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Abstract: Wildfires constitute the most important natural disturbance of Mediterranean forests,
driving vegetation dynamics. Although Mediterranean species have developed ecological post-fire
recovery strategies, the impacts of climate change and changes in fire regimes may endanger their
resilience capacity. This study aims at assessing post-fire recovery dynamics at different stages in
two large fires that occurred in Mediterranean pine forests (Spain) using temporal segmentation
of the Landsat time series (1994-2018). Landsat-based detection of Trends in Disturbance and
Recovery (LandTrendr) was used to derive trajectory metrics from Tasseled Cap Wetness (TCW),
sensitive to canopy moisture and structure, and Tasseled Cap Angle (TCA), related to vegetation
cover gradients. Different groups of post-fire trajectories were identified through K-means clustering
of the Recovery Ratios (RR) from fitted trajectories: continuous recovery, continuous recovery with
slope changes, continuous recovery stabilized and non-continuous recovery. The influence of pre-fire
conditions, fire severity, topographic variables and post-fire climate on recovery rates for each recovery
category at successional stages was analyzed through Geographically Weighted Regression (GWR).
The modeling results indicated that pine forest recovery rates were highly sensitive to post-fire climate
in the mid and long-term and to fire severity in the short-term, but less influenced by topographic
conditions (adjusted R-squared ranged from 0.58 to 0.88 and from 0.54 to 0.93 for TCA and TCW,
respectively). Recovery estimation was assessed through orthophotos, showing a high accuracy (Dice
Coefficient ranged from 0.81 to 0.97 and from 0.74 to 0.96 for TCA and TCW, respectively). This study
provides new insights into the post-fire recovery dynamics at successional stages and driving factors.
The proposed method could be an approach to model the recovery for the Mediterranean areas and
help managers in determining which areas may not be able to recover naturally.

Keywords: post-fire recovery; Landsat; time series; LandTrendr; K-means; driving factors;
Mediterranean; pine forests

1. Introduction

Wildfires constitute one of the most widespread and important natural disturbances of forest
ecosystems, playing a paramount role in the dynamics of the terrestrial system [1]. Forest fires impact
at a wide range of scales causing ecological, economic and human health impacts [2,3]. Specifically
in Europe, the Mediterranean region registers the highest number of fires and burned areas [4], with
around 85% of the total burnt area [5].

Notwithstanding, Mediterranean ecosystems are adapted to fire recurrence as it constitutes
the most important natural disturbance, driving vegetation dynamics [6]. Mediterranean species have
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developed post-fire ecological strategies including resprouting capacity, seed bank persistence and
increased dispersal capacity [7,8]. Nevertheless, land use changes and the impacts of climate change
may affect the dynamics of post-fire ecological succession in the immediate future [3,9]. Although large
fire (i.e., >500 ha) occurrence for the European Mediterranean region does not show a strong increasing
trend in the recent decades [5], climate change projections indicate an increase in the frequency and
intensity of megafires, as a result of more extended and severe seasonal droughts [10], which will
impact ecosystems’ species composition and functioning [3]. Forest ecosystems must adapt not only to
changes in average climatic variables, but also to a wide variability with higher risk of extreme climatic
events, such as prolonged droughts. Thus, forest management in European Mediterranean countries is
challenging due to the vulnerability of natural regrowth capability of these ecosystems [11,12].

Time series of satellite data have long been used for retrospectively generating information on forest
disturbance and recovery dynamics [13]. The opening of the Landsat archive in 2008, now available
geometrically and radiometrically corrected, provided new opportunities for improved understanding
of the mechanisms of forest changes [14,15]. Several studies have addressed the spatial and temporal
analysis of post-fire vegetation dynamics through different forest ecosystems: Mediterranean [16,17],
boreal [18,19], Siberian [20,21], temperate [22], tropical [23], savannah [24] or across different ecozones
at the regional or national scale [25-28].

The use of the Landsat time series (LTS) for change detection has increased substantially in
recent years as new methodological approaches have emerged [29]. Early approaches characterized
post-fire recovery dynamics by applying linear regression functions to spectral trajectories obtained
from the Landsat time series [30,31]. More recently, several change detection algorithms have been
developed and widely used in analyzing forest changes, such as Landsat-based detection of Trends in
Disturbance and Recovery (LandTrendr) [32] and Vegetation Change Tracker (VCT) [33], to provide
change information on an annual time-scale [29]. Others include, Breaks For Additive Seasonal and
Trend (BFAST) [34] and Continuous Monitoring of Forest Disturbance Algorithm (CMFDA) [35],
which use a high frequency of time series. The trajectory-based segmentation algorithm LandTrendr
enables the characterization of distinct subtrends within a simplified representation of the spectral
trajectory, which provides the essential information needed to identify abrupt disturbances in forests
(e.g., fire and harvest), as well as slowly evolving processes (e.g., regrowth and defoliation). The utility
of LandTrendr has been demonstrated in different regions for assessing disturbance and recovery
dynamics [25,28,36].

Several spectral measures can be derived from LTS and used as inputs for segmentation algorithms
such as spectral indices or Tasseled Cap Transformations (TCT). Some spectral indices focused more
on the red and near-infrared bands, making them sensitive to canopy greenness and photosynthetic
activity, such as the Normalized Difference Vegetation Index (NDVI) employed for characterizing
post-fire recovery [16,18,37], whereas other indices using the SWIR bands are more sensitive to
vegetation moisture and forest structure [38], such as the Normalized Burn Ratio (NBR) [39], commonly
used for recovery assessment [19,28,40]. TCT are created via linear transformations using defined
coefficients [41] and have been widely used for studying forest changes [36,42—44]. TCT components
correspond to the physical characteristics of vegetation: Brightness (TCB) is related to the pixel albedo
of the land surface and values are typically high after a stand replacing disturbance; Greenness (TCG)
is a contrast between the visible and near-infrared bands, being sensitive to green vegetation [19], and
Wetness (TCW) is a contrast of the visible and near-infrared with the SWIR bands, making it sensitive
to canopy moisture and structure [45]. Several metrics can be derived from TCT such as the TC Angle
(TCA), which is related to the vegetation cover within the TCB-TCG spectral plane [46]. Considering
that spectral indices are sensitive to different vegetation conditions, the use of TC components and
derived metrics enables the characterization of different forest conditions [19,38,44,47].

Although the dynamic of post-fire vegetation recovery has been studied through different
forest ecosystems, few studies have investigated the recovery driving factors in Mediterranean
ecosystems [16,30,37,48] and fewer have focused on characterizing successional recovery stages [49,50],
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which are key to understanding forest changes for sustainable forest management. This study assesses
the post-fire recovery dynamics at different stages in fire-prone Mediterranean pine forests. The specific
objectives of this study were: (1) to identify the different post-fire recovery trajectories using temporal
segmentation of LTS; (2) to analyze the recovery patterns for each trajectory group through stages and
(3) to appraise the environmental and contextual drivers of the recovery process.

2. Materials and Methods

2.1. Study Area

This research was based on two large fires that occurred in the summer of 1994 (Figure 1): the Yeste

Fire (7 August), which burned 11,685 ha of wooded area, and the Requena Fire (5 July), which burned

16,373 ha of wooded area. For this study, we selected sections that had neither burned in subsequent

fires nor been reforested after the main disturbance of 1994 in order to ensure the analysis of natural
recovery only.
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Figure 1. Study areas located in the Iberian Peninsula: Requena above, Yeste below; (a) location of
the study areas; (b) pre- and post-fire Landsat composition for Requena RGB (SWIR2, NIR, Blue) and
(c) pre- and post-fire Landsat composition for Yeste RGB (SWIR2, NIR, Blue).

Both study areas are located in the Southeast of the Iberian Peninsula, in the Mediterranean
biogeographic region, which is characterized by mean annual precipitations of 600-700 mm with
soil hydrological deficit in summer and mean annual temperatures around 15 °C. These areas were
dominated by anthropogenic coniferous forests, mainly composed of species of the genus Pinus along
with certain deciduous species of the genus Quercus, and, sclerophyll species such as Rosmarinus,
Thymus or Juniperus species in the understory [51]. Due to the differences in post-fire ecological strategies
to recover, we selected those patches dominated by Pinus halepensis and Pinus pinaster according to
the Second National Forest Inventory of Spain (SNFI) [52]. Both species are obligate seeders since
they have serotinous cones that enable the natural post-fire regeneration [7,53]. The post-fire recovery
stages that can be identified in a Mediterranean pine forest 24 years after fire, range from the stand
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initiation (establishment phase including remnant pines, herbaceous and pine seeding processes) [8] to
the stem exclusion (a young regrowth forest composed by shrubs and tree plantlets) [49,54,55]. Since
competition between shrubs and trees starts immediately following fire [50,56], vegetation recovery in
this study refers to both tree and shrub recovery.

2.2. Data

We downloaded the Landsat TM/ETM+/OLI images from the United States Geological Survey
(USGS) Earth Explorer server [57] to build the time series covering the period 1990-2018, including
4 years pre-fire (Path/Row: 200/033, 199/032, 199/033). We selected images from Tier 1 Surface
Reflectance products generated from the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) software [58] for TM and ETM + images and Landsat 8 Surface Reflectance Code (LaSRC)
for the OLI dataset [59]. We prioritized scenes with less than 10% cloud-cover, within the summer
period to minimize the effect of phenological changes. To delimit fire perimeters and to assess fire
severity we used two Landsat 5 TM images acquired in 1994 for the Yeste Fire (22 July pre-fire, 23
August post-fire) and for the Requena Fire (29 June pre-fire, 16 August post-fire) (Figure 1). Fire
perimeters were constructed by applying the USGS thresholds [39] to the differenced Normalized Burn
Ratio (ANBR) [60].

Spatial reference to vegetation types was based upon the Forest Map of Spain, which was made
between 1986 and 1997 through aerial photographs and field work [61]. Topographic variables were
built from the LiDAR-based Digital Elevation Model (25-m spatial resolution) from the National
Geographic Institute (IGN) of Spain [62]. As climatic information we used the Standardized
Precipitation-Evapotranspiration Index (SPEI) [63], a multi-scalar drought index that calculates
the effect of potential evapotranspiration (PET) on drought severity. Compared to other drought
indices, the SPEI has the advantage of combining multi-scalar character with the capacity to include
the effects of temperature variability [64]. Data are available for the entire time series (1990-2018) at 1-km
resolution. We also downloaded the orthophotos at 0.5-m resolution from the Aerial Orthophotography
National Plan, as reference data to assess recovery through time series (Years 2002, 2009, 2010, 2017
and 2018) [65].

2.3. Methods

A flowchart of the methodology is depicted in Figure 2. Firstly, annual composites were created for
the available time series. Secondly, spectral indices and TCT was performed to delineate burned areas
and derive trajectory metrics of forested pixels based on the LandTrendr segmentation algorithm [32].
Fitted trajectories were categorized according to the change magnitude and duration represented
in the sequence of segments of each trajectory using a K-means algorithm. Finally, we analyzed
the environmental and contextual drivers of the recovery process. The accuracy assessment of
the recovery classes was carried out by visual assessment of vegetation cover in randomly distributed
sample plots, in reference to high-resolution orthophotos.
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Figure 2. Flowchart of the methodology.
2.3.1. Landsat Time Series

Summer time series was created for the 28-year time period using the closest cloud-free image
to the mid of the summer season: Requena median Julian day 209 and Yeste median Julian day 218.
The temporal window used to select the images spanned + 38 days around the reference date (Figure 3)
in order to ensure consistency through the time series.
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Figure 3. Scene selection dates according to the Julian Day.

We used the R package LandsatLinkr [66,67] to create annual cloud-free image stacks and calculate
the TCT components using the coefficients defined for reflectance data [41]: Brightness (TCB), Greenness
(TCG) and Wetness (TCW). Subsequently, the angular component of the TCT (TCA) was computed as
follows [46]:

@

T
TCA = tan_l(ﬁ)

TCB
2.3.2. Trajectory Segmentation and Clustering

To extract recovery trajectories, we applied the LandTrendr trajectory-based segmentation
algorithm [32] to TCA and TCW time series. In this study we opted to use the TCA due to its
relation with the percentage of vegetation cover in coniferous and mixed forests [46,47], and the TCW
since it is sensitive to canopy moisture and structure [44,45]. LandTrendr goes through the time series
and creates a fitted trajectory as a sequence of line segments for each pixel. Firstly, the vertices of each
segment were established from an iterative regression process using Ordinary Least Squares (OLS) by
estimating the years of change using the TCA and TCW time series. Then, the trajectories are iteratively
simplified from a selection process using the angle criterion until a number of segments equal to or
less than a user-defined threshold were obtained (segmentation process) [32]. We set this threshold to
the maximum available (6) as we attempted to unravel multiple recovery trends. In a second step,
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the spectral values at candidate vertices were estimated (fitting process), generating a trajectory of
connected segments for each pixel. The best model was chosen based on the p-value according to
the F-statistics (p < 0.05). Further details on the segmentation process can be found in Kennedy et al.
(2010) [32].

From the derived trajectories, we selected the change magnitude and duration of the segments,
at the pixel level, as parameters for the classification. We calculated a recovery ratio (RR) for each
segment (Equation (2)), which allows us to describe the recovery rates through time or alternatively for
each successional stage defined by the number of segments (Figure 4).

Magnitude of Change,
RR = . @
Duration of Change,
Stage 1 Stage 2 Stage 3

. ____ _ Recovery =

=
7
2
S O
o
<
S
3 Duration 0
2 ) 0
= Magnitude

_6@) ’ :

1990 2000 2010 Year

Figure 4. Example of a fitted trajectory.

We performed an unsupervised clustering method, since our first objective was to unravel
the different vegetation recovery patterns. K-means clustering [68] is one of the most popular
unsupervised machine learning algorithms and has been previously applied to summarize vegetation
types and changes [69]. K-means allowed us to group the trajectories (defined by the RR of the segments)
in k groups, minimizing the sum of the distances between each trajectory and the centroid of a given
class. To define the optimal number of classes we employed the elbow method, which is based on
the percentage of variance explained as a function of the number of clusters [70]. This process has
been carried out with the scikit-learn library of Python [71]. The clusters obtained were overlapped to
the LandTrendr outputs to characterize the categories.

2.3.3. Assessing Driving Factors of Vegetation Recovery

We aimed to explain the influence of fire severity, pre-fire conditions, topographic and climatic
variables on recovery ratios through regression analysis. Six explanatory variables obtained from
the Landsat imagery as well as auxiliary data sources (see Section 2.2) were derived to model post-fire
recovery (Table 1). For the variables that did not meet the assumptions of normality of the residuals
and homogeneity of variance, we used log-transformed or rank-transformed data.
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Table 1. List of variables used in the regression analysis.

Variable Units Description
Recovery
Ratioy Represents the slope of the fitted trajectory at
Dependent (RR-TCA Z value each segment
RR-TCWy)
Explanatory
Pre-fire TCAgg.93 Or 7 value TCA shows the percent vegetation cover and
conditions TCWgg.93 TCW the moisture and structure before the fire

Represents the short-term post-fire effects on
vegetation cover and structure. Severity
thresholds proposed by the USGS [39]:
Fire severity dNBR Values between Low: 0.1 < dNBR < 0.27

—land1 Moderate-low: 0.27 < dNBR < 0.44
Moderate-high: 0.44 < dNBR < 0.66
High: >0.66
Elevation Meters
Topography Slope Percent
(TRASP) [72]. Values of 0 correspond to cooler,
Aspect Values between wetter north-northeastern aspects; values of 1
P Oand 1 correspond to hotter, dryer south-southwestern
aspects
L. (SPEI) [63]. Positive values represent positive
Climatic . . Y
. Drought index Z value water balance and negative values indicate
Anomalies

drought conditions

Previous studies have shown strong effects of fire severity on post-fire vegetation recovery [12,16,
56]. Fire severity, defined as the degree of ecosystem change caused by a fire with respect to the pre-fire
situation [73], was evaluated through the dNBR [60]:

dANBR = NBR e fire — NBR st fire ©)
NIR - SWIR2
NBR — MR~ SWIR2) )
(SWIR2 + NIR)

Previous work has also addressed the important role of topography in explaining variations in forest
establishment following fire [18,20,30]. Other studies have established the relevance of the post-fire
climate [16,28,37] since it is related to water availability, and pre-fire vegetation conditions [20] due
to its relationship with post-fire seed availability [12]. Regarding the drought index (SPEI), the 3
month-scale (cumulative from June, July and August) was selected since vegetation activity responds
predominantly to short drought time-scales [74] and because maximum Pearson correlation coefficients
between SPEI aggregated from summer season and TCA-TCW time series were recorded for both
study areas.

Firstly, an exploratory regression analysis was carried out to diagnose the suitability of the selected
variables. Due to the presence of spatial autocorrelation and heteroscedasticity in our data (the
significance of Koenker statistics at the 95% confidence level), we executed a Geographically Weighted
Regression (GWR) [75,76], a local regression model that considers spatial heterogeneity in data
relationships. Model fitting was conducted using optimized adaptive bi-square kernel bandwidth
(according to the corrected Akaike information criterion) [77].
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2.3.4. Recovery Assessment

We evaluated the recovery through TCA and TCW trajectories in the short, mid and long-term
as Key and Benson (2006) [39] proposed to assess burn severity: 2002 (8 years post-fire), 2009-2010
(15-16 years post-fire) and 2017-2018 (23-24 years post-fire), with 80% of the pre-fire value of TCA and
TCW as the recovery threshold [19].

We carried out a stratified validation based on the recovery categories identified with a sample
size of 500 plots randomly selected at each phase for each index (a total of 3000 reference plots).
Vegetation recovery was evaluated by visual analysis of high resolution orthophotos. To facilitate
the visual interpretation, we divided the 30-m pixel of Landsat images equally with a 6 m by 6 m
grid (25 cells in one 30-m pixel) and overlaid the grids onto the orthophotos (Figure 5), similarly to
Zhao et al. (2016) [78]. As an approximation to the pre-fire fractional cover due to the lack of pre-fire
orthophotos, we established as reference the pre-fire fractional cover obtained from the SNFI (mean
cover of 42.9% and 47.9% for Requena and Yeste, respectively). A disturbed pixel was considered to
have recovered if the tree and shrub cover was at least 40% (i.e., 10/25; Figure 5a,b). Otherwise, that
pixel was interpreted as having not recovered (Figure 5c).

Figure 5. Examples of high resolution orthophotos of recovered (a,b) and non-recovered pixels (c) in 5
by 5 grids.

Four accuracy metrics derived from confusion matrices were computed to validate our vegetation
recovery classification (Table 2), the omission error (OE; Equation (5)), the commission error (CE;
Equation (6)), the overall accuracy (OA; Equation (7)) and the Dice coefficient (DC; Equation (8)) [79].

Table 2. Confusion matrix example.

Reference Data

Estimation Recovered Non-Recovered Row Total
Recovered P11 P1s Pi.
Non-recovered Py Py Py,
Col. total Py Py> N
OE P21/Pyq ®)
CE P1a/P14 (6)
OA P11 + Pyp/N (7)
DC 2P11/(P14+ + P41) 8)
3. Results

3.1. Classification of Post-Fire Trajectories

Four different categories were identified for TCA (CR, CRSC, CRS and NCR) and five for TCW
(CR, CR2, CRSC, CRSC2 and CRS). The main characteristics of the categories describing recovery are
defined in Table 3.
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Table 3. Recovery categories definition.

Category Acronym Stages Description
. Pixels show a continuous increase in the TCA and
Continuous CR 1 . . .
Recover CR2 5 TCW values since the year of fire (CR) or since
y the first year post-fire (CR2).
Contintous Continuous recovery follows disturbance but slope
Recovery with CRSC 4 changes occur through the time series. Changes
Slope C}?an os CRSC2 3 occur at a different time for TCA and TCW (CRSC
P & and CRSC2).
Continuous . .
Recovery CRS 2 Continuous recovergzl :;/I;lfi?rsflﬁzv down or stop 4-5
Stabilized y '
. Recovery process is interrupted in the mid-term
Non-continuous .
Recover NCR 3 followed by a second phase of continuous recovery
y (only found with TCA).

Recovery dynamics in TCA and TCW tended to be spatially clustered, indicating strong spatial
effects (Figure 6). Moreover, there are differences in terms of the magnitude of change, as well as
the year in which changes detected between TCA and TCW occurred, and both fires. For the Requena
Fire we observed greater homogeneity, with CR as the main category, whereas for the Yeste Fire
the CRSC category predominates.

The plots in Figure 7 show the mean fitted trajectories of recovery categories from the TCA and
the TCW. In the pre-fire period, the TCA and TCW trajectories did not show significant changes,
indicating relative stability in forest cover until the occurrence of fire. Nevertheless, the trend is
negative in the case of TCA trajectories, which could be due to a loss of vegetation vigor before the fires
occurred. The structure seems to have not changed in the pre-fire period according to stable values in
TCW trajectories.

Although burned areas were generally characterized by an increase in spectral values after the fire
events, the mean TCA and TCW trajectories showed differences in vegetation recovery between
the two fires and across time series. TCA showed faster recovery, with high slopes in trajectories in
the short-term, because it is associated with the percent of vegetation cover, whereas TCW showed
slower recovery since it is related to the vegetation structure and moisture.

Regarding the TCA categories, the same trends were found in both fires and post-fire mean values
tended to overtake pre-fire values in the mid-term. Even so, recovery rates were higher in Requena, as
the post-fire mean values reached the pre-fire values before 2005, whereas in Yeste the pre-fire values
were reached around 2010. CR pixels correspond to lower disturbance magnitude whereas in CRSC,
CRS and NCR the magnitude of change is clearly higher. In the cases of CRSC and NCR the recovery
rates were high even though the recovery dynamic was interrupted. CRS showed a particular trajectory
as it stabilized in the mid-term and maintained the values across a subsequent phase of slight recovery.

According to the TCW categories, different trends were found between fires with the exception of
CR and CRS pixels. In the case of the Yeste Fire the categories CR2 and CRSC continued to decrease
until one year after the fire. In the case of Requena Fire, two different categories of CRSC were found
since breakpoints in the recovery process occurred in different years. In spite of the trend toward
pre-fire values none of the TCW trajectories reached pre-fire conditions after 24 years.
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Wetness (TCW; b). Requena (left), Yeste (right).
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Figure 7. Time series of mean fitted trajectories for each category: (a) TCA and (b) TCW; Requena (left)
and Yeste (right).

3.2. Assessing Drivers of Post-Fire Vegetation Recovery

We summarized the results from regression analysis for TCA and TCW in Tables 4 and 5,
respectively. All of the aforementioned variables for predicting the Recovery Ratio (RR-TCA and
RR-TCWYy) at each stage were statistically significant at the 95% level. The successional stages
correspond to the segments of the fitted trajectories from each category.

With regards to the relationship between the RR-TCA, and the predictor variables, different
responses were found between the categories but also common trends among recovery classes (Table 4).
There was a positive influence of pre-fire conditions since a higher percent of vegetation cover prior to
the fire will lead to a higher percent of vegetation cover also after the fire. In addition, climate was
positively related to RR-TCA in all stages. Positive water balance resulted in a higher ratio of percent
vegetation cover. The coefficients varied for the different stages since post-fire climate increases its
explanatory power until stage 3 and drops in the long-term. In relation to severity, high recovery rates
were related to high severities whereas low ratios were associated with low-burned pixels. Regarding
topographic variables, coefficients varied according to the stage and category. Elevation showed
a negative relation as a result of the limiting effects of temperature on vegetation growth, being more
important in the short-term and decreasing through subsequent stages. The slope showed a weaker,
negative influence as well as the aspect since cooler, wetter north-northeastern aspects (i.e., lower
aspect values according to TRASP) were preferred.
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Table 4. Modeling results for Tasseled Cap Angle (TCA) recovery categories at each stage.

12 of 25

Category Variable Stage 1 Stage 2 Stage 3 Stage 4
Coefficient Standard Error Coefficient Standard Error Coefficient Standard Error  Coefficient Standard Error
Intercept 0.662 0.145
Pre-fire conditions 0.012 0.005
Fire severity 0.061 0.005
CR Elevation -0.018 0.017
Slope 0.003 0.005
Aspect -0,010 0.004
Drought Index 0.279 0.492
R?: 0.77; Adjusted R?: 0.76;
AlCc: 955.89
Intercept 0.651 0.142 0.384 0.351 -0.847 1.421 -0.565 0.341
Pre-fire conditions 0.075 0.043 0.055 0.068 0.058 0.277 0.081 0.066
Fire severity 0.553 0.046 0.265 0.332 0.064 0.362 0.122 0.327
CRSC Elevation -0.261 0.069 -0.135 0.143 -0.162 0.586 —0.068 0.140
Slope —0.046 0.040 0.025 0.058 0.157 0.238 0.043 0.057
Aspect 0.034 0.034 0.008 0.048 —0.008 0.197 -0.015 0.047
Drought Index 0.758 0.154 1.143 0.058 2.525 0.130 0.788 0.047
R?: 0.77; Adjusted R?: 0.76; R?: 0.81; Adjusted R?: 0.80; R?: 0.75; Adjusted R?: 0.74; R?: 0.73; Adjusted R?: 0.72;
AICc: 1656..55 AICc: 4031.20 AlICc: 11055.78 AICc: 4238.93
Intercept —0.495 0.068 0.196 0.053
Pre-fire conditions 0.093 0.025 0.024 0.009
Fire severity 0.260 0.032 0.040 0.055
CRS Elevation -0.132 0.064 —0.001 0.032
Slope —0.006 0.026 —0.004 0.012
Aspect -0.024 0.022 —0.002 0.008
Drought Index 1.849 0.065 0.075 0.086

R?: 0.88; Adjusted R?: 0.88;
AICc: 1746.11

R?: 0.61; Adjusted R?: 0.58;
AICc: 12831.31
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Table 4. Cont.

13 of 25

Category Variable Stage 1 Stage 2 Stage 3 Stage 4
Coefficient Standard Error Coefficient Standard Error Coefficient Standard Error  Coefficient Standard Error
Intercept —0.052 0.101 0.344 0.349 —-0.540 0.294
Pre-fire conditions 0.079 0.032 0.033 0.064 0.048 0.054
Fire severity 0.449 0.039 —0.826 0.353 0.582 0.300
NCR Elevation -0.234 0.063 0.213 0.165 -0.201 0.141
Slope -0.018 0.036 0.051 0.070 —0.001 0.059
Aspect —0.041 0.029 0.021 0.051 -0.032 0.044
Drought Index 1.613 0.110 1.065 0.060 0.845 0.231
R?: 0.83; Adjusted R?: 0.82; R?: 0.78; Adjusted R%: 0.77; R?: 0.74; Adjusted R%: 0.72;
AlCc: 1527.51 AlCc: 7082.34 AlICc: 6085.56
Table 5. Modeling results for Tasseled Cap Wetness (TCW) recovery categories at each stage.
Category Variable Stage 1 Stage 2 Stage 3 Stage 4
Coefficient Standard Error  Coefficient Standard Error  Coefficient Standard Error  Coefficient Standard Error
Intercept 0.416 0.040
Pre-fire conditions —0.008 0.002
Fire severity 0.023 0.002
CR Elevation —0.002 0.005
Slope —0.005 0.002
Aspect 0.013 0.002
Drought Index 0.121 0.446
R?: 0.71; Adjusted R?: 0.69;
AICc: 955.23
Intercept 0.025 0.101 -0.076 0.046
Pre-fire conditions -0.312 0.046 0.049 0.020
Fire severity 0.106 0.046 0.006 0.019
CR2 Elevation —0.158 0.065 0.027 0.036
Slope 0.072 0.036 0.004 0.015
Aspect -0.171 0.039 0.025 0.016
Drought Index 0.734 0.156 —0.609 0.170

R?: 0.80; Adjusted R?: 0.79;
AICc: 7870.95

R?: 0.92; Adjusted R?: 0.92;
AlICc: 1227.11
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Table 5. Cont.
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Category Variable Stage 1 Stage 2 Stage 3 Stage 4
Coefficient Standard Error  Coefficient Standard Error  Coefficient Standard Error  Coefficient Standard Error
Intercept -0.322 0.120 0.612 0.214 0.358 0.229 -0.119 0.167
Pre-fire conditions —-0.116 0.051 —-0.091 0.116 —0.008 0.126 0.024 0.092
Fire severity 0.094 0.044 0.206 0.099 0.140 0.108 0.053 0.079
CRSC Elevation —0.040 0.072 —0.098 0.248 —0.005 0.270 —0.059 0.198
Slope 0.041 0.038 0.004 0.091 0.021 0.099 0.014 0.073
Aspect —-0.148 0.031 0.103 0.070 0.106 0.077 0.050 0.056
Drought Index 0.122 0.126 0.437 0.088 0.737 0.058 0.640 0.052
R?: 0.88; Adjusted R?: 0.87; R?: 0.67; Adjusted R%: 0.65; R?: 0.62; Adjusted R%: 0.60; R?: 0.56; Adjusted R%: 0.54;
AICc: 1959.93 AICc: 15831.16 AICc: 17032.23 AICc: 13009.93
Intercept 0.765 0.065 0.324 0.198 0.099 0.047
Pre-fire conditions —0.061 0.041 0.085 0.113 —0.008 0.026
Fire severity 0.045 0.039 0.139 0.106 0.018 0.025
CRSC2 Elevation -0.127 0.062 —-0.166 0.247 -0.017 0.057
Slope 0.014 0.030 0.030 0.087 —0.009 0.020
Aspect —0.046 0.027 0.195 0.070 0.025 0.016
Drought Index 0.730 0.039 0.735 0.077 —-0.150 0.075
R?: 0.81; Adjusted R?: 0.80; R?: 0.69; Adjusted R?: 0.67; R?: 0.70; Adjusted R?: 0.69;
AICc: 1064.20 AlCc: 11669.50 AICc: 1451.47
Intercept 0.146 0.061 —0.030 0.074
Pre-fire conditions —-0.047 0.028 -0.002 0.031
Fire severity 0.014 0.028 0.045 0.031
CRS Elevation —-0.030 0.058 —0.005 0.093
Slope 0.018 0.022 —-0.007 0.026
Aspect —-0.021 0.019 0.034 0.021
Drought Index 0.244 0.095 0.012 0.121

R?: 0.94; Adjusted R?: 0.93;
AICc: 2685.86

R?: 0.78; Adjusted R?: 0.77;
AICc: 1967.958
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The relationship between the RR-TCWx and the predictor variables showed different responses
reflecting changes in forest structural complexity (Table 5). In this case, a negative relationship with
pre-fire values was found because the greater complexity of the forest structure (i.e., higher TCW),
the lower the recovery ratio, indicating slower recovery processes of remnant trees and seeding in
contrast to the quicker recovery of shrubs. With regard to severity higher values also lead to higher
recovery rates. Concerning topographic variables, the slightly positive relationship of the slope might
be attributed to pine forest distribution preferably in the foothills. Identically to TCA, the elevation and
aspect relationship tended to be negative although in the mid-term stages south-southwestern aspects
lead to higher recovery rates. Post-fire climate conditions showed a positive or negative relationship
depending on the stage. Enough available moisture post-fire is important for seed germination but
abrupt changes in the climate conditions seem to reduce the recovery ratio in the long-term.

The relative importance of the explanatory variables for each trajectory category was assessed
through t-statistics (Figures 8 and 9). Post-fire climate in terms of drought had high predictive power
in most of the stages and categories according to both TCA and TCW regression analysis. This
power increased in the mid-term and long-term while all other variables decreased. Fire severity had
the second largest power for explaining percent vegetation cover in the short-term, although its power
diminished in the estimation of the recovery in terms of forest structure. Pre-fire conditions also had
a higher importance in the short-term, since the seed bank and the seeding processes will depend on
the pre-fire forest cover and structure. Topographic variables showed the lowest explanation power.
Elevation had higher relative importance in the case of TCA compared to TCW, in which aspect was
the most important topographic variable in all stages.
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Figure 8. Relative importance of explanatory variables in TCA regression analysis.
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Figure 9. Relative importance of explanatory variables in TCW regression analysis.
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According to the recovered and non-recovered definitions, all categories showed high accuracy,
with OA values ranging from 0.7 to 0.94 (Table 6). The OE and CE of the recovery categories varied,
with the highest errors in the short-term (OE of 0.36 for TCW and CE of 0.22 for TCA). Post-fire recovery
estimated by TCA shows more balanced errors, although with higher CE due to early successional
recovery processes of herbs and shrubs. In contrast, recovery estimated by means of TCW shows
higher OE since it is more sensitive to moisture and structure than early soil colonization of herbs.
In both cases, more stable recovery classes (CR and CRS) showed higher accuracy than the more
disrupted ones (CRSC). DC increased through the time series since forest cover and structure were

more clearly

defined.
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Table 6. Errors metrics for recovery estimation according to TCA and TCW.

Category 2002 2009-2010 2017-2018
OA DC OE CE OA DC OE CE OA DC OE CE

CR 08 091 007 011 090 094 004 007 09 097 0.00 0.05
CRSC 070 084 014 019 082 090 0.09 011 087 093 0.07 0.07
CRS 079 08 005 022 08 092 008 008 094 097 002 0.05
NCR 074 081 016 020 08 093 010 004 092 096 0.03 0.05

CR 091 08 021 004 084 08 020 0.02 093 09 0.08 0.00

CR2 082 074 036 013 08 08 021 008 089 093 0.13 0.00

TCW CRSC 082 078 033 006 087 08 015 001 082 091 016 0.01
CRSC2 082 082 029 004 08 091 016 000 088 092 014 0.00

CRS 086 087 017 010 077 093 012 001 089 093 010 0.04

OA—Overall Accuracy; DC—Dice coefficient; OE—omission error and CE—commission error.

TCA

4. Discussion

4.1. Post-Fire Recovery Trajectories from LTS

Characterizing post-fire recovery processes is challenging due to the variety of factors driving
vegetation recovery, resulting in different recovery dynamics. Post-fire vegetation recovery estimated
from spectral data is not a direct measure of actual forest regrowth. However, trends of forest recovery
can be quantified by linking spectral change metrics with a reference dataset [50]. Here, we identified
different recovery categories according to TCA and TCW recovery ratios at different stages through
a 24-year-series in Mediterranean pine forests.

Time series analysis from Landsat data using the LandTrendr segmentation algorithm has been
suitable to capture the different post-fire recovery trends. The trajectories extracted revealed continuous
and non-continuous recovery processes, allowing us to identify slight changes in the slowly evolving
recovery process. This was of great importance in determining slow but more stable recovery processes
(CR and CR2) compared to other faster, but also interrupted, recovery processes (CRSC, CRSC2, CRS
and NCR), indicating changes in greenery and forest structure throughout the recovering process.
Other studies that also employed a Landsat trajectory-based approach with LandTrendr were able
to identify different patterns of vegetative regrowth depending on the state, owner category and
ecoregion in North America [25] or set recovery levels across sclerophyll forest in Australia [36].
Even though several studies have addressed the analysis of post-fire recovery trends, our findings
highlight the importance of defining and grouping recovery patterns to facilitate the understanding of
recovery processes.

TCA and TCW have been proved useful to characterize both vegetation cover (TCA) and forest
structure (TCW). TCW trajectories were much more gradual, while TCA trajectories tended to saturate
around 5 years post-disturbance. Frazier et al. (2015) [44] and Nguyen et al. (2018) [36] also concluded
that the TCW contained more detail on the vegetation structure and regrowth in the regeneration
processes since it is highly correlated to stand age and structural complexity in mature forest stands.
The wetness values rise with an increasing amount of canopy [45], making it more suitable for analyzing
mid and long-term recovery. Alternatively, initial increases in vegetation cover were well-characterized
with shorter visible and near-infrared wavelengths as used in TCA [43,47,80]. In contrast to the canopy
layer, recovery of the understory through both resprouting and seeding is quicker [8,54]. Thus, TCA
was more suitable for tracking early stages, suggesting greater sensitivity toward shrub recovery and
changes in vegetation condition rather than structure.

The Recovery Ratio (RR) varied across the stages and for each category (Figure 7). Generally,
the recovery rates of TCA and TCW were greatest shortly after the fire (Stage 1 in CRSC, CRSC2,
CRS and NCR), decreasing afterwards, due to the early post-fire colonization of annual herbs and
shrubs [8,56]. In the following stages (2, 3 and 4), the RR according to both TCA and TCW was
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lower, associated with stem exclusion processes in a young regrowth forest characterized by intense
competition among regenerated species [7,49,53]. Our results agree with other studies that also obtained
higher recovery rates in the short-term according to spectral vegetation indices in Mediterranean
forests [40] and NBR trajectories in pine, mixed conifer and conifer—oak forest [28].

Accordingly, the recovery time for the fitted mean trajectories also varied across categories. TCA
categories tended to reach mean pre-fire values quicker, as it tends to saturate earlier (short-mid-term)
due to the influence of herbaceous vegetation on TCA. Specifically, in the Requena Fire, the TCA
trajectories tended to overtake pre-fire values in the long-term, possibly because these are fire-adapted
forests in which fire creates favorable conditions for vegetation germination and regeneration [7].
Nevertheless, TCW trajectories did not reach the previous values 24 years after the fire, suggesting that
burned areas did not recover the complexity of the pre-fire forest structure. This agrees with the interval
of minimum 15 years to consider a Pinus halepensis forest recovered after a fire proposed by Eugenio et
al. (2006) [54] since post-fire populations of seeder species does not overpass the reproductive juvenile
phase up to 12-20 years after fire [81] and thus, the canopy seed bank is not completely fulfilled [12].
Some studies in Mediterranean ecosystems reported recovery times from remote sensing, which fit
with our findings [82]. In this sense, Gouveia et al. (2010) [69] found recovery times of vegetation
cover around 3-5 years according to NDVI (highly correlated with TCA), and Fernandez-Manso et al.
(2016) [17] estimated the time of vegetation cover with VRI between 7 and 20 years depending on fire
severity level. However, the estimated recovery times with NBR, which is highly correlated with TCW,
were generally longer compared to NDVI [40].

Some of the limitations for the modeling of post-fire vegetation recovery using optical data are
related to saturation at high biomass levels. Previous studies found that the saturation of optical indices
is reached after 20 years in Mediterranean environments [83]. Likewise, Schroeder et al. (2011) [80],
Pickell et al. (2016) [19], Viana-Soto et al. (2017) [37] and Hislop et al. (2018) [38] found post-fire
recovery of NDVI or TCA returning back to pre-fire levels rapidly (i.e., around 5-7 years post-fire).
Structural information derived from airborne LiDAR data would enable a better characterization of
the recovery trajectories and to improve our understanding post-fire vegetation recovery [84,85].

Accuracy Assessment of Post-Fire Recovery

Accuracy assessment of post-fire recovery is often avoided because historical reference datasets
are scarce and field data is costly and time-consuming [14]. Here, we used a human interpretation
approach to derive reference data of recovered and non-recovered areas, which has been widely
employed to derive reference data for disturbance and recovery mapping [23,36,78,86].

All classes showed high accuracy with increasing OA and DC from the short-term to the long-term
since forest cover and structure are more clearly defined 24 years post-fire. DC values were slightly
lower in the long-term for TCW compared to TCA, which might indicate a recovery process that evolves
to a secondary forest with higher shrub domain [12]. This could also be related to the uncertainty
associated with signal sensitivity to changes in vegetation cover and biomass [87]. Moreover, the highest
accuracy in the more stable categories (CR), in contrast to the more variable (CRSC), also highlights
the difficulty in establishing the level of recovery for those more dynamic areas. Nguyen et al.
(2018) [36] also pointed out the challenge of determining the post-disturbance recovery level, and
identified recovery levels from NBR trajectories after fires according to whether pre-fire conditions were
reached or not. Here, we did not distinguish among recovery levels as we were unable to accurately
characterize the pre-fire forest structure due to the lack of high-resolution imagery, for which a more
extensive reference dataset would also be needed.

The main source of error stemming from OE for both TCA and TCW in the recovered pixels. Our
results showed that the TCW had higher accuracy for the non-recovered areas but omitted pixels that
had already recovered. Zhao et al. (2016) [78] also found higher OE in the recovered class regarding
post-fire and post-harvest forest recovery. Similarly, DeVries et al. (2015) [23] assessed post-harvest
regrowth in tropical forests obtaining lower CE in the regrowth class but the highest OE. On the other
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hand, TCA showed higher CE, as it is more sensitive to fast detection of early recovering processes but
also tends to saturate earlier as Schroeder et al. (2011) [80] reported.

4.2. Assessment of Post-Fire Recovery Drivers

Regression modeling of TCA and TCW recovery ratios for the recovery categories identified
showed a varied influence of environmental factors, fire severity and pre-fire conditions. The results
indicated post-fire climate as one of the most important factors for vegetation recovery in Mediterranean
pine forests in Spain. Likewise, Meng et al. (2015) [16], Liu (2016) [88] and Viana-Soto et al. (2017) [37]
found that climate conditions in the first post-fire seasons were critical for predicting short-term
recovery. Tree regeneration after disturbances in Mediterranean ecosystems could be limited under
post-fire drought events since droughts constrain seedling establishment and growth [7,53]. Bright
et al. (2019) [28] also reported that post-fire climate explained substantial variation of the degree to
which vegetation greenness recovered after a fire. Further analysis between trajectories and post-fire
climate revealed that stages of recovery slowdown and even breakpoints coincided with negative SPEI
values (i.e., dry or very dry periods). The year of the fires was followed by a slightly humid period,
which supported the recovery. However, 5 years after the fires, a new drought event interrupted
the recovery, as can be observed very clearly in the stabilization of the recovery in the CRS category
from 1999-2000, not only in the TCA trajectories but also in TCW trajectories. The effect of this drought
event was also noticeable in the categories of CRSC and CRSC2. Furthermore, the impact of post-fire
climate on the recovery process was also shown in the mid-term and long-term. In the case of the Yeste
Fire, an extreme drought event in 2005 coincided with the breakpoints in NCR and CRSC, whereas in
the Requena fire this event was not as severe as it was in 2012, coinciding with the breakpoints in NCR
and CRSC2.

Fire severity was also a key factor in the short-term recovery of pine forests. Some studies
also found that fire severity was decisive in recovery dynamics both in mixed-conifer forests [16]
and pine forests [18] due to its relation to pine seedling densities after fire, depending on pre-fire
vegetation composition, seedling mortality and reestablishment processes [8,53,56]. In this study,
the areas were burned at high severity (ANBR > 0.66) as forested areas tended to experience a higher
severity compared to herbaceous and shrublands. Moderate-high severity was only found in those
pixels of CR, which showed a slower but stable recovery trend. In agreement with the results reported
by Shvetsov et al. (2019) [21], a positive relationship between recovery rate and fire severity was
found, since recovery rates were higher for the higher severity areas than for high-moderate severity
(corresponding to successful recovery). Moderate fire severity sites might result in higher soil organic
matter mineralization, and thus in higher post-fire soil fertility that produces faster growth in pine
seedlings [89]. Bright et al. (2019) [28] also found that areas burned at higher severities recovered at
faster rates, possibly because they are fire-adapted forest in which fire creates favorable conditions
for vegetation germination and regeneration. Nevertheless, some studies in Mediterranean pine
forest reported that conversion from forest to shrubland occurred in the most xeric sites (south-facing
areas) [48] or in those areas with a high severity [12]. In this sense, Baudena et al. (2019) [90] predicted
that future potential increases in aridity may drive these fire-prone ecosystems past a tipping point,
after which closed forest structure would be replaced by open shrublands.

Topographic variables can also influence post-fire vegetation recovery through its effects on local
microclimate, soil and hydrological processes [18,20]. Wittenberg et al. (2007) [91] and Ireland and
Petropulous (2015) [18] found that north facing aspects exhibit higher rates of vegetation recovery
compared to south facing aspects as we found in the short-term recovery in CRS, NCR and CR
categories according to TCA, but also in CRSC according to TCW. The negative influence of elevation
was also detected in Mediterranean pine forest [37] and red fir forests [16] that might be attributed
to the decreased temperature with elevation. In contrast, Chu et al. (2017) [20] and Shvetsov et
al. (2019) [21] reported that topographic variables were the least important factors in explaining
the regeneration rate in Siberian forests. In our study, recovery in relation to topographic position did
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not show any clear pattern. This could be due to the fact that most of the pixels were located at either
upper or mid-slope in the foothills and very few were bottom slopes.

Although we found that post-fire climate was the most important variable in explaining post-fire
recovery in the mid and long-term, other variables not included could be influencing the recovery
process. Further analysis would consider the influence of historical management legacies as well as
the distance to seed banks in the post-fire recovery patterns.

5. Conclusions

Time series analysis from a temporal segmentation approach allowed us to unravel and characterize
different post-fire recovery trajectories. Although several studies have addressed the estimation of
post-fire recovery rates, fewer have been done in defining and characterizing the differences among
recovery trends in Mediterranean pine forests. Here, we identified different recovery categories
according to TCA trajectories and TCW trajectories, which enabled us to define slow but more
stable recovery processes (CR and CR2) compared to other faster but also interrupted recovery
processes (CRSC, CRSC2, CRS and NCR). The appraisal of the environmental and contextual drivers
of the recovery process showed that fire severity is important to predict the RR in the short-term but
post-fire climate in terms of drought better explained the RR in the mid and long-term.

The thermophilous pine forests are the most affected by wildfires in Europe. Increased wildfire
activity is expected to continue under warmer and drier conditions, making post-fire vegetation
recovery of concern to researchers and forest managers. Since these forests may not be allowed
the time to develop into a mature forest that would be able to recover rapidly, the resilience of these
ecosystems will therefore be significantly reduced. Hence, a better understanding of fire regimes and
forest recovery patterns in different environmental and climatic conditions is needed for developing
forest management strategies that enhance forest resilience.
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