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Abstract: We studied the influence of the statistical properties of soil moisture changes on the
Interferometric Synthetic Aperture Radar (InNSAR) coherence and closure phase to determine whether
the InSAR coherence and closure phase can be used to estimate soil moisture changes. We generated
semi-synthetic multi-looked interferograms by pairing # real single-looked pixels of an observed SAR
image with n synthetic single-looked pixels. The synthetic SAR data are generated from the real SAR
data by applying soil moisture changes with a pre-defined mean and standard deviation of changes.
Our results show that the diversity of soil moisture changes within the multi-look window gives
rise to decorrelation, a multi-looked phase artifact, and a non-zero phase triplet. The decorrelation
and closure phase increase by enlarging the diversity of soil moisture changes. We also showed
that non-soil moisture changes can lead to larger decorrelations and closure phases. Furthermore,
the diversity of phase changes, decorrelation, and closure phases are correlated with land cover type.
We concluded that the closure phase and coherence are independent of the magnitude of soil moisture
changes and are inappropriate tools to estimate soil moisture changes. Coherence, however, can be
used as a proxy for soil moisture changes if the diversity and magnitude of soil moisture changes
within a multi-looked pixel are strongly correlated.
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1. Introduction

InSAR can remotely sense mm to cm-scale surface deformation [1-3]. InSAR has been used
successfully to map surface deformations associated with different mechanisms, such as landslides,
sinkholes, volcanism, subsidence, and permafrost [4-8]. Two SAR images of the same area with the
same looking angle taken at different times can be used to generate an interferogram. After removing
topographic phase, orbital, and atmospheric phase artifacts, the phase of an interferogram represents
the deformation between two images in the line of sight direction. Between the two image acquisitions
of an interferogram, however, the soil moisture may have also changed. The change in water content
leads to changes in the INSAR phase and SAR intensity [9]. This in turn can influence the inferred
deformation and potentially affect INSAR coherence.

In many agricultural and environmental studies, soil moisture plays a key role [10-12]. In addition,
some ground movements associated with terrestrial processes have a close relationship with
soil moisture changes. For example, rapid snowmelt or heavy precipitation can trigger sudden
landslides [13]. Groundwater conditions can be indicated by soil moisture condition [14]. Additionally,
soil moisture is closely related to permafrost thawing and deformation [6-8].

Many studies have been introduced to estimate soil moisture changes using the INSAR phase and
SAR intensity [15-21]. However, soil moisture estimation using the INSAR phase has encountered
difficulties and uncertainties. The spatial variability of soil moisture, unlike deformation, is complex [22].
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In many cases, soil moisture varies abruptly; for example, across the boundaries of two agricultural
fields. The temporal variability of soil moisture is also complex due, for example, to precipitation and
seasonal effects [22]. In addition, the phase and intensity contribution of non-soil moisture changes
cannot be easily distinguished from the soil moisture signal. Despite these difficulties, complex SAR
images have been used to estimate soil moisture [16,17,22].

In order to avoid the difficulties in estimating soil moisture using the INSAR phase, some studies
have recently introduced approaches to estimate soil moisture using the closure phase. By assuming
that the closure phase comprises contributions from the magnitude of soil moisture changes,
Zwieback et al. [23] tried to establish approaches to estimate soil moisture using the closure phase
and InSAR coherence. The closure phase (also known as the phase triplet) is the combination of
three interferograms generated from three SAR images. The phase of the single-looked interferogram
pairing the first and the third SAR images equals the summation of the phases of the two intermediate
single-looked interferograms. This means that a non-zero phase triplet does not exist in single-looked
pixels [24]. For multi-looked pixels, however, the closure phase has non-zero values [23-25].
Some studies have discussed the possible causes of non-zero phase triplets. De Zan et al. [16]
argued that non-zero phase triplets could occur due to the interference of different scatterer populations
with independent phase behaviors. The authors associated the closure phase to the changes in the
water content of soil and vegetation. Additionally, Zwieback et al. [17] argued that deformations do
not cause non-zero phase triplets; the authors suggested that non-random effects of decorrelation
noise, non-zero spatial baselines, and the change in dielectric constant can potentially cause phase
inconsistency [16,17].

In contrast to the hypothesis that the magnitude of changes contributes to the closure phase [23,25],
a new study showed that the closure phase is independent from the magnitude of changes [24].
Using analytical and statistical approaches, Molan et al. [24] studied the effect of the statistical
properties of the phase and intensity of single-looked pixels on multi-looked phase and coherence.
The authors showed that the closure phase is related to the heterogeneity of phase and intensity
changes and is independent of the magnitude of changes. In this letter, we study the influence of soil
moisture changes on the closure phase and coherence of multi-looked pixels. We aim to determine
whether the closure phase or INSAR coherence can be used to estimate soil moisture changes.

To study the relationship between soil moisture changes and InSAR coherence and the closure
phase, we generated semi-synthetic interferograms with variable soil moisture changes between the
images. Using an analytical soil moisture model [9], the soil moisture values were converted to their
corresponding phase and intensity changes. The phase and intensity changes were applied to the real
pixels to generate synthetic pixels. Finally, semi-synthetic interferograms were generated using the
real and synthetic pixels. The results from synthetic data showed that the multi-looked phase artifact,
decorrelation, and closure phase increase by increasing the standard deviation of soil moisture changes
within the multi-look window. We show that, compared to soil moisture changes, non-soil moisture
changes can lead to larger decorrelation and closure phase values. To confirm the results of synthetic
data, we used phase and coherence images generated from real SAR images of the Advanced Land
Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) over two
study areas in Idaho and Oregon. We also show that the heterogeneity of phase changes, decorrelation,
and the closure phase are correlated with each other and with land cover type. We conclude that,
in general, the closure phase and InSAR coherence are independent of the magnitude of soil moisture
changes and are inappropriate tools to estimate soil moisture changes.

The rest of this letter is structured as follows: Section 2 describes the method of generating
semi-synthetic interferograms; Section 3 provides the results generated from synthetic and real SAR
images; Section 4 provides a discussion of the results; and finally, conclusions appear in Section 5.
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2. Materials and Methods

To investigate the effect of the statistical characteristics of soil moisture changes on INSAR coherence
and the closure phase, we exploit semi-synthetic interferograms. The first image of a semi-synthetic
interferogram u; is a real single-looked SAR image containing p.q = n pixels. The second image u, is
synthetic data generated from real data by applying a change vector Au; »

uj = [uj(.l),ug.z), e, u?n)] ,j=12 @

The intensity and phase changes of the change vector, respectively, are

AdB = fi5(My) + AdB,s AO = fo(M,) + ABys @)

where M, is the vector of soil moisture changes between the real and synthetic images.
M, = [m(l),m(2>, ., m(”)]/ 3)

In the equations above, fy(M,), and f;5(My) are the soil moisture-dependent phase and intensity
changes, respectively. A0,s and AdB,; indicate the phase and intensity changes associated with
non-soil moisture changes between the two images, which in general include mechanical deformations,
other artifacts, and noise.

Previous studies suggest a linear relationship between SAR intensity changes and soil moisture
changes [26]. Additionally, a linear relationship between soil moisture changes and phase changes
has been reported in the studies in which statistical approaches have been conducted [17]. Thus far,
few analytical and statistical approaches have been introduced to quantify the relationship between
soil moisture and SAR intensity or phase [18,27-35]. The studies generally model either phase or
intensity. In this letter, we use the analytical model developed by Molan and Lu [9]. The model uses
Mie equations and successfully quantifies soil moisture-induced changes in the InNSAR phase and SAR
intensity; this approach models soil as an attenuating dielectric medium with a collection of discrete
coarse scatterers embedded in a background. The signal of a focused single-looked pixel, in the model,
is [9]:

u= g e 2Rt 5 by s e’ k (07 % = 2(koyisin(6r)) g2 fy Beos(0r)d=’ W (x;) Wi (y; sin(6;) 4)
i=1
—-ncos(6y)z;)

where u is the signal of the single looked pixel—i.e., the total signal from all scattering points0; is the
refracted angle, t; ; is the transmission coefficient of amplitude from medium i to medium j [26], R is
the range of the pixel, ko is the free air wavenumber, and s; is the amplitude of the scattered wave by
the scatterer. Additionally, W, and W, are the slant range and azimuth resolution functions for the
single scatterer located at (x;, y;, z;). The refraction of the soil medium is n. The absorption and phase
constants of soil are, respectively, a and . Figure 1 shows the modeled phase and intensity changes
calculated using Equation (4). Without loss of generality, we assume that the soil background is loam
that contains silt, clay, and sand. It also contains gravels with the grain size (r,) of 2.65 cm and volume
fraction (f;) of 1.0%.

Using Equations (2) and (4), we can generate a synthetic image from a real image and a synthetic
image with pre-defined soil moisture changes. The real image has n single-looked pixels. The soil
moisture differences between the real and the synthetic image M, are a random vector with pre-defined
average Am, and standard deviation o, values. Therefore, one soil moisture change Muv; is associated
to each of the single-looked pixels in the first image uil). The soil moisture changes are converted
to the equivalent phase and intensity changes using Equation (4). Then, the phase and intensity
(i)

changes are applied to u&l) to generate u, . After creating the synthetic image, an interferogram can be
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generated using the real and synthetic images. Therefore, by applying different values to the average
and standard deviation of soil moisture changes and calculating the resulting phase and coherence
changes, we can assess the effect of the statistical properties of soil moisture changes on InNSAR phase
and coherence. To compare the influence of soil moisture change with the effect of non-soil moisture
changes, we first assume that the non-soil moisture changes are negligible. Then, we generate the
second type of interferograms that have both soil moisture and non-soil moisture changes.
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Figure 1. Intensity (a) and phase (b) changes of the soil. 7, is the radius of the larger grains (main
scatterers) and f; is the fractional volume of larger grains.

3. Results
3.1. Synthetic Data

The interferometric phase and coherence have an angle and magnitude of

e
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To assess the effect of the statistical properties of soil moisture changes on the InNSAR phase and

coherence, two types of interferograms are generated. For the first type of interferogram, non-soil
moisture changes are assumed to be zero. This means that AdB,;; and A0, in Equation (2) are zero
and we obtain

AdB = f15(My)A0 = fo(M,) ©)

The intensity and phase changes associated with soil moisture changes—i.e., f;p(My) and
fo(M,)—are calculated using Equation (4). Then, u, is calculated by applying the phase and intensity
change to u;, and finally, an interferogram is generated using #; and u,. The average soil moisture
changes of 0.05, 0.15, and 0.25 with the standard deviation in the range of 0.01-0.13 were applied
between the two images to generate interferograms. For each case with the same average and standard
deviation, 1000 interferograms were generated. Figure 2 illustrates the phase and coherence of the
generated interferograms. In Figure 2, each point on the solid phase lines is the average phase of 1000
interferograms with a specific Am, and 0. The same-color dashed lines show the average + standard
deviation of multi-looked phases of the interferograms. The average interferometric coherence values
for those interferograms are also shown in Figure 2.

As stated previously, we considered zero non-soil moisture changes between the images to assess
the influence of soil moisture changes of the INSAR coherence and closure phase. Now, we generate the
second type of semi-synthetic interferograms by applying non-soil moisture changes (AdBj;s and A0,)
in addition to the soil moisture changes. Soil moisture changes lead to phase and intensity changes of
SAR images. In general, the phase and intensity values increase along with increasing soil moisture
(see Figure 1). In other words, dielectric constant changes due to soil moisture changes cause correlated
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phase and intensity changes. Unlike soil moisture changes, the phase and intensity changes of non-soil
moisture changes are assumed to be uncorrelated.
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Figure 2. The phase (a) and coherence (b) changes due to the change in the average and standard
deviation of soil-moisture changes.

In the second type of interferogram, which include both soil moisture and non-soil moisture
changes, the average phase and intensity of non-soil moisture changes are considered to be zero.
The standard deviations of the phase and intensity changes are 4 dB and 0.75 radians, respectively.
The soil moisture changes of the second type of interferograms are identical to the soil moisture changes
of the first type. The multi-looked phase and coherence values are shown in Figure 3. Similar to the first
type of interferograms, we generated 1000 interferograms with the same average and standard deviation
of changes for each case. Note that the influence of non-soil moisture changes is demonstrated by the
larger distance between the average plot (solid phase line) and the average + standard deviation plot
(dashed phase lines). The coherence plot of non-soil moisture cases is shown in Figure 3, which dropped
from 1.0 to 0.68 at 0, = 0.
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Figure 3. The phase (a) and coherence (b) changes due to the change in the average and standard
deviation of soil-moisture changes and zero-mean random non-soil moisture change.

Three images can generate three mutual interferograms and one phase triplet, which is calculated
by subtracting the phase of the interferogram pairing the first and the last images from the summation
of the phases of the two intermediate interferograms [16,24]

Gijik = Dij+Djk—Dik @)

We have used a pair of one real image and one synthetic image to generate the interferograms.
Now, we can use one real image and two synthetic images to generate a closure phase image. We use
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the same strategy applied in the previous section to generate the semi-synthetic interferograms.
Figure 4 shows the closure phases generated using six different combinations of soil moisture changes.
In Figure 4, each point on the image is the average value of 1000 closure phases with specific Am, 1,
Amy2, Opw,1, and oy 1 values.
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0.12
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Figure 4. Closure phase (in radians) due to different combinations of soil moisture changes.

The results in Figure 4 were generated by assuming negligible non-soil moisture changes.
The second type of closure phases were generated by applying both soil moisture and non-soil moisture
changes between the images. We assumed that the non-soil moisture changes induce zero-mean phase
and intensity changes with the standard deviations of 4 dB and 1.0 radian, respectively. The results of
the second type of closure phases are shown in Figure 5.
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Figure 5. Closure phase (in radians) due to different combination of soil moisture changes and
zero-mean random non-soil moisture change.
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3.2. Real Data

Our results from synthetic data showed that the INSAR coherence and closure phase are functions
of the standard deviation of soil moisture changes between images. Now, we use real SAR data
over two areas in Oregon and Idaho to evaluate the results generated from the synthetic data.
To this end, over each area, three co-registered single looked complex (SLC) images (the first three
images in Tables 1 and 2) of the L-band ALOS PALSAR have been used to generate multi-looked
interferograms with nine and four looks in azimuth and range, respectively. To simulate and remove
the topographic phase from the interferograms, the Shuttle Radar Topography Mission (SRTM)
Digital Elevation Model (DEM) with a 1 arc-second spatial resolution was used. The images over
the area in Idaho are from ascending orbital path 208 and frame 860, and the images over the area
in Oregon are from ascending orbital path 215 and frame 830. The data are in the fine beam and
horizontal-horizontal (HH) polarization mode. Over each study area, from the three co-registered SLC
images, three multi-looked interferograms and three coherence images were generated. In addition,
for each study area, three circular standard deviation images S, [36]—one for each interferogram—were
generated. The circular standard deviation of a multi-looked pixel is calculated by

n

Y exp (j6)

i=1

Sc = 4|-2In ®)

where i is the number of the single-looked pixel, # is the total number of single-looked pixels in the
multi-looked window, and 0; is phase change of the pixel i. For each area, the three multi-looked
interferograms were used to produce a closure phase image. Figures 6a and 7a show closure phase
images. Similarly, the three circular standard deviation images were used to generate a standard
deviation root mean square (RMS) image:

1
RMSS = \/5 (Sc,12 + SC,ZZ + Sc,32) (9)

Table 1. The date (yyyy-mm-dd) of the single looked complex (SLC) images over the study area

in Idaho.
No. Date No. Date No. Date No. Date
1 2007-07-05 4 2009-07-10 7 2010-05-28 10 2010-10-13
2 2007-08-20 5 2009-10-10 8 2010-07-13 11 2011-02-28
3 2007-11-20 6 2010-04-12 9 2010-08-28

Table 2. The date (yyyy-mm-dd) of the SLC images over the study area in Oregon.

No. Date No. Date No. Date
1 2007-08-01 2 2007-12-17 3 2008-03-18

Figures 6b and 7b show the standard deviation RMS images. The three coherence images were
also used to generate the average coherence image R. Figures 6¢c and 7c show the average decorrelation
images;i.e., 1-R.
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Figure 6. (a) Closure phase (in radians), (b) root mean square (RMSs) of phase changes (in radians),

and (c) average decorrelation over the study area in Idaho. (d) The red box on the optical image outlines
the study area.
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Figure 7. (a) Closure phase (in radians), (b) RMS; of phase changes (in radians), and (c) average
decorrelation over the study area in Oregon. (d) The red box on the optical image outlines the study area.
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4. Discussion

Due to the strong effects of decorrelations and noises, single-looked interferograms are noisy.
Multi-looking, which averages adjacent pixels in complex interferograms, improves phase reliability
by reducing noise [37,38]. It has been shown, however, that the statistical properties of phase and
intensity changes within a multi-look window influence the interferometric phase and coherence [24].
Molan et al. [24] showed that INSAR coherence and the closure phase are associated with the
heterogeneity of phase and intensity changes. In this letter, we assessed changes in the INSAR
phase, coherence, and the closure phase due to changes in the statistical properties of soil moisture
changes using semi-synthetic interferograms. Our results indicate that a non-zero standard deviation
of soil moisture changes within a multi-look window leads to decorrelation and non-zero closure
phase. Regarding this, we discuss here whether the INSAR phase, coherence, and closure phase can be
used for soil moisture estimation.

4.1. Soil Moisture-Induced Multi-Looked Phase Artifact and Non-Zero Phase Triplet

A multi-looked InSAR phase has been used for soil moisture estimation. The multi-looked
interferometric phase includes contributions from physical changes as well as the statistical properties
of the phase and intensity of single-looked pixels [24]. In the case of soil moisture changes between
two multi-looked pixels, the average and standard deviation of soil moisture changes contribute to
physical and statistical phases, respectively.

The results in Figure 2 illustrate the average interferometric phase &, physical phase @), statistical
phase (Js = @ — Jp), and phase diversity. The solid and dashed lines, respectively, show the average
and standard deviation of the interferometric phases. The physical phase &, in Figure 2 is the
interferometric phase at 0,4, = 0 (the first point on the solid line), at which the statistical phase (<) is
zero. The average statistical phase @ is the phase difference between interferometric phase & (the
solid line) and the physical phase @) (the first point on the solid line).

In Figure 2, we can see that the average statistical phase increases by increasing the standard
deviation of soil moisture changes. However, soil moisture-induced phase diversity—i.e., the standard
deviation—is negligible. The similar behavior of the average interferometric phase and statistical
phase can be seen in Figure 3, which illustrates the results of non-soil moisture cases. Additionally,
the diversity of interferometric phases increases by increasing the standard deviation of soil moisture
and non-soil moisture changes. However, non-soil moisture changes lead to a larger diversity of phase
changes compared to soil moisture changes (comparing the dashed lines in Figures 2 and 3).

Considering the contribution of the statistical phase, the INSAR phase can be potentially used for
soil moisture estimation if the magnitude of the physical phase is significantly larger than the statistical
phase. A thorough discussion of physical and statistical phase contributions to the multi-looked
phase has been provided in [24]. However, as a general practical strategy, pixels with low coherence
values should be avoided because low-coherence pixels are associated with larger statistical phases.
In other word, both decorrelation and multi-looked phase artifacts (statistical phase) are functions of
the standard deviation of changes [24].

The results in Figure 4 show that the closure phase is zero only when the 0,,, between images is
zero. Itis shown in Figure 4 that, regardless of the magnitude of soil moisture changes, the closure phase
increases by increasing oy,,. This indicates that the closure phase is independent of the magnitude of
changes and is an inappropriate means to estimate soil moisture changes. Additionally, a comparison
between soil moisture and non-soil moisture results, shown in Figures 4 and 5, respectively, shows that
the closure phase values increase drastically by applying non-soil moisture changes. This is because
non-soil moisture changes induce much larger phase diversity (see Figures 2 and 3). The practical
implication of this is that the closure phase due to non-soil moisture changes can mask the soil
moisture-induced closure phase. The general conclusion that one can make is that the closure phase,
decorrelation, and phase diversity are smaller when the phase and intensity changes are correlated;
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i.e., due to soil moisture-induced changes. The quantities increase drastically by increasing non-soil
moisture changes; i.e., due to non-correlated phase and intensity changes.

4.2. Soil Moisture-Induced Decorrelation

The results show that coherence decreases by increasing the standard deviation of soil moisture
changes. It should be noted that the small changes in coherence and the closure phase values of
different soil moisture changes are due to the non-linear relationships between soil moisture and the
phase and intensity of single-looked pixels (see Figure 1). Regarding the relationship between soil
moisture changes and InSAR coherence, the main question is whether we can exploit INSAR coherence
to estimate soil moisture changes. The results indicate that coherence, as with the closure phase,
is a function of the standard deviation of changes and is independent of the magnitude of changes.
Therefore, it cannot be directly used to estimate soil moisture. This conclusion is true except for those
cases in which the magnitude and diversity of soil moisture changes (dielectric constant changes in
general) are correlated. It should be noted that the uncertainty of soil moisture estimation for the cases
in which the magnitude and diversity are correlated is related to the degree of association between the
magnitude and diversity.

In our study area in Idaho, we show an example to assess the correlation between the magnitude
and diversity of changes. To do this, for each multi-looked pixel, we calculated the correlation coefficient
between the magnitude and diversity of the phase of single-looked pixels within the multi-looked
window. Over the study area in Idaho, 11 co-registered SLC images of L-band ALOS PALSAR (Table 1)
were used to generate 41 unwrapped multi-looked interferograms with 14 and seven looks in azimuth
and range. The processing approach to generate unwrapped interferograms was explained above
in Section 3. For each interferogram, one standard deviation of phase changes within multi-looked
pixels were calculated. Therefore, each multi-looked pixel has 41 interferometric phase values and 41
standard deviation values. Finally, for each multi-looked pixel, the correlation coefficient between the
interferometric phase values and the standard deviation values was calculated. Figure 8 illustrates
the calculated correlation coefficient image; it shows that the correlation between the diversity and
magnitude of phase changes is not strong—i.e., |[r| < 0.5.

0.5
1500 [
f =
5
2 1000 0.25
S
e
5001
X b AR Ly
500 1000
Range

Figure 8. The correlation coefficient image over the study area in Idaho.

It should be noted that, even with a correlated magnitude and diversity of changes, soil moisture
estimation using the closure phase, if not impractical, will suffer from high uncertainty in the results.
This is because, unlike coherence, which is associated with the statistical properties of changes between
one pair of images, the closure phase includes contributions from three interferograms, each with
different statistical properties.
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One other problem in using coherence to estimate soil moisture is related to the ambiguity in the
orientation of soil moisture changes. An inferred soil moisture change can be assigned to both drying
and wetting soils. This is even more complicated for the closure phase because it combines three
interferograms. Furthermore, it should be noted that soil moisture estimation using InNSAR coherence
and the closure phase is even more challenging in practice. Coherence reduction and non-zero phase
triplets due to non-soil moisture changes can hide the decorrelation and non-zero phase triplet of
soil moisture changes. Figures 6 and 7 show optical images of our study areas. When comparing the
closure phase values over different land cover types, we see very small values over bare soil with
drastic increases over vegetated areas and agricultural fields (Figure 6). The standard deviation RMS
and average decorrelation also show similar behaviors over different land cover types. The practical
implication of this is that possible soil moisture signal in coherence and closure phase will be buried by
the larger influence of vegetation.

However, the effect of vegetation is not the only obscuring influence on soil moisture-induced
decorrelation and the closure phase. In Figure 7, which shows the results over the study area in Oregon,
the decorrelation and closure phase are larger over unconsolidated sediments, as exemplified by the
brighter area on the left side of the optical image. The area is covered by unconsolidated Quaternary
surficial deposits [39]. Although not vegetated, higher decorrelation, closure phase, and diversity
values can be seen over the area. This is because surficial deposits can be easily moved by surface
water, leading to increased phase diversity.

5. Conclusions

Our analysis showed that INSAR coherence and the closure phase are functions of the diversity of
soil moisture and non-soil moisture changes. The results of the synthetic data illustrated that non-soil
moisture changes have a larger influence on decorrelation and closure phase. The results of the real
data confirm that, compared to soil moisture changes, vegetation and surficial processes lead to much
larger closure phase and decorrelations. It is also shown that closure phase and decorrelation are
correlated with each other and with land cover type.

By considering the results of the synthetic and real data, we conclude that coherence and closure
phase are not appropriate tools for soil moisture estimation. However, over sparsely vegetated
areas and bare soils with stable surface deposits, coherence can be associated with soil moisture
changes if a strong correlation exists between the magnitude and diversity of soil moisture changes
and if coherence reductions caused by other environmental factors are negligible. To determine this
association, studies should be conducted over different land cover types using intensive in-situ field
data. Such investigations, however, may still suffer from high uncertainties in soil moisture estimations.
Alternative methods such as the joint use of INSAR phase and SAR intensity changes should be
considered for soil moisture estimation.

Author Contributions: Conceptualization, Y.E.M.; methodology, Y.EM.; validation, YEM. and Z.L.;
writing—original draft preparation, Y.E.M.; writing—review and editing, Y E.M. and Z.L.; supervision, Z.L.;
funding acquisition, Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the NASA Earth Surface & Interior Program: NISAR Science Team,
grant numbers 8ONSSC19K1491, and NNX16AK56G and by the Shuler-Foscue Endowment at Southern
Methodist University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Massonnet, D.; Feigl, K. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys.
1998, 36, 441-500. [CrossRef]

2. Biirgmann, R.; Rosen, P.A; Fielding, E.J. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface
Topography and Its Deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169-209. [CrossRef]


http://dx.doi.org/10.1029/97RG03139
http://dx.doi.org/10.1146/annurev.earth.28.1.169

Remote Sens. 2020, 12, 1511 12 of 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Simons, M.; Rosen, P. Treatise on Geophysics: Interferometric Synthetic Aperture Radar Geodesy. In Geodesy;
Schubert, G., Ed.; Elsevier Press: Amsterdam, The Netherlands, 2007; Volume 3, pp. 391-446.

Lu, Z.; Dzurisin, D. InNSAR imaging of Aleutian volcanoes: Monitoring a volcanic arc from space. In Geophysical
Sciences; Springer Praxis Books: Chichester, UK, 2014; p. 390.

Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens.
2001, 39, 8-20. [CrossRef]

Molan, Y.E,; Kim, J.-W.; Lu, Z.; Wylie, B.; Zhu, Z. Modeling Wildfire-Induced Permafrost Deformation in an
Alaskan Boreal Forest Using INSAR Observations. Remote Sens. 2018, 10, 405. [CrossRef]

Schaefer, K.; Liu, L.; Parsekian, A ; Jafarov, E.; Chen, A.; Zhang, T.; Gusmeroli, A.; Panda, S.; Zebker, H.A;
Schaefer, T. Remotely sensed active layer thickness (ReSALT) at Barrow, Alaska using interferometric
synthetic aperture radar. Remote Sens. 2015, 7, 3735-3759. [CrossRef]

Liu, L.; Zhang, T.; Wahr, J. INSAR measurements of surface deformation over permafrost on the North Slope
of Alaska. J. Geophys. Res. 2010, 115, F03023. [CrossRef]

Molan, Y.E.; Lu, Z. Modeling InNSAR Phase and SAR intensity Changes Induced by Soil Moisture. IEEE Trans.
Geosci. Remote Sens. 2020. [CrossRef]

Hirschi, M.; Viterbo, P.; Seneviratne, S. Basin-scale water balance estimates of terrestrial water storage
variations from ECMWF operational forecast analysis. Geophys. Res. Lett. 2006, 33, L21401. [CrossRef]
Liang, W.L.; Hung, EX.; Chan, M.C.; Lu, T.H. Spatial structure of surface soil water content in a natural
forested headwater catchment with a subtropical monsoon climate. J. Hydrol. 2014, 516, 210-221. [CrossRef]
Seneviratne, S.I; Viterbo, P; Luthi, D.; Schar, C. Inferring changes in terrestrial water storage using ERA-40
reanalysis data: The Mississippi River basin. J. Clim. 2004, 17, 2039-2057. [CrossRef]

Cardinali, M.; Ardizzone, E; Galli, M.; Guzzetti, F; Reichenbach, P. Landslides triggered by rapid snow
melting, the December 1996-January 1997 event in Central Italy. In Proceedings of the EGS Plinius Conference,
Cosenza, Italy, 1 January 2000; pp. 439—448.

Robinson, D.A.; Campbell, C.S. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale
Observatories: A Review. Vadose Zone J. 2008, 7, 358-389. [CrossRef]

De Zan, F,; Parizzi, A.; Prats-Iraola, P.; Lopez-Dekker, P. A SAR interferometric model for soil moisture.
IEEE Trans. Geosci. Remote Sens. 2014, 52, 418-425. [CrossRef]

De Zan, F.; Zonno, M.; Lépez-Dekker, P. Phase inconsistencies and multiple scattering in SAR interferometry.
IEEE Trans. Geosci. Remote Sens. 2015, 53, 6608—6616. [CrossRef]

Zwieback, S.; Hensley, S.; Hajnsek, I. Assessment of soil moisture effects on L-band radar interferometry.
Remote Sens. Environ. 2015, 164, 77-89. [CrossRef]

Zwieback, S.; Liu, X.; Antonova, S.; Heim, B.; Bartsch, A.; Boike, J.; Hajnsek, I. A statistical test of phase
closure to detect influences on DINSAR deformation estimates besides displacements and decorrelation noise:
Two case studies in high-latitude regions. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5588-5601. [CrossRef]
Molan, Y.E,; Kim, J.-W,; Lu, Z.; Agram, P. L-Band Temporal Coherence Assessment and Modeling Using
Amplitude and Snow Depth over Interior Alaska. Remote Sens. 2018, 10, 150. [CrossRef]

Hoekstra, P.; Delaney, A. Dielectric properties of soils at UHF and microwave frequencies. J. Geophys. Res.
1974, 79, 1699-1708. [CrossRef]

Hallikainen, M.; Ulaby, E; Dobson, M.; El-Rayes, M.; Wu, L. K. Microwave dielectric behavior of wet soil—Part
1: Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens. 1985, 23, 25-34.
[CrossRef]

Hensley, S.; Michel, T.; Van Zyl, J.; Muellerschoen, R.; Chapman, B.; Oveisgharan, S.; Haddad, Z.S.; Jackson, T.;
Mladenova, I. Effect of soil moisture on polarimetric-interferometric repeat pass observations by UAVSAR
during 2010 Canadian soil moisture campaign. In Proceedings of the IGARSS, Vancouver, BC, Canada, 24-29
July 2011; pp. 1063-1066.

Zwieback, S.; Hensley, S.; Hajnsek, 1. Soil moisture estimation using differential radar interferometry:
Toward separating soil moisture and displacements. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5069-5083.
[CrossRef]

Molan, Y.E.; Lu, Z.; Kim, J.-W. Influence of the statistical properties of phase and intensity on closure phase.
IEEE Trans. Geosci. Remote Sens. 2020. [CrossRef]

De Zan, F,; Gomba, G. Vegetation and soil moisture inversion from SAR closure phases: First experiments
and results. Remote Sens. Environ. 2018, 217, 562-572. [CrossRef]


http://dx.doi.org/10.1109/36.898661
http://dx.doi.org/10.3390/rs10030405
http://dx.doi.org/10.3390/rs70403735
http://dx.doi.org/10.1029/2009JF001547
http://dx.doi.org/10.1109/TGRS.2020.2970841
http://dx.doi.org/10.1029/2006GL027659
http://dx.doi.org/10.1016/j.jhydrol.2014.01.032
http://dx.doi.org/10.1175/1520-0442(2004)017&lt;2039:ICITWS&gt;2.0.CO;2
http://dx.doi.org/10.2136/vzj2007.0143
http://dx.doi.org/10.1109/TGRS.2013.2241069
http://dx.doi.org/10.1109/TGRS.2015.2444431
http://dx.doi.org/10.1016/j.rse.2015.04.012
http://dx.doi.org/10.1109/TGRS.2016.2569435
http://dx.doi.org/10.3390/rs10010150
http://dx.doi.org/10.1029/JB079i011p01699
http://dx.doi.org/10.1109/TGRS.1985.289497
http://dx.doi.org/10.1109/TGRS.2017.2702099
http://dx.doi.org/10.1109/TGRS.2020.2982062
http://dx.doi.org/10.1016/j.rse.2018.08.034

Remote Sens. 2020, 12, 1511 13 of 13

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

Barrett, B.; Dwyer, E.; Whelan, P. Soil moisture retrieval from active spaceborne microwave observations:
An evaluation of current techniques. Remote Sens. 2009, 1, 210-242. [CrossRef]

Lu, Z.; Meyer, D. Study of high SAR backscattering due to an increase of soil moisture over less vegetated
area: Its implication for characteristic of backscattering. Int. . Remote Sens. 2002, 23, 1065-1076. [CrossRef]
Nolan, M.; Fatland, D.R.; Hinzman, L. DInsar measurement of soil moisture. IEEE Trans. Geosci. Remote Sens.
2003, 41, 2802-2813. [CrossRef]

Zhang, T.; Zeng, Q.; Li, Y.; Xiang, Y. Study on relation between InSAR coherence and soil moisture. Proc. ISPRS
Congr. 2008, 37, 131-134.

Barrett, B.; Dwyer, E.; Whelan, P. The use of C- and L-band repeat pass interferometric SAR coherence for
soil moisture change detection in vegetated areas. Open Remote Sens. ]. 2012, 5, 37-53. [CrossRef]

Hajnsek, I.; Prats, P. Soil moisture estimation in time with DInSAR. In Proceedings of the IEEE IGARSS,
Boston, MA, USA, 7-11 July 2008; Volume III, pp. 546-549.

Nesti, G.; Tarchi, D.; Rudant, ].-P. Decorrelation of backscattered signal due to soil moisture changes. Proc. Int.
Geosci. Remote Sens. Symp. 1995, 3, 2026-2028.

Nesti, G.; Tarchi, D.; Despan, D.; Rudant, J.-P.; Bedidi, A.; Borderies, P.; Bachelier, E. Phase shift and
decorrelation of radar signal related to soil moisture changes. In Proceedings of the 2nd ESA International
Workshop on Retrieval of Bio- & Geo-Physical Parameter from SAR Data for Land Applications, ESTEC,
Noordwijk, The Netherlands, 21-23 October 1998; pp. 423-430.

Rudant, J.-P,; Bedidi, A.; Calonne, R.; Massonnet, D.; Nesti, G.; Tarchi, D. Laboratory experiment for the
interpretation of phase shift in SAR interferograms. In Proceedings of the FRINGE, Zurich, Switzerland,
30 September 1996.

Morrison, K.; Bennett, J.C.; Nolan, M.; Menon, R. Laboratory measurement of the DINSAR response to
spatiotemporal variations in soil moisture. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3815-3823. [CrossRef]
Zar, ].H. Biostatistical Analysis, 5th ed.; Prentice-Hall/Pearson: Upper Saddle River, NJ, USA, 2010.

Ferretti, A.; Fumagalli, A.; Novali, E; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing
interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460-3470. [CrossRef]
Goldstein, RM.; Zebker, H.A.; Werner, C.L. Satellite Radar Interferometric: Two-dimensional phase
unwrapping. Radio Sci. 1988, 23, 713-720. [CrossRef]

Walker, G.W.; Repenning, C. Reconnaissance Geologic Map of the Adel Quadrangle, Lake, Harney, and
Malheur Counties, Oregon: Reston, Va., U.S. Geological Survey Interpretive Map 1-446, 1965, Scale 1:250,000.
Available online: https://ngmdb.usgs.gov/ngmdb/ngmdb_home.html (accessed on 2 January 2020).

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/rs1030210
http://dx.doi.org/10.1080/01431160110040035
http://dx.doi.org/10.1109/TGRS.2003.817211
http://dx.doi.org/10.2174/1875413901205010037
http://dx.doi.org/10.1109/TGRS.2011.2132137
http://dx.doi.org/10.1109/TGRS.2011.2124465
http://dx.doi.org/10.1029/RS023i004p00713
https://ngmdb.usgs.gov/ngmdb/ngmdb_home.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	Synthetic Data 
	Real Data 

	Discussion 
	Soil Moisture-Induced Multi-Looked Phase Artifact and Non-Zero Phase Triplet 
	Soil Moisture-Induced Decorrelation 

	Conclusions 
	References

