations and loss at intervening (erosional) elevations. This theory and various empirical cases
of these phenomena were reviewed for tidal wetlands by Moffett et al. (2015) [1] and the feedback
mechanisms thoroughly synthesized across fluvial and wetland settings by Larsen (2019) [2]. Although
now fairly widely adopted to describe quiescent freshwater and saline tidal marsh settings, it is not
yet clear if strongly advective fluvial settings, such as a young, prograding fluvial delta, can similarly
exhibit eco-geomorphological elevation differentiation, especially over the short interannual to decadal
timescales one might think to be dominated by strong exogenous forcing, such as hurricanes and major
river floods [3–6].

For a young, rapidly prograding delta, island formation initially occurs subaqueously, governed by
hydrodynamics and aqueous sediment transport. Flow expansion and deceleration where channelized
flow transitions into a larger body of water induce sediment deposition, forming a mouth bar [7,8].
The location of the mouth bar, which sets the initial location for island formation, is strongly controlled
by water velocity and depth and weakly controlled by grain size [8,9]. Field studies suggest that this
jet deposit model initiates mounded island forms, with their thickest deposits at the upstream end
and along the central island axis [10]. Flow splitting around the mouth bar causes channel bifurcation
and levee development behind the bar [8,9]. Deltas exhibit strong morphodynamic coupling between
surface elevation, water flow, and sediment deposition or erosion [11,12]. Bed or bar elevation controls
the depth and frequency of inundation, which in turn affect bed shear stress and the amount and
type of sediment available for deposition at a given location [13–15]. These processes are reviewed by
Fagherazzi et al. (2015) [16], broader delta-forming processed by Ericson et al. (2006) [17], and specific
mechanisms of delta sedimentation by Olliver et al. (2020) [18].

Once delta bars accrete to a level near or above mean water level, emergent plants are able to
colonize the nascent islands. Wetland vegetation increases net mineral sedimentation by increasing bed
roughness, slowing water velocity, and decreasing eddy diffusivity, thereby promoting particle settling
and decreased resuspension [19–21]. Studies in non-delta marshes have correlated sedimentation
rates with vegetation cover, though elevation and proximity to tidal channels are also factors [22,23];
results have been highly variable [24]. For example, if vegetation density, roughness, or height is
sufficient to limit flow and transport across the marsh platform, vegetation can have an opposite,
sediment-excluding, effect on wetland islands [18,25]. Cohesive and non-cohesive sediments may also
exhibit contrasting behavior with respect to vegetation density and fluvial discharge: non-cohesive
sediment accumulation may decrease with increased vegetation density and be insensitive to discharge,
whereas cohesive sediment accumulation may increase with increased vegetation density and slightly
decrease with increased discharge [25]. These conundrums further inspire this study to investigate
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whether a young, prograding fluvial delta setting, especially one with a high sand fraction among
its sediment load, can self-organize according to multiple stable eco-geomorphological attractors, in
reality, or whether at short, inter-annual to decadal timescales, exogenous forces will overwhelm local
vegetation-sedimentation feedback mechanisms.

If eco-geomorphological feedbacks are successful at stabilizing and helping to endogenously
organize delta marshes, the combination of trapping and erosive feedbacks should lead to
self-perpetuating sediment platforms at the discrete elevations of the eco-geomorphological stable
attractor(s). A system may theoretically exhibit bi-stable states, i.e., simultaneously attract at different
spatial locations within the domain of interest to one high and one low elevation; or a system may
exhibit multiple stable states, with more than two stable attractors, each expressed simultaneously at
different locations in the study domain. Note, herein we use the wording “multiple stable attractors”
to refer to the co-existence of several discrete elevation platforms at different locations within one
study domain, i.e., different marsh elevations reinforced by sediment-vegetation feedbacks among
several vegetation species; this contrasts with the term “alternative stable states,” which we would
reserve for describing potentially interchangeable but catastrophic whole-ecosystem shifts of the entire
study domain of interest, e.g., subaerial marshland fully collapsing to subaqueous mudflat or two
completely alternative patterns of ecosystem self-organization [1,26].

Although widely explored in theoretical models and in select studies of intertidal salt marshes,
mangroves, mudflats, and mussel beds [1], only a few studies have yet tested the possibility of fluvial
deltas expressing multiple stable eco-geomorphological states. All such studies that we were able to
find have used the young Wax Lake Delta (WLD) near Morgan City, Louisiana, USA as the focus of
investigation. Olliver and Edmonds (2017) used optical remote sensing data and field surveying to
identify two stable states at the WLD, low elevation water and high elevation marsh, and the “land
building succession” between them, via which water converted to marsh over time (1985–2015) [27].
Wagner et al. (2017) identified two intermediate-elevation platforms and one geomorphic stable
attractor (dz/dt = 0), based on WLD elevation changes between 2009 and 2013 LIDAR surveys [28].
Ma et al. (2018) found three elevation/vegetation zones that expressed different relations between
elevation and LIDAR-derived biomass volume [29]. Data from a few additional studies may also
indirectly suggest multiple stable states: Bevington and Twilley’s (2018) findings of at least two
discrete elevations of contrasting soil organic matter accumulation [30], O’Connor and Moffett’s (2015)
notes of at least two different elevation platforms with contrasting vegetation zones and sediment
properties [31], and Carle et al. (2015) clearly mapping several distinct elevation-aligned vegetation
zones at WLD [32]. A broader review of WLD geomorphic and research history is provided by
Twilley et al. (2019) [33].

While one would wish to have topographic data at high spatial resolution to resolve narrow
individual bars and levees, at high temporal resolution to resolve sometimes rapid morphometric
change, and continuously over sufficient duration of time (e.g., weeks to decades, or longer) to observe
dynamic system evolution, the insights into the possibility of multiple stable ecogeomorphological
states in a young fluvial delta have so far relied on creative analyses and innovative interpretations
of proxy data for delta marsh elevation change, or data from few points in space or time. Complete
morphologic mapping of complex delta geometries in situ, as they evolve in space and time, is usually
infeasible at scales to capture dynamic changes before sediment re-working erases key, but temporary,
features. In most delta settings it is very challenging to obtain high-precision, high-resolution,
frequently-repeated empirical measures of surface topography [34]. Terrestrial light detection and
ranging (LIDAR) scanning cannot efficiently cover the system-wide spatial extents needed, and
airborne LIDAR data tend to be expensively and infrequently obtained. Manual methods are laborious,
although stratigraphic studies assemble such perspectives on deltaic change over timescales spanning
decades to millennia (e.g., [35–40]). Stratigraphic approaches, however, even applied to modern
sediment cores, are unable to resolve short-term morphodynamics of unconsolidated sediments, which
may alternately accrete and erode over several unpreserved cycles before ultimately recording the net
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result as a preserved stratum. A very promising approach of mapping dynamic floods and relative
topographic change has been recently pioneered using stacks of space-borne microwave synthetic
aperture radar (SAR) imagery [41,42], although at too coarse a spatial scale to resolve detailed delta
morphodynamics, and so far reliant on external elevation mapping (e.g., coarse global shuttle radar
topography) to place results vertically. In the future, additional advances may become feasible from
high-resolution satellite laser altimetry, SAR, or routine airborne LIDAR, but to date, technology has
not been available to produce the desired abundant, rich, frequent, high-resolution topographic data
needed to study short-term but extensive marsh geomorphic change.

To help fill the gap of high spatial and temporal resolution topographic mapping of wetland
environments, this study developed a new method to estimate the historical topography of intermittently
flooded marshlands based on optical remote sensing data. We name the method hindcasting intertidal
marsh-top elevations (HIME). In brief, the HIME method consists of first calculating: (i) the probability
of land exposure in a set of historical imagery from a user-defined discrete timespan (e.g., months
or years); (ii) the probability of water level non-exceedance from water level records, which need not
be complete nor coincident with the imagery; and (iii) the systematic variation in local mean water
level with distance along the primary hydraulic gradient. The HIME method then combines these
inputs to estimate a marsh-top elevation map for each historical timespan of interest. The method is
conceptually similar to the ‘water-line’ approach by Mason et al. (1995) [43] and to the SAR-stacking
approach used by Kuenzer et al. (2013) [41], which was coincidentally developed at the same time as
we developed the HIME method. Key innovations of the HIME method are its use of high-resolution
satellite imagery (e.g., Landsat, 30 m), its derivation of absolute (not only relative) marsh-top elevations,
its ability to use water level data that are incomplete and asynchronous relative to the remotely
sensed images, and its applicability to hindcast historical topography as far back as remote sensing
imagery distinguishing water from marsh are available, e.g., decades back into the satellite record.
Once developed and validated, we applied the new HIME method to the exemplary case of the Wax
Lake Delta in Louisiana to help better understand short-term (inter-annual to decadal; 1993–2013)
spatiotemporal morphodynamics of young, rapidly changing, fluvial delta marshlands. The following
are general research questions:

• Are multiple stable ecogeomorphological states apparent even amid transient, rapidly changing,
young delta sediment accumulation patterns?

# i.e., does sediment accumulate to specific elevations over interannual and decadal
timescales? If so, at what elevations, and over how much spatial area?

• How are short-term morphodynamic changes related in space and time to delta island marsh
ecosystem organization and vegetation zonation?

• What is the dependency of local morphodynamic change on prior elevation states?

# i.e., is a given elevation at a given point in time more likely to gain or lose elevation and
area over succeeding years and decades?

• How do local, interannual expansions and contractions, accretion and erosion, of individual delta
islands add up over a whole delta system and over several decades to provide a net accumulated
sediment volume, topset rise, and area expansion of a young prograding delta?

2. Materials and Methods

2.1. Study Area

In 1942, the Wax Lake Outlet Channel was constructed by the U.S. Army Corps of Engineers
(USACE), by diverting water from the Atchafalaya River upstream from Morgan City, LA for the
purposes of flood control. The USACE Old River Control Structure, located at the convergence of
the Red and Mississippi Rivers (Figure 1a), diverts 30% of the combined flow from the Mississippi
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and Red Rivers to the Atchafalaya River, and the Wax Lake Outlet contains up to 46% of the flow
from the Atchafalaya [44]. The Wax Lake Outlet therefore carries up to ~14% of Mississippi Basin
discharge. The Wax Lake Delta (WLD) is located where the Wax Lake Outlet flows into Atchafalaya
Bay at 29◦32′21.85”N, 91◦25′50.74”W (Figure 1a). The delta has been developing subaqueously since
1952 and became subaerial after a large flood in 1973 [45]. For a thorough description of the historical
hydrology and upstream geomorphology of the Atchafalaya system, the reader is referred to the work
of, e.g., Mossa (2016) [46] and to the review by Twilley et al. (2019) [33] on the WLD, generally.

Consisting primarily of sand-rich deposits on top of the original consolidated-mud bay floor, the
WLD has prograded into the bay approximately 10 km [45,47]. The delta is a low gradient system, with
the entire subaerial portion within 1 m of mean water level [48]. The “subaerial” elevations of the WLD
have been taken by previous authors to mean lands above mean low water (−0.04 m NAVD88 [30]),
but in this study are taken as any sediment or vegetation area exposed subaerially at any observation
time within the study period, which includes some subtidal and some supratidal elevations. The WLD
is tidally influenced, with an average tidal amplitude of 60 cm [49], though river discharge and wind
also factor into water levels [31,50] (Figure 1b,c). Though the WLD extends into Atchafalaya Bay, it is
surrounded by freshwater due to the large volume of water discharging from the Wax Lake Outlet.

Due to its small size, relatively good historical record over the last several decades, and
lack of substantial engineering [47], the WLD is an ideal place to study young delta dynamics
at sub-decadal scales. The WLD has proven useful in previous geomorphological studies, such as on
sediment diversion and marsh restoration potential [12,51–55], (sub)aqueous sediment and channel
dynamics and fluxes [56–63], river flood, hurricane, and cold front effects on marsh elevations [5,64,65],
and delta sedimentation and lobe progradation [18,66]. The WLD has also yielded insights into delta
hydrology, including on surface water residence and connectivity [67–70], surface water-groundwater
interactions [31], and effects of river, floods, tides, wind, hurricanes, and cold fronts on water
levels [4,5,31,50,64,65,71,72]. Ecological and biogeochemical studies have used the WLD to assess young
delta vegetation succession [3,27,32], sediment trapping or erosion [4,29], and vegetation-sediment
feedbacks [25], organic carbon accumulation [73–76], phosphorus, nitrogen, or metals’ mobility
and cycling [67,76–80], and ecological and biogeochemical effects of occasional salinization by sea
water [65,81,82]. Finally, the WLD has proven to be a useful test bed for other remote sensing-based
innovations: to map plant species [83], quantify wetland biomass [84], improve spectroscopic
analysis [85], and map surface water currents and subaqueous channels [86,87]. These prior successes
provided confidence that the WLD was an appropriate study area for this research.

2.2. Study Overview

This study was conducted in two parts. In the first part, a statistically-based method was
developed for hindcasting intertidal marsh-top elevations (HIME). The method enabled approximating
changes in marsh extent and elevation over time amid transient water levels, using only optical remote
sensing (Landsat) data, and even if water level data were unavailable, concurrent with each remote
sensing image. The HIME method development was conducted using Pintail Island within the WLD
as a test case, and using a subset of remote sensing imagery from 1999 to 2010. There is little historical
topographic information available for the WLD. This study had access only to one LIDAR dataset at
1 m horizontal resolution, from 14–15 January 2009 [48]. However, there is an extensive set of Landsat
satellite imagery available at 30 m horizontal resolution [88]. The HIME approach takes advantage of
the fact that water level fluctuations have a large effect on how much subaerial (non-water) area is
observed in a remote sensing image at any given time (Figure 1b,c). Each Landsat image was obtained
at a different, unknown, water level, so each showed a different extent of the delta area.

Previously, remote sensing techniques have been primarily used in deltaic environments to
monitor delta spatial extent and vegetation or land cover, without accounting for the effects of changing
water level (e.g., [27,89]). Recent work at the WLD has characterized uncertainty associated with using
satellite imagery to measure the horizontal extent of delta land area change over time (e.g., [50,90]),
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but does not address patterns of vertical change. The one study focused specifically on vertical change
on WLD islands, by Bevington and Twilley (2018), used twice-annual field surveys from 2008–2011
of seven transects oriented perpendicularly across island apex mouth-bars or lateral levees, and an
analysis of 2012 LIDAR data; the authors assessed contrasts in levee relief (height) and island width,
according to transects’ distance up-delta, which was related to increasing island age [30]. Inspired by
the work by Bevington and Twilley (2018) [30], and by the careful historical accounting of planform
WLD island change by Allen et al. (2012) [90], we aimed to expand on the empirical quantification of
historical WLD island change through space and time. Other researchers at other study sites have used
a series of satellite images to construct an inundation model, but have been unable to tie it to absolute
elevations without a priori elevation data (e.g., [41]), or have required absolute water levels to be
known at the time the images were taken [43,91,92]. In the case of WLD, and at most sites worldwide,
the specific water levels for each Landsat image are not available, and hydrodynamically predicting
water levels in sufficient detail is prohibitive as they are a complex function of river, floods, tides, wind,
hurricanes, and cold fronts. Therefore, this study developed a method with a probabilistic approach to
use information contained in Landsat imagery to model the likely historical topography of the delta.
The method was validated on the Pintail Island test case, using a LIDAR dataset from 2009 [48].
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Figure 1. Study area. (a) The Wax Lake Delta (WLD, red square) is located at the terminus of the Wax
Lake Outlet (blue line), which diverts water from the Atchafalaya River (purple line) in the U.S. state of
Louisiana. The Atchafalaya is a distributary channel for the Mississippi (green line) and Red (red line)
Rivers. (b) Image of WLD from 28-Sep-2010 by Landsat [88], for water level y = 0.35 m (NAVD88) at
Camp Island gage (yellow dot) [93]. (c) Image of WLD from 24-Apr-2011 by Landsat [88], for water
level y = 0.67 m (NAVD88) at Camp Island gage. WLD Pintail Island test case area outlined in white.

The validated HIME method was then applied throughout the WLD (to 46,494 separate 30 m
pixels), and over the two-decade study period 1993–2013, to assess planform change in marsh extent
and exposed elevations relative to transient water levels throughout the evolving delta system.
Cumulative and incremental changes in apparent subaerial delta sediment volumes and elevations
over the two decades were then discussed and placed in relation to other studies mapping WLD
eco-geomorphological change and delta dynamics and features in the Mississippi River delta system,
more generally.

2.3. Hindcasting Intertidal Marsh-Top Elevation (HIME): Method Development

The HIME method consists of 3 main steps, here outlined and further detailed below. The method
is also schematically illustrated in Figure 2.

(1) First, a time series of empirical exposure probability models is developed for the region
of interest. To do this, a large number of remote sensing images (N) is gathered over the region
of interest. Water level change should occur at higher frequency than the morphological changes
of interest. The N images are classified into binary maps of water versus non-water (emergent) areas.
Areas classified as water are assigned value zero (0) and areas classified as emergent are assigned value
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one (1). Water is frequently separated from earth and vegetation in optical imagery using the NIR
or red bands, which exhibit bimodal distributions in land/water scenes, and the Otsu thresholding
method [94] is effective at finding the optimal value(s) to divide a multi-modal histogram into distinct
classes (e.g., [95]). We used the Otsu method on the red band (if necessary in RGB-only image) or Band
5 (as recommended by others for distinguishing water in a multiband image [90]) to divide water and
non-water pixels. Emergent areas consisted of subaerial sediment or vegetation cover, representing
the top of the marsh (“marsh-top”) as viewed from above. Other classification approaches could be
adopted without changing the overall sense and framework of the HIME method. As implemented in
this study, the HIME method does not distinguish the marsh sediment and vegetation surfaces, but
focuses on distinguishing planform island and non-island areas, which is consistent with the most
similar prior study of the system, by Allen et al. (2011) [90]. With this approach, the “marsh-top”
elevations modeled by the HIME method may be higher than the islands’ sediment-surface elevations;
however, the potential magnitude of this and other over- or under-estimations of HIME-modeled
marsh elevation compared to true sediment surface elevation were assessed during method validation
and found to be less than 0.04 m or <10% (see Section 3.1).
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Figure 2. Schematic of Hindcasting Intertidal Marsh-top Elevation (HIME) method: Step 1, calculate
a time series of raster exposure probability models from remote sensing images; Step 2, fit a water
level cumulative probability of non-exceedance distribution function to available water level data;
Step 3, combine the results of Step 1 and Step 2 to produce a time series of estimated marsh-top
elevation models.

The binary-classified images are then divided into T consecutive temporal subsets (i.e., time
intervals i = 1 . . . T), within each of which water extents vary across a wide range of values. The i
timeframes, of n images each, need not necessarily be of equal length nor number of images. Within
each timeframe, all the binary-classified maps are summed via raster summation. The maximum
possible value of this summed map within a given subset is n, if a pixel was non-water in every image,
and the minimum possible value zero, if a pixel was water in every image. The summed map is
divided by n, resulting in an empirical map of exposure probability pex(i,j) for that timeframe (i) at each
pixel (j). Together, these T maps represent a time-lapse series of raster exposure probability models
over the whole time period of interest.

(2) Second, a model of water level probability for the study area is developed. Relevant available
water level gage data (y) are used to calculate an empirical cumulative distribution function (F̂Y) of the
water level probability of non-exceedance (pne). Although this could be used in the analysis directly, in
case of discontinuous data our preference was to fit to F̂Y a continuous distribution function, such as a
normal distribution (if appropriate), to obtain a representative model (FY) of the water level cumulative
probability of non-exceedance (Pne). In the simplest case, one water level probability model (FY) can be
used throughout the region of interest, e.g., if each pixel in the study area is thought to have the same
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mean and variance of water levels. If instead it is known that there is a background signal not captured
in the water level gage data, e.g., a non-zero mean water level slope across the study area due to the
water surface slope of a discharging river (as at WLD), or even a known background planar variation
in water level, this is added to FY on a pixel-by-pixel basis to create a “map” of FY(j) functions, one for
each pixel location (j). Thus, water level probability of non-exceedance models are developed that
need not be based on exhaustive or continuous water level input data (y), but that provide an estimate
of the local probability of water level non-exceedance (Pne(i,j,Y)) for any water level (Y), at each pixel
location (j), and in each timeframe (i), relative to the local mean water level.

(3) Finally, historical marsh-top elevation (zi,j) is hindcast for each timeframe (i) and each pixel (j)
within the region and time period of interest. To do so, one first recognizes that the raster exposure
probabilities from Step 1 are equivalent to water level non-exceedance probabilities. For example:
if a pixel at location j had an exposure probability pex(i,j) = 0.3 from Step 1, then it exhibited a 30%
likelihood of being exposed among the n images comprising timeframe i. In other words, we take
this as a 30% likelihood of the water being lower than the pixel’s unknown true elevation Z(i,j)
during subset timeframe i. This is equivalent to saying that there was a 30% likelihood of water level
non-exceedance of elevation Z(i,j) during timeframe i, i.e., that 0.3 = Pne(i,j,Y) for Y= Z(i,j). Therefore,
for monotonic FY, one assigns pex(i,j) = Pne(i,j,Y) and inverts Pne(i,j,Y) = FY(j)(Y) to obtain Y, and
estimates the unknown, true historical pixel elevation Z(i,j) as the estimated relative elevation z(i,j) = Y.
This is shown graphically in Figure 2. Last, the adjustment b(i,j) is applied, if necessary, at each pixel to
convert estimated elevations relative to a locally systematically-varying mean water level to the basis of
a common fixed datum: z(i,j)MLW + b(i,j) = z(i,j). The HIME method is limited to modeling marsh-top
elevations in the range from the lowest water stage to just above the highest water stage imaged among
the n images of a during a given timeframe (i). Variations in elevations that are always-emergent
in the n images are not distinguished by the HIME method, nor are subaqueous elevations always
submerged in the n images of a given timeframe (i).

The following subsections detail and demonstrate these steps of the HIME method, using Pintail
Island as an efficient verification example. The same procedure was then applied throughout the WLD
to produce the main results of the study, as described below.

2.3.1. HIME Step 1: Marsh Exposure Probability Models, Pintail Island Test Case

To empirically estimate marsh exposure probability for the test case of Pintail Island, we applied
Step 1 of the HIME method, as outlined above. Our image database for this test case consisted of
N = 79 cloud free Landsat images of the WLD, acquired from the USGS Earth Explorer website for
the years 1999–2010, from Path 23, Rows 39 and 40 (Table S1; [88]). Each pixel of each image was
classified as emergent marsh-top (=1) or water (=0) surface cover, with no additional pre-processing.
The binary-classified maps were then divided into T = 4 consecutive timeframes for the Pintail Island
test case, each spanning 3 years: 1999–2001 (i = 1, n = 18), 2002–2004 (i = 2, n = 19), 2005–2007 (i = 3,
n = 19), and 2008–2010 (i = 4, n = 24). After summation of the binary-classified maps within each
timeframe, and normalization by n, we obtained the time series of raster exposure probability models
pex(i,j), covering each timeframe i and pixel location j for Pintail Island (Figure S1).

2.3.2. HIME Step 2: Water Level Models, Pintail Island Test Case

To develop models of the cumulative probability of water level non-exceedance for the test case of
Pintail Island, we applied Step 2 of the HIME method. We used as model input (y) the daily-average
surface water level data from USGS gage 073815925 [93] at the apex of the delta (29◦32′24”N, 91◦26′08”W;
Figure S2). Data with water level specified were only available for the period 15 October 2008–12
January 2014 at the time of the study. A key innovation of the HIME method, however, is that the
available water level data need not necessarily represent a complete record spanning the full range of
the imagery time series. Instead, one must only have water level data that sufficiently span the range
of high-frequency water level variations expressed in the imagery, to create an informative empirical
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cumulative probability density function of water level (F̂Y). The mean surface water level at the gage
for this period was 0.48 m NAVD88, reaching a maximum level of 1.12 m and a minimum level of
−0.11 m. To provide a continuous function covering all marsh surfaces, the cumulative distribution of
water levels throughout the test period was fitted with a normal cumulative distribution function (FY),
with a mean of 0.48 m and a standard deviation of 0.21 m (shown in center of Figure 2).

2.3.3. HIME Step 3: Hindcasting Marsh-Top Elevation, Pintail Island Test Case

To combine the historical remote sensing and water level probability data and so hindcast historical
marsh-top elevations for the Pintail Island test case, we applied Step 3 of the HIME method, as outlined
above. For every pex(i,j) in the raster exposure probability models, the overall FY function relating
water level and probability of non-exceedance was used to calculate the water elevation (Y) at which
the pixel would flood, i.e., to estimate its marsh surface height above mean low water level (MLW) as
z(i,j)MLW = Y. For WLD, FY was modeled relative to MLW because this was the native datum of the
Camp Island water level gage. An adjustment was made for map pixels that were never inundated
during the imaged times, and so had a value of pex(i,j) = 1, because the inversion of the normal function
FY at the value of 1 to obtain an elevation estimate Y would return an apparently infinite elevation
value. Instead, these locations, not observed to be flooded, were set to an elevation equal to 2σ for the
standard deviation σ of the distribution FY, which was approximately 2 cm higher than the highest Y
value with pex(i,j) < 1 throughout the whole WLD (from analysis Section 2.3). This assumption was
equivalent to imposing that pixels not observed to be flooded at the imaged times represented land
exposure for at least 95% of possible water levels (i.e., the 95th percentile of the normal distribution),
relative to the local mean water level.

Although these steps created a relative elevation map, relative to MLW, systematic variation in
MLW at the WLD is due to the surface water slope of the discharging delta system. This slope in
local MLW needed to be accounted for to adjust the relative-elevation results to a common absolute
elevation datum (NAVD88). For WLD, a transect of surface water elevations was extracted from the
LIDAR 2009 dataset [48] along the path of water travel from the head of Camp Island (gage location)
down the channel to the west of Pintail Island (Figure S2). A line was fit to these transect data to
determine an average surface water slope of s = −4.7 × 10−5 (Figure S2). The slope was similar in
the second channel to the east of the island. This slope was used to update the overall FY water
level non-exceedance probability model to pixel-specific values FY(j), based on each pixel’s distance
from the delta apex (D). In other words, the calculation z(i,j)MLW + b(i,j) = z(i,j) was conducted with
b(i,j) = s D. This had the effect of translating the normal FY curve created from the gage data at the
delta apex to pixel-specific FY(j), with slightly lower effective MLWs at distances further from the
delta apex, while retaining the overall FY distribution shape. The water surface slope was applied
uniformly across all image processing, and so did not add any uncertainty to difference calculations
made between images. Other studies could use sparse gauged water level data or other means to
identify the relative water level-to-absolute datum conversion, if needed. Retaining the original water
level distribution shape at all delta locations is consistent with the drivers of water level variations
in the delta being overwhelmingly external (from river, floods, tides, wind, hurricanes, and cold
fronts [4,5,31,50,64,65,71,72]), not internal hydrodynamics. This adjustment converted the initial marsh
surface height estimate z(i,j)MLW relative to MLW at each pixel to estimated elevations z(i,j), relative to
the same absolute NAVD88 datum. This series of calculations resulted in hindcast spatial models of
marsh emergence on Pintail Island between 1999 and 2010.

2.3.4. HIME Validation, Pintail Island Test Case

Pintail Island was selected as a test case study because the island shape is characteristic of the delta,
with an arrowhead-shaped pair of levees and a lower, wetter area in the middle of the island open to
the channel at its downstream end. Based on historical imagery, Pintail is one of the older islands in
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the delta, while still actively growing and changing. Vegetation on Pintail Island was observed to be
consistent with other recent studies of the island and the delta [31,32,83].

To validate the HIME results, the available 2009 LIDAR elevation data [48] were combined with
the water level probability model (FY, Figure 2 and Section 2.3.2) to map 2009 LIDAR-based exposure
probability (i.e., conducting Step 3 of the HIME procedure in reverse). More complete details of the
LIDAR data and its conversion to an exposure probability map are contained in the Supplementary
Materials. The resulting 1 m-resolution LIDAR 2009 exposure probability map was compared to the
30 m-resolution 2008–2010 HIME raster exposure probability model by looking at the distribution of
the many LIDAR-scale exposure probability values within each discrete (1/n) interval of the HIME
exposure probability map. Because the center of the island was submerged when the LIDAR data were
acquired, these points were not used for comparison; this area corresponded to 2008–2010 HIME raster
exposure probability values of 0.04–0.29 m (NAVD88). Due to the difference in resolution between the
LIDAR and Landsat data, a small number of additional LIDAR pixels fell within the Landsat pixels in
this range of values and were also omitted from comparison. The a dditional omitted points were less
than 1% of the total LIDAR data for Pintail Island non-water locations.

2.4. Hindcasting Intertidal Marsh-Top Elevations (HIME): Full-System Application

2.4.1. HIME Input Data and Procedure for Full WLD

After development, testing, and validation, we applied the HIME method to the full WLD delta
over two decades of historical imagery. To empirically estimate marsh exposure probability for the
full WLD, we first applied Step 1 of the HIME method. Our image database for the WLD-wide HIME
analysis consisted of 193 Landsat images of the WLD for the years 1993–2013, from Path 23, Rows 39
and 40 (Table S1; [88]). We chose to end the study in 2013 to maintain the decadal analysis structure,
rather than having a truncated part of a third decade. The 193 images were manually selected to be
cloud-free over land, and clouds over channel or bay waters were removed by masking. As with the
Pintail Island pilot analysis, non-water pixels were classified as emergent (=1) or water (=0). These
binary maps were divided into T = 7 consecutive timeframes, each spanning 3 years: 1993–1995 (i = 1,
n = 31), 1996–1998 (i = 2, n = 24), 1999–2001 (i = 3, n = 28), 2002–2004 (i = 4, n = 34), 2005–2007 (i = 5,
n = 31), and 2008–2010 (i = 6, n = 25), 2011–2013 (i = 7, n = 20). After summation of the binary-classified
maps within each timeframe and normalization by the n of that timeframe, we obtained the historical
time series of seven raster exposure probability models for WLD. To apply Step 2 of the HIME method,
the same CDF model of water level non-exceedance was used for the full WLD analysis as for the
Pintail Island case study (FY, Section 2.3.2).

To apply Step 3 of the HIME method, the same pixel-by-pixel adjustment was made to convert
the initial elevations relative to the locally-varying MLW to a uniform vertical datum (NADV88), using
the surface water slope down-delta (i.e., away from the delta apex) and each pixel’s distance from the
delta apex, as in the Pintail Island test case (Section 2.3.3). This resulted in a final time series of seven
hindcast marsh-top elevation models for WLD over the time period 1993–2013.

2.4.2. Geographic, Regression, and Statistical Analyses

To both analyze and seek to model the hindcast time series of marsh-top elevations derived by the
HIME method in relation to broader delta geometry, we created four raster layers representing the
geometric location of each marsh pixel in the delta and its relative position on its island (Figure 3).
In choosing these four metrics, we drew inspiration from the use by Bevington and Twilley (2018)
of distance from delta apex, a proxy for island age, distance from island apex, and distance from
channel (island edge) to help explain WLD morphometric change at local levee-spanning transects [30].
We added a similar but separate metric for distance from island midline to enable it, in combination with
distance from island edge, to create a two-slope or non-linear cross-levee elevation profile, if warranted.
Moreover, while our metric of distance from island edge is applied in the same manner at the upstream
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end (island apex) and lateral sides of each island, the island midline to which we measured distance
was intentionally begun 1/4 of the island length down-island, to also potentially enable representation
of intra-island lagoon morphology in a manner more nuanced than by distance-to-island-edge, alone.
For each of the seven hindcast timeframes we fit a multiple linear regression, offering these four key
geometric measures to model the HIME marsh top elevations at pixel-scale. We then assessed the
consistency of these regression models over the seven timeframes.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 31 
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Figure 3. Example geometric position maps. Distance of each marsh pixel in the delta to (a) the delta
apex, (b) its island’s apex, (c) its island’s nearest channel edge, (d) its island’s central axis (i.e., midline,
starting 1

4 of the way down the island from the island apex). Units for each variable are meters.
Examples shown for the 2011–2013 timeframe.

For the overall delta, the progressions through time of delta accretion (net positive elevation
change), delta area (net subaerial progradation), and sediment volume (net subaerial accumulation)
were also calculated from the HIME marsh-top elevation time series. For overall delta elevation,
the basic descriptive statistics of median, mean, and standard deviation were evaluated based on
all the pixels in the HIME model for each timeframe, as were histograms of elevations. For overall
delta area, the count of pixels categorized as exposed marsh in each of the n images in a timeframe
(i) was multiplied by 900 m2 (from 30 m pixel size) and the median, mean, and standard deviation
of these n total areas was calculated for each timeframe (i). For net subaerial sediment volume, the
single lowest HIME-derived elevation value in any timeframe was taken as a standard minimum
(−0.325 m NAVD88), and the total relative sediment volume was calculated as the difference between
each timeframe’s HIME marsh top elevations and this minimum, summed over the delta.
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3. Results

3.1. HIME Method Testing and Validation

The HIME procedure was successful in producing a time series of marsh-top elevation models for
the Pintail Island test case. The time series showed the emergent area of Pintail Island developing from
a non-systematic arrangement of intermediate-elevation marsh-top surfaces to a discrete levee (high
marsh) and intra-island platform (low-marsh) arrangement over approximately one decade (Figure 4).
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Figure 4. Historical marsh-top elevation models for Pintail Island, resulting from the HIME method
applied to RGB Landsat imagery from 1999–2010.

The validation between the 2009 LIDAR survey (Figure 5a) and the 2008–2010 HIME exposure
probability model (Figure 5b) was remarkably close to a 1:1 line (Figure 5c), despite HIME being a
raw, uncalibrated approach. Compared to the LIDAR exposure probabilities, the HIME exposure
probabilities were very slightly under-predicted, with to a linear regression slope between the two
datasets of 0.99, with intercept forced to zero. Given this extreme similarity, we elected not to calibrate
the HIME procedure by adjusting using the regression slope and intercept, to avoid over-correcting
and to keep the method fully generalizable. The error metrics of the linear regression model provided
solid validation of the HIME method, with adjusted R-squared 0.96, root mean square error 0.05,
mean absolute error 0.035 (m), and mean absolute percent error 6.2% (see Supplementary Materials,
Section S1.1.2).

3.2. Hindcast WLD Elevation Models and Predictability from Geometric Features

The results of applying the HIME procedure to the full Wax Lake Delta yielded marsh-top elevation
models for each of the seven 3-year timeframes spanning the two decades of 1993–2013. To the human
eye, the elevation maps for each timeframe look very similar; one example is shown in Figure 6a and
all seven maps are depicted in Figure S3. The HIME results reproduced the expected higher-elevation
marsh tops near upstream island tips and along island lateral levees (red, Figure 6a). Higher elevations
on the secondary levees adjacent to secondary channels (infrequent, small channels cross-cutting the
levees) were also reproduced, as well as gradual marsh slopes down toward the distal (downstream)
ends of the islands (blue, Figure 6a).
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Figure 5. Validation of HIME exposure probabilities for Pintail Island. (a) LIDAR 2009 exposure
probability map at 1 m pixel resolution. (b) 2008–2010 HIME exposure probability model at 30 m
pixel resolution, masked to LIDAR extent. (c) Comparison of LIDAR-derived (X-axis) and spatially
co-located HIME (Y-axis) exposure probabilities. Blue points are medians and blue horizontal bars are
the interquartile ranges of the LIDAR 2009-derived exposure probability pixels that were co-located with
the pixels of each of the n HIME exposure probability categories. Solid black line is linear regression,
dashed red line is 1:1 line.
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Figure 6. (a) Map of HIME marsh-top elevations for WLD in the 2011–2013 timeframe. Maps for the
other six timeframes are in the Supplementary Materials, Figure S3. (b) Time series of probability
distributions of WLD HIME elevations (in 0.05 m bins) from 1993–1995 (left) to 2011–2013 (right).

As in the Pintail Island test case, the entire WLD exhibited progressive topographic differentiation
between the lagoon/mudflat island interiors and the higher island levees over time. Areas at moderate
elevations at early times (0.0–0.5 m NAVD88, 1993–1998) appeared to bifurcate over the succeeding
decade (1999–2010), accumulating in an upper zone around 0.4 m NAVD88 and a lower zone around
0.1 m (Figure 6b). Meanwhile, the marsh area in the 1.5–3.5 m elevation range became comparatively
under-represented, and marsh area began to accumulate, albeit much more slowly, at about 0.9 m
elevation. Both the trough in the bimodal distribution (at ~1.5–3.5 m) and the lower-elevation mode
(at ~0.1 m) appeared to migrate slowly to lower elevation over the decade, perhaps merging with
the subaqueous zone by the 2008–2010 timeframe. It is worth noting, however, that two hurricanes
impacted WLD during this decade also (Lili in 2002, Rita in 2005; full list in Table S2), perhaps
complicating the observed patterns.

The overall spatial distributions of marsh top elevations for each timeframe (i.e., Figure 6a,
Figure S3) were fit reasonably well by linear models based on key delta and island geometric measures,
with model coefficients that were remarkably consistent over time (Table 1). The regression models
unsurprisingly predicted topography lacking fine-scale details, but were representative of overall delta
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morphology through time (Figure S4). Based on the median regression model coefficients, over the full
study period (1993–2013), elevation Zj (m NAVD88) for pixel location j was predicted by the function:

Zj = 0.783 − 0.106 × aj − 0.021 × bj − 0.014 × cj + 0.023 × dj

Table 1. Linear regression model coefficients to predict elevation (m NAVD88) from geometric delta
and island features (e.g., Figure 3), and median coefficients overall. Distances in km.

Timeframe Intercept
Dist. to Delta

Apex (aj)
Dist. to Island

Apex (bj)
Dist. to Channel

Edge (cj)
Dist. to Island

Midline (dj)
adj. R2 RMSE

1993–1995 0.6701 −0.1007 −0.0205 −0.0108 0.0231 0.7343 0.1159
1996–1998 0.6833 −0.0967 −0.0175 −0.0141 0.0213 0.7275 0.1169
1999–2001 0.7383 −0.0962 −0.0180 0.0053 0.0115 0.6841 0.1240
2002–2004 0.8833 −0.1185 −0.0247 −0.0273 0.0232 0.7328 0.1398
2005–2007 0.8927 −0.1184 −0.0303 −0.0201 0.0069 0.7380 0.1479
2008–2010 0.8093 −0.1093 −0.0206 −0.0236 0.0664 0.6260 0.1580
2011–2013 0.7834 −0.1062 −0.0179 0.0066 0.0495 0.7014 0.1343

median 0.7834 −0.1062 −0.0205 −0.0141 0.0231 0.7275 0.1343

In this function aj is the distance of pixel j from the delta apex (km), bj is its distance to its island’s
apex (km), cj is its distance to the nearest channel (i.e., island edge, km), and dj is its distance from the
island midline (as defined previously, km).

Full model statistics, modeled elevation maps, and maps of the differences (residuals) between
the HIME and regression-modeled elevations for each timeframe are available in the Supplementary
Materials. The spatial and temporal distributions of model residuals were fairly uniform, without
obvious patterns related to potentially useful additional geometric predictor variables (Figure S5).

3.3. Spatio-Temporal Patterns of Two Decades of WLD Marsh Change

Over the two decades of observation, the greatest net increases in marsh top elevation occurred
where secondary channels became gradually filled in and where the upstream ends of a few levees
expanded laterally (orange-red, Figure 7a); these areas showed >0.8 m net elevation gain. On average,
delta elevations increased by about 0.125 m from 1993–2013 (Figure 7b). Many WLD island interiors
experienced an ongoing spatial redistribution of sediments, appearing in the results as spatial admixture
of minor erosion (light blue) and deposition (green; Figure 7a). A few areas around margins of island
levees and edges of interior island lagoons exhibited a more notable net elevation loss of >0.5 m over
the two decades (dark blue, Figure 7a).

The net subaerial delta changes did not occur monotonically: the delta exhibited several phases
of different overall aggradation or erosion, amid which many local areas aggraded during some
timeframes and eroded during others. From about 1994 to 2000, the delta aggraded over most of its
surface (Figure 7c), with median elevation gains of 3–7 cm overall (Figure S5). From 2000 to 2012,
median elevation change was effectively zero, but for spatially-varying reasons. From 2000 to 2003
short-term aggradation was concentrated on the upstream portions of the islands’ older apex bars and
levees, but this was offset on average by elevation loss in interior and distal parts of islands. From
2003 to 2006, aggradation was more uniform, of lower magnitude, and was distributed across the
more central portions of many islands, also again offset on average by elevation loss at the islands’
downstream ends. The downstream progression of the strongest zones of aggradation continued from
2006 to 2009, with intense aggradation concentrated in the distal, downstream ends of the islands, yet
still offset on average by intense erosion or subsidence in the island interiors, enhancing the lagoon
landforms therein. From 2009 to 2012, general mild elevation loss across many of the island platforms
was offset, on average, by some re-filling of island lagoon margins (Figure 7c).
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(b) Distribution of probabilities of net HIME marsh top elevation change over the study period. (c) Maps
of net estimated marsh top elevation change between consecutive timeframes; net aggradation in
green-yellow-red, net erosion in light blue-dark blue.

To assess the spatial and temporal distribution of marsh top change in aggregate and in relation
to overall delta form, we quantified change among island areas at different distances from the delta
apex, by dividing the WLD into concentric rings at 1 km incremental distances (white arcs, Figure 6a).
The most abundant elevation (mode) in each ring unsurprisingly diminished with distance from
the delta apex (Figure 8), though elevations were not distributed uniformly with distance. One of
the most notable and surprising features of the results was that the 0.5–0.7 m elevation range was
represented with only low frequency throughout the delta, and this feature became more pronounced
over time. This feature began to be apparent in 1999–2001 and became a persistent elevation range of
low expression throughout the delta and all the way through 2011–2013. This relatively unoccupied
elevation range was flanked, from about 2008–2010, by higher elevations (≥0.8 m) among areas 0–3 km
from the delta apex and lower elevations (−0.3–0.3 m), which from 1–9 km from the delta apex were
arranged fairly proportionally to apex-distance (Figure 8). This largely unoccupied 0.5–0.7 m elevation
range was also apparent when instead aggregating the results by distance from delta apex, plotted
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through time (Figure S6). Over the observation period of this study, delta areas 0–1 km distance from
the delta apex evolved to elevations >0.8 m; areas 1–3 km distance became bimodal, at >0.8 m and
<0.5 m; and areas 3–9 km distance were predominately <0.5 m, with modal elevations diminishing
with increasing distance from the delta apex.
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Figure 8. Probability distributions of WLD elevations (m, in 0.05 m bins) in each 1 km-band of distance
from the delta apex (color-coded), and change within each band over time (panels, left to right).

3.4. Overall Patterns of Sediment Deposition and Erosion

Two key aspects of WLD geomorphic change over the two decades of analysis that were not
captured by elevation analyses were the change in delta area and the consequent change in delta
sediment volume needed to produce the apparent elevation and area increases. According to the HIME
results, both average delta elevation and average delta area increased steadily from 1993–2000, and
then roughly stabilized from 2000–2013. Subaerial delta area even decreased slightly, on average, in
the last 6–9 years, due to the substantial island-interior erosion of these later timeframes (Figure 9b).
The total subaerial sediment volume was estimated for each timeframe as the delta-wide sum of the
difference between the HIME elevation map for that timeframe and the minimum HIME elevation
mapped at any delta location in any timeframe (−0.32 m NAVD88). This calculation resulted in a
time series of subaerial WLD sediment volume, estimated over the two-decade observation period
(Figure 9c).

The specific patterns of net sediment aggradation or erosion during the study period were assessed
by comparing net sediment volume change to elevation, and net elevation change to elevation, with
the elevation taken from either the initial (1993–1995) or final (2011–2013) timeframe of the study.
Among the four possible combinations of these variables, three provided different, meaningful
information, as follows, and illustrated in Figure 10.
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Figure 9. Progression over time of WLD average (a) HIME marsh top elevation, (b) subaerial extent,
and (c) relative subaerial sediment volume. Time series of WLD land area extent and envelopes
of maximum and minimum interannual land areas, from regression model and data by Allen et al.
(2012) [90], are superimposed as gray dashed lines on (b).

Subtraction of initial from final sediment volume (sed volf−i) and summation within bins of the
initial (1993–1995) delta elevations (elevi) helped assess: For all the locations in WLD that started at
a given elevation, were they more likely to gain or lose sediment over the succeeding two decades?
Across the WLD, locations beginning in the initial elevation range −0.2–0.6 m gained sediment volume
at a fairly uniform magnitude (solid line, Figure 10a); this does not indicate, however, to what final
elevation(s) these points aggraded. At higher (zi > 0.6 m) and lower (zi < −0.2 m) initial elevations, net
sediment volume change appeared negligible, or was under-sampled by the methodology.

Subtraction of initial from final sediment volume (sed volf−i) and summation within bins of the
final (2011−2013) delta elevations (elevf) helped assess: To what elevations was sediment most likely
to aggrade over the two decades? Overall, net sedimentation was strongly concentrated at locations
expressing a final elevation of about zf ≈ 0.2 m (peak of dashed line, Figure 10a), with substantial
sedimentation in areas with final elevations −0.1–0.4 m (regardless of initial elevation) and more
moderate sedimentation in areas ending at 0.4–0.9 m.

Comparison of the total sediment volume within each elevation bin at the final timeframe
(2011–2013), to the volume in the same elevation bin at the initial timeframe (1993–1995) helped
assess: How much WLD marsh area occupied a given elevation range at the last compared to the first
timeframe? Over the two decades of study, there developed much more marsh with elevations in
the 0.1–0.4 m and 0.5–0.9 m ranges by the final timeframe compared to the initial time (dash-dot line,
Figure 10a). These zones of apparent preferential sediment trapping coincided very closely with the
elevation ranges in which WLD marsh vegetation provide the most cover, according to the extensive
mapping by Carle et al. (2015) [32] (Figure 10b). In contrast, the WLD lost marsh in the elevation ranges
−0.3–0.05 m and 0.4–0.5 m over the two-decade study period, which coincided with less occupancy by
the major WLD marsh plant species [32].

Stability diagrams, relating net elevation change to initial or final elevation, provide additional
perspectives. In theory, an elevation is stable if the elevation change over time is zero [96–98]. Locations
in the WLD that began at about zi ≈ 0.4 m in 1993–1995 (Figure 10c), and locations that ended at
about zi ≈ 0.4 m in 2011–2013 (Figure 10d) both exhibited distributions of net elevation change values
for which the interquartile ranges included zero. This elevation, zi ≈ 0.4 m, is therefore a possible
geomorphological stable attractor. Elevations beginning close to zi ≈ 0.9 m (Figure 10c) also seemed to
be locally stable, although additional areas aggraded over time to also achieve final elevations ≥0.8 m
(Figure 10d). In contrast, while locations that began at zi ≈ −0.1–0.2 m exhibited net aggradation over
the two decade study period (Figure 10c), locations that ended in this elevation range apparently
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underwent little net elevation change to get there, perhaps having only belatedly arisen out of the
subaqueous environment.Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 31 
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Figure 10. (a) Net change in WLD subaerial sediment volume over two decades, from the initial
(1993–1995) to final (2011–2013) HIME timeframes of study, as experienced by discrete marsh top
elevation zones (X-axis calculated as bins of z ± 0.05 m width); the marsh elevation zones (X-axis) were
assessed for either the initial (elevi) or final (elevf) timeframe. Net sediment accumulation at a given
elevation is shaded, net sediment volume loss is hatched. (b) Elevation histograms of occurrence of six
key vegetation species/groups at WLD, as developed from a 400-point random sample of 30-m pixels
on Pintail Island by Carle, Sasser, and Roberts (2015) [32]. Adapted from Carle, Sasser, and Roberts
(2015). Reproduced with permission from the Coastal Education and Research Foundation, Inc, Seattle,
WA, USA. (c) Boxplots of net HIME elevation change, as experienced by WLD pixels beginning within
discrete elevation zones (zi ± 0.05 m) at the initial timeframe. (d) Boxplots of net HIME elevation
change, as experienced by WLD pixels ending within discrete elevation zones at the final timeframe.
Boxplots illustrate median (central points, connected by line), interquartile range (IQR: 25th to 75th
percentiles as box bottom and top), 1.5 × IQR whisker lengths, and outliers (dots); boxplots are based
on varying numbers of points per elevation zone. All elevations in meters NAVD88.

4. Discussion

4.1. Accuracy, Uncertainty, and Utility of HIME Method

The HIME method was successful in reproducing historical marsh-top elevations at a very high
accuracy compared to LIDAR data, but based only on public (free) Landsat data and incomplete site
water level data (also free). Although the HIME approach was not explicitly designed to distinguish
between emergent vegetation, exposed sediment, and shallow turbid water in its water/non-water
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classification step, the validation of nearly identical, independent results from LIDAR and HIME
suggested that the HIME approach may be of similar accuracy as a LIDAR scan of low-relief marshland
with subsequent vegetation removal processing. An additional test of the accuracy of the HIME
method was provided by comparing its hindcast changes in planform delta land area to the results
from a similar, previous study by Allen et al. (2012) [90] (see their Figure 4). Although the shapes of
the two WLD land area time series were almost identical (Figure 9b), the fitted regression model by
Allen et al. predicted a greater magnitude of land area than was detected by the HIME method. For
two fully independent analyses using different methods and data, however, they produced remarkably
similar results, with strong correspondence in both the rates of interannual delta area growth and the
sense of similar overall spread of values at individual observation times. Notably, the HIME method
reproduced the substantial slowing of WLD areal growth that was strongly highlighted by Allen et al.
(2012), due to impacts of hurricanes Lili (in 2002) and Rita (in 2005) [90].

Still, there are multiple sources of uncertainty in the HIME approach. The method is probabilistic
and relies on the user obtaining a sufficient number of remote sensing images per timeframe of interest,
to approximate a random sample of marsh exposure conditions, yet also a sample that spans the
intermittently flooded range of marsh elevations as fully as possible. As the number (n) of images
per timeframe is reduced, or variety among the true water level range lessened, the HIME method
will become less useful and more inaccurate. As these are the major controls on the vertical resolution
possible with the HIME method, in theory for a very large n across a very representative and diverse set
of imaged water levels, the HIME method could achieve very high vertical resolution in its intertidal
marsh elevation models.

In the horizontal dimension, the precision of the HIME method will depend on the source image
resolution and the marsh topographic slopes. At 30 m resolution, Landsat data can provide only a
coarsened and smoothed picture of spatial heterogeneity in island flooding, although for sufficiently
wide and gentle slopes, coarser resolution imagery may provide results comparable to finer imagery.
Sharp or highly localized topographic relief is unlikely to be resolved if using Landsat imagery in
the HIME method. In this study, the LIDAR data certainly resolved more topographic detail, at 1 m
horizontal resolution, than the HIME elevation maps at 30 m resolution. However, as the resolution
of satellite-based optical imagery becomes ever-finer, the HIME method may hold solid promise to
provide higher-resolution time-lapse estimations of intermittently flooded topography, at least as an
interim measure until the production of universal, very high resolution topographic data or imaging
technology can eventually be globally deployed. At present, the HIME method used with 30 m Landsat
data provides much higher horizontal and vertical resolution than the similar study by Kuenzer et al.
(2013), that used 150 m SAR imagery [41].

The third important aspect of HIME uncertainty arises from the challenge of distinguishing
emergent areas from water. Although dark pixels in red or infrared bands are very likely water,
some sediments and shallow ponds on sediment can also appear spectrally dark. Likewise, green
mudflat algae or floating aquatic vegetation might be mistaken for emergent marsh macrophytes.
Emergent vegetation may hide sub-canopy flooding and so make a marsh location appear to be
emergent when it is actually, at least partly, underwater. Furthermore, vegetation is not always
green (although WLD has year-round moderate temperatures), and turbid shallow water can be
spectrally mistaken for sediment. Two aspects of this study partly mitigate this concern, however.
First, the Otsu thresholding method used to separate water from emergent areas was specifically
chosen for its well-established ability to optimally separate a distribution of values into two distinct
classes, even if overlap in the characteristics of the two modes of data obscures a readily apparent
division. Furthermore, an effectiveness metric can be calculated along with each conversion of a
remote sensing image to a binary map, to quantify how well two distinct modes were separated. For
example, Otsu thresholding function ‘graythresh’ in Matlab (v.R2017a, Mathworks, Natick, MA, USA)
returns an effectiveness metric of zero if trying to distinguish within a completely uniform field of
values, or one if analyzing a natively binary field. In this study, the thresholding of the Landsat images
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into binary maps consistently achieved an effectiveness metric of >0.8, suggesting very competent
separation of WLD water and non-water areas. Second, in addition to the encouraging classification
effectiveness metric, the strong validation of HIME-predicted elevations using LIDAR data suggests
that misclassification and elevation over-estimation issues were only of minor impact at the WLD study
site. The astoundingly close fit between the exposure frequencies based on Landsat and LIDAR data
(regression slope 0.99 for intercept 0.0, and solid model evaluation metrics), all else aside, indicated
that the HIME method was able to achieve comparable vertical, if coarser horizontal, resolution and
precision as the LIDAR data, at least for the case of this study.

4.2. Eco-Geomorpohological Insights from Hindcast Delta Topography

Modeling studies in coastal wetland environments other than deltas have described marshes as
developing multiple discrete topographic platforms, as a result of feedbacks creating distinct stable
states, that are resistant to perturbation (e.g., [99–101]). To achieve these multiple stable marsh surfaces,
in theory, plant communities must exhibit a high degree of specialization, with peak productivity
at different elevations and accretion rate must be at least in part a function of plant productivity.
Vegetation influences topographic change in a tidal environment via several mechanisms, including
organic matter accumulation, mineral sediment accumulation through water velocity attenuation,
and erosion reduction by increased cohesion (e.g., [19,20,102]). If these positive effects on elevation
growth are balanced by negative factors like erosion and compaction, the combined effect could
regulate a stable marsh surface. Generally, multiple stable state theory as applied to salt marshes
assumes a positive correlation between biomass and soil organic matter accumulation [21,99,101],
mineral sedimentation [103], or both [100]. Based on modeling work done for salt marshes, it has
been proposed that the signature of this process is multiple peaks in the marsh surface elevation
histogram that correspond with vegetation type [1,101,104], from which theory this study interpreted
the histograms of Figure 6b. The specialized vegetation, emergence of distinct marsh surface groupings
and close correlation between marsh surface emergence and vegetation distribution (Figure 10a,b)
suggests that ecogeomorphic multiple stable state theory likely applies to the WLD at the local (~island)
scale, in addition to organization by broader-scale delta morphodynamics and exogenous factors
(e.g., floods, hurricanes).

Adding to the evidence of two or more stable states from prior studies, the results of the HIME
method suggested that WLD marshes occupy and maintain as many as four concurrent stable elevations
(Table 2). Over the two decades of study, we identified two distinct elevations zones of apparent net
sediment accumulation (0.1–0.4 m and 0.5–0.9 m) and two distinct zones of net sediment volume
loss (−0.3–0.05 m and 0.4–0.5 m). The elevations that acted as sediment attractors were remarkably
aligned with the previously independently-determined high- and low-marsh zones of high vegetation
biomass by Carle et al. (2015), and the net erosion zones aligned with lower-biomass elevation ranges
(Figure 10a,b). Low marsh species, such as N. lutea and P. nodosus, are found at WLD at an elevation
between 0.0–0.4 m, with peak N. lutea growth at approximately 0.25 m [32]. High marsh vegetation
C. esculenta and S. nigra are distributed between 0.4–1.0 m elevation, where peak C. esculenta growth
occurs at about 0.6 m (Figure 10b) [32].
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Table 2. Comparison of the multiple stable states of marsh elevations (stable platforms), vegetation,
and water levels at the WLD by this study and others. Elevations in meters above NAVD88.

Reference Evidence Source Observ.
Year (s)

Lowest
Platform

Low
Platform

Middle
Platform

High
Platform

Apparent Stable Elevations (Eco-geomorphic Attractors)

Smith et al. (2020)
(this study)

HIME Landsat exposure
probability; 3-year
elevation histogram modes
(Figure 6b)

1999–2010 0.1 0.4 0.9

HIME elevation frequencies
(Figure 8) 1999–2013 <0.5 >0.7

HIME most abundant final
elevations (sed. volf−i vs
elevf, Figure 10a)

1993–2013 0.2 0.7

HIME dz/dt ~ 0
(Figure 10c,d) 1993–2013 −0.3 0.4 0.9

Olliver and Edmonds
(2017) [27] Intra-delta LIDAR analysis 2012 −0.12 0.25

Wagner et al. (2017) [28] Intra-delta and intra-annual
LIDAR analysis 2009, 2013 0.18 0.56

O’Connor and Moffett
(2015) [31]

field observation and
sediment characteristics 2013 <0.45 ≥0.45

Ma, et al. (2018) [29] Transfer entropy analysis
and LIDAR change 2009, 2013 low mid high

Twilley et al. (2019) [33] <−0.04, below mean water 0.04–0.30,
intertidal >0.30, supratidal

Apparent Focal Zones of Sedimentation (i.e., Elevation Change) or Biomass

Smith et al. (2020)
(this study)

HIME net sediment volume
change (sed. volf vs. elevf
− sed. voli vs. elevi,
Figure 10a)

1993–2013 Low loss:
−0.3–0.05

Low gain:
0.1–0.4

High loss:
0.4–0.5

High gain:
0.5–0.9

Bevington and Twilley
(2018) [30]

Soil organic matter (OM)
content vs. elevation 2010 <0.0 * 0.18–0.5 *

Carle et al. (2015) [32] Marsh vegetation zones 2010 ~0.0–0.2 a ~0.1–0.4 b ~0.4–0.7 c ~0.5–0.8 d

* Bevington and Twilley (2018) noted sediment OM increase with elevation for marsh elevations >0.0 m NAVD88 [30].
We interpret, from their Figure 7 scatterplot, particular OM increase for marsh elevations >0.18 m, above which OM
values were entirely >5% and increasing with elevation and below which OM values were almost entirely <5%
with weaker elevation relationship. a Potamogeton nodosus, other submerged aquatic vegetation, b Nelumbo lutea,
c Polyognum spp., and d Colocasia esculenta, Salix nigra vegetation zones, as by Carle et al. (2015) [32].

Although net sediment volume gains (or losses) were focused in the broad zones aligned with
(or between) vegetation zones, the discrete elevations at which WLD marshes appeared to be stabilizing
were more specific, according to our analysis and prior studies. The evidence from this study suggests
four discrete elevations as likely stable, platform-forming geomorphic attractors for the WLD, at about
−0.3 m, 0.2 m, 0.4 m, and 0.9 m (NAVD88). These attractors were evidenced by several distinct lines of
evidence in this study, e.g., appearing as histogram peaks (Figure 6b, Figure 8) and as elevations with
dz/dt near zero (Figure 10). Evidence for these stable attractor points was previously shown by other
studies in some cases (Table 2, upper). The “Lowest Platform” (~−0.3 m) and the “Low Platform” (~0.1
or 0.2 m) identified by this study are similar to the −0.12 m and 0.25 m platforms noted by Olliver
and Edmonds (2017) [27], based on analysis of elevations represented within a 2012 LIDAR dataset.
Wagner et al. (2017) [28] also identified the Low Platform attractor at ~0.18 m, and a Middle Platform
attractor at ~0.56 m, based on 2009 and 2013 LIDAR datasets. This Middle Platform elevation was
well-represented by multiple lines of evidence in this study at ~0.4 m, as well as being identified by
field observation and contrasting sediment analysis by O’Connor and Moffett (2015) [31], as occurring
for elevations <0.45 m. Prior studies did not specifically note a high platform attractor at ~0.9 m, as in
this study, but this height was beyond the scope of some of the prior studies (e.g., Wagner et al. (2017),
maximum elevations were only ~0.8 m [28]).

In addition to identifying a total of four stable marsh elevations within WLD, separate evidence
from this study and others supported notions of more rapid change at elevations between the
stable platforms (Table 2, lower). This study identified elevations from −0.3–0.05 m NAVD88 as a
concentrated zone of net sediment volume loss over two decades. This finding agrees well with the
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finding by Bevington and Twilley (2018) [30] that elevations <0.0 m exhibited distinct, low organic
matter concentrations. That this elevation range behaves as a unique ecogeomorphological zone is
also supported by it being the key elevation range for submerged aquatic vegetation biomass [32],
which may be less effective at trapping and stabilizing sediment than more strongly rooted subaerial
macrophytes. Likely in part due to a need for conservation of sediment mass, this low-elevation zone
of net sediment volume loss appeared to be adjacent to the zone of strongest net sediment volume gain
over the two decades of our study, from 0.1–0.4 m. This zone of peak sediment gain, as quantified from
the HIME results, happened to coincide exactly with the abundant biomass of this zone identified by
Carle et al. (2015) [32], and also with the notably higher sediment organic matter percentages within
this elevation range (>5% at 0.18–0.5 m) reported by Bevington and Twilley (2018) [30]. Mechanistically,
we interpret that sediment redistribution from lower elevations (<0.0 m), as well as exogenous, mainly
fluvial (sandy) sediment inputs supply the strong sedimentation observed in the 0.1–0.4 m elevation
range at WLD, of which elevations over time aggrade to the stable middle platform geomorphic
attractor elevation of about 0.4 m.

Similarly, we interpreted that sediment redistribution from middle elevations (~0.4–0.6 m), as well
as exogenous, mainly fine-textured (fluvial and/or marine) sediment inputs, support the strong
sedimentation observed in the 0.5–0.9 m elevation range (Figure 10a), which over time aggrades to
the stable high platform geomorphic attractor elevation of about 0.9 m. The zone of accumulation
from 0.5–0.9 m quantified from the HIME results happened to coincide exactly with the high-biomass
vegetation zone ~0.5–0.8 m by Carle et al. (2015) [32].

In addition to insight into intra-delta processes, the unique historical time series of recent
morphodynamic change at WLD afforded by the HIME method provided an opportunity to compare
short-term, intra-annual to decadal change at WLD to other and longer-term studies of the nature
of bayhead deltas in the Mississippi River delta system. The total accumulation (volume change) of
subaerial sediments at the WLD was 0.0051 km3 between the 1993–1995 and 2010–2013 timeframes.
Taking a bulk WLD island sediment density of about 0.5 g/cm3 [54], this sediment volume equates
to a minimum net accumulation of about 2.55 million metric tons (MMT) of sediments over the 21
years, or 0.122 MMT/yr. Distributed over the 17.6 km2 of WLD marshland (2010–2013 estimate), the
minimum WLD sediment mass accumulation rate estimated from this study is about 7000 MT/yr/km2.
This is a minimum value, since it only accounts for subaerial and intermittently flooded volume and
omits any persistently subaqueous or very high elevation accumulations. Unsurprisingly, then, this
accumulation rate (0.122 MMT/yr) is smaller than estimates by Törnqvist et al. (2007) for the WLD of
4.3–5.8 MMT/yr [105]. The order of magnitude difference is a bit surprising, however, as 0.122 MMT/yr
net subaerial deposition would be only 2–3% of total delta deposition according to these figures; the
reason for this great difference is not clear. On a per-area basis, the mass accumulation rate estimated
by this study is quite similar to what would result from the values reported by Keogh et al. (2019) for
mineral sediments deposited in Davis Pond, a small enclosed marsh diversion area off the main stem of
the Mississippi River [106]. Keogh et al. (2019) reported 0.0471 MMT deposited in one 159-day season
and 0.0289 MMT in another 159-day period [106]. When scaled to a 365-day year, these values amount
to about 0.087 MMT/yr which, over the 13.5 km2 area studied at Davis Pond, gives an accumulation
rate of about 6500 MT/yr/km2, very similar to our 7000 MT/yr/km2 for the WLD. Both these values
are less than the ~10,000 MT/yr/km2 that would result from the information by Törnqvist et al. (2007)
for the much larger Lafourche subdelta, a late Holocene analogue for WLD [105]. This suggests that
in scaling the area from the 13.5–17.6 km2 size of Davis Pond and the WLD to the 10,000 km2 of the
Lafourche subdelta, mass accumulation must also be scaled, i.e., that important depositional processes
occur at the scale of deltaic lobes (and over millennia), that are not represented over short times at
the scales of WLD, crevasse splays, and small diversions. The simplest and most likely such missing
process at small and short scales is the subsidence and compaction that will accommodate greater
sediment thickness at the greater scale.
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Considering the HIME-derived sedimentation results in terms of net change in elevation instead
of terms of mass deposition, the HIME method allowed this study to estimate an average total WLD
aggradation of about 0.125 m over about 21 years (1993–2013), which equates to an average net rate
of 0.6 cm/yr. This was remarkably close to the rate of 0.7 cm/yr derived by Chamberlain et al. (2020)
for the Lafourche subdelta [107]. The difference is that the Lafourche subdelta aggradation was
averaged (sustained) over centennial to millennial timescales, consisted of sand/sandy loam mouth bar
deposits overlain by silty clay loam overbank deposits [40], and was of more considerable thickness,
with likely important compaction and subsidence. The WLD aggradation rate was derived over a
mere two decades for a delta formed of nearly 70% sand, unlikely to substantially compact [108].
These aggradation rates contrast with higher rates reported by other studies, however. The average
rate from this study (0.6 cm/yr) was toward the low end of the range (0.2–9.6 cm/yr) reported by
DeLaune et al. (2016) for a few specific WLD points [54]. It was also much lower than the rate of
aggradation from the study by Olliver and Edmonds (2017), who implied that WLD areas initially close
to mean low water (in fact, submerged during part of the year) would need to transition to a stable,
higher elevation, vegetated state if on an island levee (~35 cm/5 yrs ≈ 7 cm/yr) or in an island interior
(~35 cm/15 yrs ≈ 2.3 cm/yr) [27]. This study’s overall aggradation rate, however, was averaged over
all lands ever exposed subaerially during the 193 satellite images used in the 21-year study, whereas
data by Olliver and Edmonds (2017) [27] were focused on and around higher-elevation portions of one
island. With perhaps the most similar analog to the WLD setting, Cahoon et al. (2011) detailed sediment
accretion, subsidence, and net elevation change based on marker horizons and surface elevation tables
within several vegetation zones at the Brant Pass Splay, which has been growing since 1975 in a
subsided pond within the modern Mississippi River delta [109]. The Brant Pass Splay, like the WLD,
is mostly sand (>70% find sand at Brant Pass Splay), and looks very similar to the WLD in planform
geometry. Net elevation change at the Brant Pass Splay over 2–4 years (between 1997/1998/1999 and
2000/2001/2002) ranged from 0.3 cm/yr–3.9 cm/yr among the pre-emergent (low-tidal), low marsh,
high marsh, and forest vegetation zones, and averaged 1.4 cm/yr over a previous observation period
(1985–1987) [109]. Aggradation at Brant Pass Splay exhibited a trend of lower rates at higher elevations
(elevation range 0–79 cm), with net rate of elevation change declining an average 0.84 cm/yr per 10
cm increase in zone elevation [109]. With aggradation in the range of >1 cm/yr, Shen et al. (2015)
documented aggradation of about 1–4 cm/yr in Bayou Lafourche, where overbank (unchannelized)
deposition dominated over a few, episodic, centennial-length intervals [35]. Bayou Lafourche is also
a bit finer-textured, of clay/silty clay/silty clay loam, with very fine sand/sandy loam and silt loam
admixtures [35]. At Davis Pond, Keogh et al. (2019) found about 1–2 cm of new sediment deposition
on average, by monitoring 7Be decay over periods of 159 days in 2015, equating to about 2–5 cm/yr
accumulation, if sustained [106].

In summary, it is not clear if there is an underlying similarity between the WLD and Lafourche
subdelta systems leading to their similar net aggradation rates, but the strong contrasts in total mass
accumulation suggest that the aggradation similarity may be more of a coincidence related to a
particular balance of accumulation and subsidence/compaction in the Lafourche. Instead, in many
respects the WLD and Brant Pass Splay systems seem to be similar, yet they differ in aggradation rates
by a factor ranging from 0.5 to 6.5. The overall aggradation rate determined from the HIME results in
this study is at the low end of several other studies in the region (note that this is not an exhaustive
review), but corresponds to a similar rate of sediment mass accumulation at WLD as at Davis Pond,
per unit area. However, the HIME method provided an unprecedented level of detail, with elevation
change estimated at 46,494 separate pixels, each of 30 × 30 m size. The results of this study suggest
that further research on delta aggradation processes should be accompanied by a study of scaling of
aggradation measurements according to observation area and sample size, consideration of sample
clustering and possible sampling bias toward higher-elevations and more passable marshlands, and
intercomparison of methods.
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4.3. Predictability of Delta Topography from Spatial Position and Geometric Factors

In a final effort of this study, we tested if WLD subaerial topographic patterns could be competently
predicted from a few simple metrics of spatial position and delta or island geometry. Although
the regression models fit the HIME elevation maps with statistically high fidelity overall (Table 1
and Supplementary Materials Section S1.2), they unsurprisingly produced only highly smoothed
topographic representations (Figure S4) and failed to represent the finer-scale heterogeneity of marsh
topography (Figure S3) that provides key interest and complex habitat value. Still, the coefficients in
the regression models exhibited remarkable stability through time (Table 1).

Beyond providing a simple, useful formula for creating WLD-like topographies (e.g., for numerical
simulations), the regression analysis provided some additional insight into WLD geomorphic form.
The coefficient relating marsh-top elevation and distance from the delta apex represented an estimate
of the delta topset slope: over the observation period 1993–2013, the median value was 0.11 m elevation
decrease per km distance down-delta. Further, this slope varied only slightly over the two decades
of study, between 0.1 and 0.12 m/km, although not monotonically (Table 1, Figure S8). This topset
slope estimate agreed very well with the 0.14 m/km slope estimate by Törnqvist et al. (2007) [105]
from data by Majersky et al. (1997) [110]. The years within this study that were best fit by a slightly
larger coefficient (steeper delta topset) coincided with years 2002–2007 in the analysis, when WLD was
impacted by hurricanes Lili (2002) and Rita (2005). This result may reflect the preferential erosion of
the more distal (offshore, downstream) delta areas and preferential deposition among more proximal
(inland, upstream) areas of this time period (2002–2007). It is likely that the hurricanes entrained
sediments from the bay and the low-elevation, distal zones, which were then pushed inland by storm
surge and winds, to be trapped by stronger, more established vegetation at the higher-elevation areas.
In fact, both this hypothesized low-elevation erosion and high-elevation aggradation were evidenced
in the short-term elevation change maps produced from the HIME method: net erosion was prevalent
in distal areas between the 1999–2001 and 2002–2004 timeframes and between the 2002–2004 and
2005–2007 timeframes (blue in Figure 7c); net accretion was prevalent over the same times among more
proximal island areas (green in Figure 7c). A reversal of this pattern between the 2005–2007 to 2008–2010
timeframes (switching to proximal erosion, distal deposition), perhaps as the delta re-equilibrated
following the hurricane disturbances, influenced the recovery of the regression model coefficient back
toward its median value. Overall, the effects of the two hurricanes occurring during the middle of the
study period included temporarily enhanced elevation loss at the distal, lower-elevation portions of
the delta and enhanced aggradation at the upstream, high-elevation portions, leading to a temporarily
enhanced delta topset slope; however, the pattern reversed subsequently after the second hurricane.

Compared to the delta-wide topset slope, intra-island factors were less strong predictors of local
marsh-top elevation in the WLD, although still important. Some of this apparent weakness is likely
due to the intra-island factors being more relevant on some WLD islands and less relevant on others,
diminishing their signal overall across the whole delta. Notable was that the distance-to-midline factor
was always positive, indicating increasing elevation with increasing distance from a line defining
the main island axis (beginning 1

4 down from the island apex), whereas the distance-to-channel-edge
factor was more typically negative, indicating decreasing elevation with increasing distance from the
outer island boundary. Together, the distance-to-channel and distance-to-midline factors enabled the
approximation of a simple but non-linear topographic profile across islands’ lateral levees. The larger
distance-to-midline coefficient represented a steeper interior (lagoonal) shoreline of the island and the
smaller distance-to-channel coefficient represented a flatter levee-top closer to the channel. Although
this may seem to contradict the typically steep outer banks of delta island levees (e.g., [30]), at the
coarse, 30 m pixel resolution of this study, within which the narrow range of steep outer levee bank
slope cannot be expected to be resolved, this approximation of a flatter levee near the channel and
steeper slope in the marsh interior is actually logical and useful.

In summary, the attempt to simulate WLD subaerial topography from a few simple metrics of
spatial position and delta or island geometry was statistically quite successful and resulted in a useful,
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although coarse and smooth modeled topography. These models, or the median model, of overall
WLD topography may yet prove highly useful, for example to the numerical modeling community.
By using (or perturbing) the regression coefficients that this study derived (Table 1), together with
spatial fields representing the four very simple geometric predictive factors, researchers interested in
simulating hydrological and sediment dynamics in a WLD-like system (or variations thereon) may now
have an easy time creating synthetic delta topography realizations. The simple topography-generating
regression models of this study could be further adjusted, e.g., with a white noise model of finer-scale
roughness (e.g., as in [25]), to achieve further topographic realism for simulations, without the logistical
or computational difficulty of obtaining high-resolution LIDAR or dynamically synthesizing delta
topography via an extended sediment transport simulation.

5. Conclusions

This study investigated intertidal spatiotemporal morphodynamics at the Wax Lake Delta (WLD)
in Louisiana over two decades (1993–2013) in detail, enabled by developing a new method for
probabilistically hindcasting intertidal marsh-top elevations (HIME) from optical remote sensing data
(Landsat) and partial water level records. The HIME method was validated by an almost 1:1 agreement
with a high-resolution LIDAR survey of the Pintail Island subarea of WLD. The two-decade time
series of marsh-top elevations revealed an overall set of four discrete elevations within the WLD
intermittently-flooded elevation range that are likely stable, platform-forming geomorphic attractors,
at about −0.3 m, 0.2 m, 0.4 m, and 0.9 m (NAVD88). Islands beginning with mid-elevation, fairly
uniform, non-systematic topography at early times (1993–1998) showed bifurcating dynamical behavior,
differentiating over time into distinct higher-elevation levee and lower-elevation lagoon or intra-island
platform regions. The aggradation or erosion patterns responsible for these shifts were also diagnosable
from the HIME results, with strong sediment accumulation at elevations 0.1–0.4 m and 0.5–0.9 m, and
sediment loss from an intervening zone (0.4–0.5 m) and low elevations (−0.3–0.05 m). Importantly, each
of the geomorphic attractors also coincided strikingly well with different WLD dominant vegetation
growth ranges, whereas the elevation ranges that experienced concentrated sediment volume loss over
time matched precisely with elevation ranges of typically lower biomass, between vegetation zones.

Together, these spatial interactions supporting the multiple stable ecogeomorphic states within
the WLD resulted in only modest overall aggradation, with an average of 0.125 m elevation gain over
the two decades (0.6 cm/yr), but with a range from >0.5 m net accretion (at least 2.3 cm/yr) to <0.5 m
net elevation loss (at least −2.3 cm/yr from erosion and/or subsidence). The impacts of two hurricanes
were observed in erosional and depositional patterns, as well as temporary topset steepening. Overall
accretion was greatest where secondary channels of low, distal portions of islands gradually filled in
over the two decades, whereas elevation losses were greatest where some interior, intra-island lagoons
deepened or expanded over time. The approximate total delta area increased from about 11.2 km2 in
about 1994 to an estimated maximum of 19.6 km2 in about 2006, and then declined to about 17.6 km2

by 2013. In general, distance down-delta (from the delta apex) was a strong predictor of local WLD
island elevation and representative of a 0.11 m/km delta topset slope, on average. Together, distance
down-delta, distance-to-island-apex, distance-to-channel, and distance-to-island-midline were a useful
set of simple geometric predictor variables for modeling WLD subaerial marsh-top elevations via
multiple linear regression models.

The presented method of hindcasting intertidal marsh-top elevations (HIME) from optical
remote sensing data (Landsat) and partial water level records provides a novel tool to generate
four-dimensional, historical topographic data for intermittently flooded settings such as intertidal and
deltaic environments, while the empirical findings from Wax Lake Delta provided a new opportunity
to review, synthesize, and strengthen understandings of ecogeomorphological controls and expressions
of multiple ecogeomorphological stable states within this exemplary young delta system.
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