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Abstract: The raphidophyte Chattonella spp. and diatom Skeletonema spp. are the dominant harmful
algal species of summer blooms in Ariake Sea, Japan. A new bio-optical algorithm based on
backscattering features has been developed to differentiate harmful raphidophyte blooms from
diatom blooms using MODIS imagery. Bloom waters were first discriminated from other water types
based on the distinct spectral shape of the remote sensing reflectance Rrs(λ) data derived from MODIS.
Specifically, bloom waters were discriminated by the positive value of Spectral Shape, SS (645),
which arises from the Rrs(λ) shoulder at 645 nm in bloom waters. Next, the higher cellular-specific
backscattering coefficient, estimated from MODIS data and quasi-analytical algorithm (QAA) of
raphidophyte, Chattonella spp., was utilized to discriminate it from blooms of the diatom, Skeletonema
spp. A new index bbp−index (555) was calculated based on a semi-analytical bio-optical model to
discriminate the two algal groups. This index, combined with a supplemental Red Band Ratio (RBR)
index, effectively differentiated the two bloom types. Validation of the method was undertaken
using MODIS satellite data coincident with confirmed bloom observations from local field surveys,
which showed that the newly developed method, based on backscattering features, could successfully
discriminate the raphidophyte Chattonella spp. from the diatom Skeletonema spp. and thus provide
reliable information on the spatial distribution of harmful blooms in Ariake Sea.

Keywords: harmful algal blooms; Chattonella spp.; Skeletonema spp.; backscattering; MODIS;
Ariake Sea

1. Introduction

Harmful Algal Blooms (HABs) are becoming more frequent in the coastal environment causing
significant harm to fisheries, the environment and economies. Some HABs produce toxins, some of
them consume nutrients used in seaweed aquaculture and, they often discolor the water.

Remote sensing is an effective method for bloom detection, because algal groups can show a
distinct remote sensing reflectance Rrs(λ) signature which can be then related to large algal accumulation
at the surface [1]. Algal blooms are associated with anomalously high chlorophyll-a concentrations,
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which influence the signal of Rrs(λ) in green and red bands, prominently. Methods like Fluorescence Line
Height (FLH), Maximum Chlorophyll Index (MCI) and Floating Algae Index (FAI) have successfully
mapped bloom distribution in global open oceans by taking advantage of the distinct characteristic
in Rrs(λ) [2–4]. Other studies have been conducted to detect specific bloom species in coastal waters.
Trichodesmium spp. blooms have been detected based on multispectral patterns of Rrs(λ) in the North
Atlantic [5] while Karenia brevis blooms have been captured using the Karenia brevis bloom index (KBBI)
in the Gulf of Mexico [6]. Cochlodinium polykrikoides blooms have been quantified by a novel red tide
quantification algorithm in the coastal waters of the East China Sea [7], while Microcystis aeruginosa
blooms in the Laurentian Great Lakes have been distinguished from other phytoplankton by an index
denoted as Spectral Shape (SS) [8]. The harmful species Karenia mikimotoi has been discriminated from
other types of blooms in the Seto-Inland Sea of Japan using the spectral slope difference [9].

Other algorithms use Inherent Optical Properties (IOPs) to identify harmful algal blooms. Methods
like those of Shang et al. [10] for the East China Sea (ECS) differentiate dinoflagellates from diatom
blooms by a combination of total absorption coefficient at 443 nm and a Bloom Index (BI). Tao et al. [11]
developed a Green–Red Index (GRI), indicating absorption at 510 nm of bloom waters, to distinguish
Prorocentrum donghaiense from diatom blooms. Backscattering properties of bloom waters have also
been used in red tide detection. Cannizzaro et al. [12] detected the toxic Karenia brevis from diatom
blooms in the Gulf of Mexico by its featured lower backscattering. A Coccolithophorid bloom in
the Barents Sea was captured by the unusual sharp increase in backscattering [13]. Lei et al. [14]
differentiated dinoflagellate blooms from diatom blooms in the East China Sea by the difference in
backscattering coefficient ratios. However, more work still needs to be done, because of the large
variations in the IOPs of different harmful algal species, especially in coastal waters.

Recently, there have been frequent reports of HABs outbreaks in the Ariake Sea, an enclosed small
bay in the southwest of Japan, which result in great damage to aquaculture farms and fisheries [15–17].
HABs in summer are especially serious in this area due to the strong solar radiation and elevation
of the water temperature after the rainy season. The raphidophyte Chattonella spp. and the diatom
Skeletonema spp. are the dominant harmful species of summer blooms.

Raphidophytes like Chattonella antiqua can secrete toxic compounds causing a large reduction
in shellfish, while the less harmful diatom species like Skeletonema spp. may produce arsenite and
dimethylarsenic which block important biochemical pathways in other algae [18–20]. It is empirically
known that raphidophyte blooms alternate with diatom blooms when the surface water lacks nitrogen
and silicate [17,21]. Thus, it becomes important to distinguish harmful algal species from the non-bloom
conditions to evaluate the possible damage and to provide related information for protection of the
marine ecosystem and the economies that they support.

The objective of this study is to develop techniques to distinguish between raphidophyte and
diatom dominated blooms in optically complex, coastal waters of Ariake Sea using MODIS data.
If successful, the method can provide effective bloom information for the coastal monitoring by local
fisheries institutions.

2. Materials and Methods

2.1. Study Area

Ariake Sea is located along the west coast of Kyushu in western Japan. It is approximately
1700 km2 in area, 20 m in average depth, and 34 billion m3 in volume. Inland rivers take about
8 × 109 m3 freshwater into the sea every year. Among the rivers, the Chikugo River is the largest one
discharging 50% of the freshwater inflow. Tidal flats of this semi-enclosed shallow sea are the largest
in Japan covering 40% of the total tidal flat area in Japan [22]. Seaweed and shellfish, once plentiful
in this area, have dramatically decreased in recent decades, while the number of red tide events has
increased to more than 20 times per year since 1985. Blooms events generally occur during summer
when conditions are ideal for phytoplankton growth. Field observations have been conducted in
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every summer to study these blooms and their associated hydrography for fishery management of the
Ariake Sea.

2.2. Field Data

Field data during the summer season (June to September) were collected from Saga Fisheries
Promotion Center and Kumamoto Fisheries Research Center (from 2011–2014). Figure 1 shows the
sampling site where data on chlorophyll-a concentration (Chl a), phytoplankton species and their
cellular abundance were collected. As no in situ Rrs(λ) data was collected, remotely sensed MODIS
Rrs(λ) were used for algorithm development, which is further explained in Section 2.3.

1 
 

 

 Figure 1. Map of Ariake Sea, Japan. Solid points show the field sampling locations in 2011–2014. The
gray circle and square indicate the position of data taken by Saga Fisheries Promotion Center and
Kumamoto Fisheries Research Center, respectively.

For data analysis, field data from 2011 to 2014 were divided into three data groups according to
the bloom conditions (Table 1). Specifically, a diatom bloom was confirmed when the cell numbers
of Skeletonema spp. were >10,000 cells mL−1 (N = 126 for 41 days), and a raphidophyte bloom was
confirmed when the cell numbers of Chattonella spp. were > 1000 cells mL−1 (N = 12 for 3 days).
Non-bloom data was collected (N = 280 for 70 days). The cellular abundance threshold of bloom
conditions was defined according to previous red tide reports from local fisheries institutions. Diatom
blooms were dominated by Skeletonema spp. both at the Saga (N = 113) and Kumamoto sampling
sites (N = 13), while raphidophyte blooms of Chattonella spp. were only found at Saga sampling sites
(N = 12). The environmental conditions for the three groups are shown in Table 1.
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Table 1. Environmental conditions of diatom and raphidophyte blooms and non-bloom waters. All
parameters were averaged within each group and standard deviations are provided.

Group Chl a (mg m−3) Salinity Temperature (◦C) Abundance (cells mL−1)

Diatom Bloom 30.03 ± 43.35 20.04 ± 7.06 27.42 ± 2.10 25,964 ± 33,209
Raphidophyte Bloom 210.47 ± 178.48 26.27 ± 1.81 29.68 ± 0.81 2217 ± 1965

Non-bloom 8.95 ± 11.64 25.77 ± 5.19 25.93 ± 2.61 –

In addition to the field data, a number of bloom reports were also obtained from the Japan Red
Tide Online site (http://akashiwo.jp/) for the period 2015–2018 for algorithm validation. Sampling site,
occurrence times, phytoplankton species and cellular abundance were recorded.

2.3. Satellite Data

As no situ optical measurements were made, MODIS-Aqua level 2, Rrs(λ) values (downloaded
from https://oceancolor.gsfc.nasa.gov/) were extracted from locations where field data was collected in
2011–2014 using Windows Image Manager (WIM) software. The routine wam_match within WIM
was used to find matches between in situ measurements and satellite image data. The point sample
was within a rectangular window of 3 × 3 pixels, centered at the nearest matching pixel. Mean
value of the valid pixels within the 3 × 3 windows were used as the final remote sensing reflectance
Rrs(λ). Flags, HIGLINT, CLDICE, HISOLZEN, CHLFAIL, ATMFAIL (flags information can be found
at https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/), were used to control the quality of the MODIS
Rrs(λ) data. As there were limited cloud-free satellite images coincident with the field sampling,
the time difference between satellite data and in-situ data was extended by 1.5 days during bloom
events. Finally, there were four matched data points for raphidophyte bloom (from one image), eight
for diatom bloom (from four images) and 23 for non-bloom water (from five images) in 2011–2014.
Additionally, in 2015–2018, six images during the bloom period (three images from raphidophyte
bloom and three images from diatom bloom) were also used to validate the algorithm based on bloom
locations obtained from the Japan Red Tide Online. One image in 2018 was also selected when no
bloom occurred (Table 2 shows the summary of match up results).

Table 2. Summary of MODIS matches with field data (2011–2014) and with bloom reports from Japan
Red Tide Online (2015–2018).

Name of Bloom Training Data Validation Data

Diatom bloom

29 August 2011
26 July 2012

2 August 2012
29 August 2013

12 July 2018
13 July 2018

3 September 2018

Raphidophyte bloom 9 August 2013
07 September 2015

18 August 2016
29 July 2018

Non-bloom

11 August 2011
11 June 2012

20 August 2012
17 June 2013

28 August 2013

29 August 2018

Since there was some underestimation in the short bands of the MODIS data, from an error
in atmosphere correction that resulted from the difficulties in estimating aerosol type and optical
thickness [23–25], Rrs(λ) showing negative value in the short bands was discarded. We also decided not
to use the short bands to develop our algorithm as the complex pigment composition of algal species
makes it hard to distinguish phytoplankton groups in that range [26,27], while Rrs(λ) at green and red
bands has shown good agreement with in-situ Rrs(λ) in Ariake Sea as confirmed by Yang et al. [25].

http://akashiwo.jp/
https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/
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Again due to the lack of field observations, inherent optical properties (IOPs) like total absorption,
at(λ), and particle backscattering, bbp(λ), were derived using MODIS Rrs(λ) as input into the
Quasi-Analytical Algorithm (QAA Version 6) (details are in Lee et al. [28]). Although the short
bands of MODIS are not reliable for our work, it has been shown that at(λ) can be derived by QAA
with high accuracy since it is not sensitive to errors in Rrs(λ) in the short bands [10,29]. Because of
particle size variations in the field samples, a 20% additional error could be introduced in the retrieval
of bbp(λ) [30,31]. In spite of these uncertainties and considering the optically complex Ariake Sea, it is
still meaningful to use QAA-derived IOPs to derive the spectral shape for bloom discrimination.

3. Results

3.1. Detection of Bloom Waters

The first step was to correctly identify blooms from other optically dominant water types.
MODIS Rrs(λ) coincident with in-situ data showed considerable variability in both spectral shape and
magnitude, indicating different water types in the observations (Figure 2). By comparing the spectral
shape of Rrs(λ) and Chl a concentrations for the three data groups (Table 1), the coastal area of Ariake
Sea could be roughly separated into four bio-optical water types: (1) clear waters in the northeastern
coast of Ariake Sea with low Chl a (<6.32 mg m−3), and relatively high blue reflectance compared
to the longer wavelength green band where no peak was observed; (2) turbid waters within estuary
area, which exhibited extremely high reflectance at longer wavelength because of the high suspended
sediments; (3) bloom waters, typically located in the northwestern part of Ariake Sea with moderate to
high Chl a, and a spectral shape of reflectance typical of phytoplankton blooms with minimal values in
the blue region and high values near 550 nm and 678 nm; and (4) mixed water defined as water with a
middle range of Chl a concentration and a peak in green bands.
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Figure 2. MODIS Rrs(λ) spectra (N = 35) using the match-up method (See Section 2.3). Blue dashed
line (clear water); green solid line (mixed waters); gray dotted line (turbid water), red solid and dashed
line indicates raphidophyte and diatom bloom water, respectively. The gray lines indicate location of
MODIS bands.

Based on the differences observed, we could separate clear water if the Rrs(λ) peak was at
wavelengths shorter than 555 nm, and turbid water if the Rrs(λ) peak was > 0.008 sr−1. However,
mixed waters with moderate Chl a concentration could not be separated from bloom waters based on this
simple method since the former/latter also has a spectral peak at 555 nm (<0.008 sr−1). So more detailed
characteristics of the spectral shape were considered. Bloom waters showed prominent shoulders near
645 nm compared to mixed water (see Figure 2), which might be caused by strong backscattering of
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phytoplankton particles and weak absorption at this wavelength. To better characterize this feature,
changes in the curvature of Rrs(645) were compared to determine whether bloom waters could be
distinguished from mixed water using this approach. The spectral shape algorithm (SS) of Wynne et
al. [8], equivalent to the 2nd derivative when the bands are evenly distributed, provides an SS index
which can describe the spectral variations useful in bloom detection [32,33]. In this study, normalized
water leaving radiance (nLw) is replaced with Rrs(λ). The defined SS is as:

SS(λ) = Rrs(λ) −Rrs(λ
−) −

(
Rrs
(
λ+
)
−Rrs(λ

−)
)
∗

(λ− λ−)

(λ+ − λ−)
, (1)

where λ is the central band of the shape (645 nm), λ− is the next lower band (555 nm) and λ+ is the next
higher band (667 nm). SS (645) of bloom waters showed positive values while mixed waters exhibited
negative values (Figure 3). Turbid water also showed positive SS (645), and was distinguishable by the
threshold at Rrs(555) (>0.008 sr−1).
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Figure 3. Scatter plot of MODIS Rrs(555) and SS (645) generated based on the MODIS match-up pairs.

Together, algal bloom waters were differentiated from clear, turbid, and mixed waters by a
combination of Rrs(555) and SS (645). In the relationship between Rrs(555) and SS (645) (Figure 3),
clear and mixed waters were distinguished by negative SS (645) while bloom waters were identified by
a positive SS (645) and low Rrs(555) (<0.008 sr−1). Even though turbid water also showed a positive SS
(645), Rrs(555) was higher than in bloom waters. The scatter plot shown in Figure 3 indicates that all
observations with positive SS (645) and Rrs(555) less than 0.008 sr−1 could be characterized as algal
bloom waters.

In order to verify the utility of satellite-derived SS (645) and Rrs(555) for detecting blooms, three
independent MODIS images were selected to coincide with summer bloom reports by the Japan Red
Tide Online from 2015–2018: (a raphidophyte bloom on 29 July 2018; a diatom bloom on 13 July 2018;
one non-bloom day on 29 August 2018). Scatter plot of satellite derived SS (645) versus Rrs(555) is
shown in Figure 4. The MODIS Chl a image in late summer on 29 August 2018, when no bloom event
was reported in Ariake Sea, showed no sign of high Chl a in most of the area (Figure 4a). High values
were seen only near Kumamoto coasts and Isahaya Bay. The corresponding scatter plot (Figure 4g)
showed that the surface waters was roughly divided into clear, turbid and mixed waters. Conversely,
relatively high Chl a was observed in the MODIS images (Figure 4b,c) in association with blooms of
the raphidophyte (Chattonella spp.) and the diatom (Skeletonema spp.), which had been confirmed by
field observations (Figure 4h,i).
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Figure 4. (a–c) Standard Chl a images from MODIS level-2 for Ariake Sea. Non-bloom (a), raphidophyte
bloom (b) and diatom bloom (c) as confirmed by bloom reports from Japan Red Tide Online. (d–f) Water
types derived using MODIS Rrs(λ) and our newly developed method. (g–i) Scatter plot of Rrs(555)
and SS (645) derived from the MODIS Rrs(λ) extracted from scenes shown in (a–c). Only areas with
positive Rrs(λ) are shown.

It is to be noted that negative values of standard MODIS Rrs(λ) at 412 nm and 645 nm were
observed for pixels associated with high Chl a, and such high Chl a retrievals are inaccurate. Thus, for
the bloom distinguishing method these pixels were excluded. Other than this limitation, the bloom
distinguishing method can be applied to MODIS data and the combination of Rrs(555) and SS (645)
can serve as the first step to classify blooms from space.
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3.2. Discrimination of Harmful Algal Groups

To differentiate dominant algal blooms, inherent optical properties should be first compared.
The spectral shape of Rrs(λ) for bloom water is influenced by absorption and backscattering coefficients
(at(λ), bb(λ)) [34,35]. They can be expressed as:

at(λ) = aw(λ) + adg(λ) + aph(λ), (2)

bb(λ) = bbw(λ) + bbp(λ), (3)

where aw(λ) and bbw(λ) are the absorption and backscattering coefficients of pure water which are
constants [36,37]. adg(λ) and aph(λ) represent non-algal and algal absorption, respectively. Non-algal
absorption includes absorption by non-algal particles (NAP) and dissolved chromophoric dissolved
organic matter (CDOM). bbp(λ) is the suspended particle backscattering coefficient, and includes
backscattering by phytoplankton and inorganic particles.

Ideally, if we could derive aph(λ) accurately by QAA, then we would be able to discriminate
harmful algal species accurately. However, it has been shown that there is much uncertainty in
partitioning at(λ) into aph(λ) and adg(λ) for high absorption waters [29,38]. During the bloom, except
for absorption by water, both algal particles and non-algal particles influenced variations in Rrs(λ)

because of the optical complexity of coastal waters. So, here we assume that the variations in absorption
by bloom waters can be represented as the difference between at(λ) and aw(λ). To prevent confusion,
we use:

abloom(λ) = at(λ) − aw(λ), (4)

where abloom(λ) represent the absorption by bloom waters.
In addition, the contribution of bbw(λ) was much smaller than suspended particle backscattering

by bloom waters, and extremely high bbp(λ) in turbid water was confirmed by the threshold of Rrs(555)
(>0.008 sr−1). Additionally, previous studies have shown that the summer bloom occurs when the
water column stratifies with higher nutrients and lower turbidity in the Ariake Sea [39–41]. Thus bbp(λ)
of bloom water was mainly contributed by organic matters rather than inorganic particles.

Figure 5 shows the Chl a-specific abloom(λ) and cell-specific bbp(λ), as normalized to Chl a
concentrations and cellular abundances, respectively. Both abloom(λ) and bbp(λ) were derived from
MODIS Rrs(λ) by QAA V6. Figure 5a shows that the Chl a-specific absorption abloom(λ) for the
raphidophyte bloom was lower than the diatom bloom, which might be caused by the higher
intracellular pigment concentration of raphidophyte (Chattonella spp.) than that of the diatom
(Skeletonema spp.). Chl a cell−1 was 0.0811 for raphidophytes and 0.001 for diatoms. Additionally,
when compared with longer wavelengths, there was large difference in the short bands, possibly due
to variations in CDOM and NAP.

In contrast to abloom(λ), bbp(λ) showed less spectral dependence (within 8%). The cell-specific bbp(λ)

of raphidophyte bloom water was about 10 times than that of the diatom bloom water. The difference
in cell-specific bbp(λ) can be attributed to cell size, cell shape, cell structure and particulate organic
carbon content [42]. Specifically, the cell diameter of Chattonella spp. (raphidophyte) (30–100 µm) is
5 times that of Skeletonema spp. (diatom) (2–12 µm) and raphidophytes carbon content is much higher
than that of diatoms [43–45]. Besides, Skeletonema spp. is a chain forming diatom while Chattonella spp.
is present as single cells during a bloom, which may also be responsible for the backscattering feature.

To better understand the significance of the difference in Chl a-specific abloom(λ) and cellular-specific
bbp(λ) of Chattonella spp. and Skeletonema spp., we plotted the relationship between in situ Chl a and
abloom(443) because absorption from multiple components overlap at this band. Very little variation was
found for the diatom bloom (R2 = 0.004), whereas a trend (R2 = 0.68) was observed for raphidophyte
bloom waters (Figure 6). The former could have arisen because of lower Chl a concentration per unit
cell and the package effect. Additionally, the invariant relationship between in situ Chl a and abloom(443)
in diatoms (Figure 6a) could have been due to absorbance in this band by CDOM and NAP. A similar
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pattern was also found in the relationship between cellular abundance and bbp(555). The bbp(555) of
the raphidophyte bloom increased with cellular abundance (R2 = 0.86) while that of the diatom bloom
did not. This indicates lower backscattering per unit cell in the diatom bloom (Figure 6b). Based
on the above, bbp(λ) appears to be a better indicator to discriminate the two algal groups, especially
considering the uncertainties associated with CDOM and NAP absorption in these coastal waters.
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Figure 5. Inherent optical properties of diatom and raphidophyte bloom waters: (a) Chl a-specific
absorption of bloom water abloom(λ) where abloom(λ) is normalized to in situ Chl a concentration;
(b) Cell-specific backscattering of suspended particles bbp(λ). The spectra are normalized to cellular
abundance. The abloom(λ) and bbp(λ) were derived by the MODIS Rrs(λ) match up results using QAA
V6. N = 4 for raphidophyte bloom and N = 8 for diatom bloom. The solid and plot line represent
raphidophyte and diatom bloom, respectively.
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Figure 6. (a) Scatterplot of in situ Chl a and abloom(443) of the raphidophyte and diatom blooms;
(b) scatterplot of cellular abundance and bbp(555). The triangles and squares depict raphidophyte
(N = 4) and diatom bloom (N = 8), respectively. Linear regression line was drawn on log transformed
data. The data was from the match-up pairs of MODIS in 2011–2014. The abloom(443) and bbp(555) were
derived from MODIS Rrs(λ) by QAA V6.

Therefore, based on Tao et al. [11], an index bbp−index(555) was developed using Rrs(λ) from green
to red bands to replace the QAA derived bbp(555), and thus avoiding the uncertainties associated with
using the short waveband in QAA. The 555 nm waveband was chosen because both of NAP and water
absorption is relatively low at this band [36].

It is known that Rrs(λ) can be expressed in terms of absorption and backscattering [35,46]:

Rrs(λ) =
f (λ)

Q(λ)

bb(λ)

a(λ) + bb(λ)
, (5)
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The f (λ) refers to the irradiance reflectance within water while Q(λ) describes the angular distribution
of upwelling radiance, and their ratio is relatively stable [47]. Here we assume the f (λ)/ Q(λ) is
spectrally invariant between 500 to 670 nm. From Equations (2) and (4), we can then derive the
following relationship:

Rrs(λ) ∝
f (λ)

Q(λ)

bbp(λ)

aw(λ) + abloom(λ) + bbp(λ)
, (6)

Figure 5a shows that the difference in abloom(λ) between 555 and 667 nm was very small. Thus, the
following assumption can be made for each species:

abloom(555) = abloom(667), (7)

Additionally, the spectral dependence of bbp(λ) was small, and it showed only a small variation, within
8% (Figure 5b). So bbp(λ) was assumed to be equal at bands 555 and 667 nm:

bbp(555) = bbp(667), (8)

Finally, bbp(555) was derived from Equation (5) using the reciprocal of Rrs(λ) at 555 and 667 nm, as:

1
Rrs(667)

−
1

Rrs(555)
∝

aw(667) − aw(555)
bbp(555)

, (9)

where aw(667)− aw(555) = 0.37 m−1. The variations in bbp(555) can thus be expressed by the variations
in Rrs(λ) at 555 and 667 nm:

bbp(555) ∝ 0.37×
Rrs(555)Rrs(667)

Rrs(555) −Rrs(667)
= bbp−index(555), (10)

To differentiate from bbp(555), henceforth we use bbp−index(555) described in the equation above.
Although bloom vs. non-bloom conditions could be detected by the positive SS (645) (Section 3.1),

it was not possible to differentiate between raphidophyte and diatom blooms based on the combination
of SS (645) and bbp−index(555). Considering the difference in magnitude of Chl a concentrations during
the two blooms, a supplementary index, the Red Band Ratio (RBR) that accounts for Chl a concentrations
was used to identify algal types. RBR utilizes the ratio of Rrs(678) and Rrs(667) to describe the high
fluorescence emission around red bands caused by Chl a [48]. The ratio is characterized as:

RBR =
Rrs(678)
Rrs(667)

, (11)

The two algal species were thus classified by the distribution of bbp−index(555) and the RBR for MODIS
data collocated with field data (Figure 7a). For a given RBR value, the raphidophyte blooms showed
higher bbp−index(555) than diatom blooms. Figure 7b presents a more distinct relationship between
bbp−index(555) and RBR using the independent MODIS Rrs(λ) data shown in Figure 4b,c for bloom
waters. Although some raphidophyte points overlapped with diatoms, the plot shows two distinct
relationships for raphidophytes and diatoms. An exponential curve was fit to the data (Figure 7b),
which can be expressed as:

bbp−index(555) = 0.0019RBR−2.261 (12)

Accordingly, a bloom can be classified as a raphidophyte (Chattonella spp.) bloom if the bbp−index(555)
is higher than the value calculated from the RBR value using Equation (12), and conversely as a diatom
(Skeletonema spp.) bloom if it bbp−index(555) is lower than that calculated from the RBR value.
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Figure 7. (a) Scatter plot of RBR and bbp−index(555) using MODIS Rrs(λ) coincident with field data
for 2011–2014. (b) Scatter plot of RBR and bbp−index(555) derived from the points flagged as bloom in
Figure 4b,c. The solid line in Figure 7b represents the function expressed by Equation (12) separating
raphidophyte blooms from diatom blooms.

MODIS images from 2015 to 2018 were examined to verify the discrimination between
raphidophyte and diatom blooms, using the independent data of bloom reports from Japan Red
Tide Online. It included the raphidophyte (Chattonella spp.) blooms on 7 September 2015 and
18 August 2016 (Figure 8a,b), and the diatom (Skeletonema spp.) blooms occurred on 12 July 2018 and
3 September 2018 (Figure 8c,d). The corresponding scatter plot of bbp−index(555) and RBR is shown in
Figure 8e. It confirmed that the combination of bbp−index(555) and RBR could successfully distinguish
raphidophyte blooms from diatom blooms in MODIS images.

1 
 

 

 Figure 8. (a–d) MODIS Chl a images from standard level_2 products showing bloom distribution
confirmed by reports from Japan Red Tide Online. Only pixels positively flagged as bloom waters are
shown in color. The red circles and squares indicate the location of raphidophyte and diatom blooms,
respectively. (e) Scatterplot of bbp−index (555) and RBR derived from the bloom pixels in (a–d), indicating
distinct algal groups. Red triangle and squares indicate raphidophyte and diatom blooms, respectively.



Remote Sens. 2020, 12, 1504 12 of 16

4. Discussion

The outline of the new method proposed in this study, which can distinguish raphidophyte
blooms, diatom blooms, and non-bloom waters in the Ariake Sea, is illustrated in Figure 9. The method
is simple, but effective, in discriminating harmful algal blooms, and it does offer several novel findings
over previous studies.
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It is widely known that phytoplankton blooms are associated with high Chl a concentration and a
peak in Rrs(λ) in the green band [2,16,49], but our method shows that high Chl a using the standard
MODIS algorithm is not always related to blooms (Figures 4a–f and 8a–d). Many previous methods
detect harmful blooms based on the peak at 555 nm of satellite derived Rrs(λ) [7,50,51]. However,
both sediments and CDOM might influence the accuracy of Rrs(λ) at the green peak observed by
satellite, as well as inaccurate atmospheric correction in coastal waters [23–25] which may make the
peak in the green bands and satellite retrieved Chl a concentrations unreliable for bloom detection.
A suitable local-based atmosphere correction is needed to overcome the uncertainty in short bands.
Our novel method captured the unique Rrs(λ) shoulder at 645 nm in bloom waters, which successfully
distinguished raphidophyte and diatom blooms in the Ariake Sea. Although this method used Rrs(555)
in the SS (645) calculation, it was used only as a baseline to describe the spectral shape of Rrs(λ) at
645 nm rather than as the dominant component, thus the uncertainty in SS (645) can be much smaller
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than the green band based algorithm. Compared with previous studies, our method detects harmful
blooms effectively using the spectral features at longer wavelengths and without the uncertainty of
short bands.

The 645 nm shoulder of Rrs(λ) might be influenced by low Chl a and backscattering of algal
particles [52], which means pigment absorption is weak around 645 nm, and algal particle backscatter
dominated the Rrs(λ). Mixed water was influenced strongly by water absorption at 645 nm, which
results in negative values of SS (645) even though there is a peak in the green band. Although turbid
waters also show a spectral shoulder at 645 nm, which is caused by the strong scattering by non-algal
particles, we can exclude it by placing a threshold for Rrs(555). This newly developed method can detect
the bloom precisely and provide accurate information related to areas where blooms are occurring.

Many studies have been developed to use applied inherent optical properties to distinguish
harmful algal species [10–12,53]. Even though these studies showed excellent results for their study
regions, it has not been applicable to other regions such as the Ariake Sea (results were not show
here). One reason might be differences in water conditions. FLH or Chl a concentration is needed as a
precondition in methods like those of Cannizzaro et al. [12,53] and Shang et al. [28] to constrain the use
of the developed bloom index (bbp(λ) ratio and bloom index (BI), respectively), which may vary for
different regions. The Green–Red Index of Tao et al. [11] did not work for the Ariake Sea probably
because of the different pigment composition of algal species. Although both the East China Sea (ECS)
and the Ariake Sea are dominated by phytoplankton groups like diatoms and flagellates [15,54,55], the
species can be very different. Consequently, one method which works well in one place may not work
in other locations.

Existing methods have not been successful in discriminating raphidophytes, the more common,
non-diatom, bloom forming organism in the Ariake Sea, from diatoms, while the newly developed
method in the present study showed potential for algal species distinction. Considering the frequent
and alternately occurring diatom and raphidophytes HABs in the Ariake Sea, our method is highly
advantageous as it is able to discriminate Chattonella spp. and Skeletonema spp. blooms. As can be seen
in Figure 8a–b, the newly developed method captured the blooms on 7 September 2015 and 18 August
2016, and this was in accord with the field observations on the day, which showed cells count of >1000
cells mL−1 of Chattonella spp. The MODIS pixels indicated as algal blooms were classified as Chattonella
spp. blooms in the scatter plot of Figure 8e. In Figure 8c–d, the blooms captured in the MODIS image
of 12 July 2018 and 3 September 2018 were confirmed to contain high concentrations of Skeletonema
spp. cells as per local bloom reports. Accordingly, pixels from the bloom areas were classified as
diatom blooms as shown in Figure 8e. In spite of the lack of in situ measurements of inherent optical
properties, the exciting results in Figure 8e encourage us to pay more attention to backscattering
features in harmful algae discrimination in the future. This demonstrates how backscattering can be
used in combination with Chl a for bloom detection and harmful algal discrimination.

In summary, our method has several advantages over previous methods. This method can
be used directly on MODIS Rrs(λ) products. Additionally, satellite short waveband data was
excluded to avoid possible errors arising from incorrect atmospheric corrections and the influence of
non-phytoplankton particles.

5. Conclusions

A novel multispectral approach using MODIS-derived Rrs(λ) and based on an algal backscattering
feature was developed to detect raphidophyte and diatom blooms in the Ariake Sea. As a first step,
this method uses the Rrs(λ) spectral shape signature in the red band to detect HABs. The bloom waters
are successfully differentiated by a positive SS (645) and the water can be divided into clear, turbid,
mixed and bloom waters. For the next step, indices of bbp−index(555) were developed and used with
RBR for discriminating raphidophyte and diatom blooms, based on the distinct optical properties
of backscattering between the two algal species. Comparison with the red tide report in 2015–2018
showed that this new method could provide reliable spatial distribution of the raphidophyte and
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diatom blooms, which may provide a better understanding of harmful algal bloom distributions in the
Ariake Sea.

Since the coastal environment is optically complex and varies temporally, more field measurements
are needed to better understand the unique backscattering feature that allowed us to distinguish
Chattonella spp. from Skeletonema spp. blooms. Moreover, additional efforts are required to apply this
method to other coastal areas with similar algal constituents. Besides, satellites like GOCI and GCOM-C
will be utilized in the future to check its applicability for investigation high temporal variability of
these blooms over larger areas.
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