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Abstract: The Intergovernmental Panel on Climate Change predicts that sea levels will rise by up to
0.82 m in the next 100 years. In natural systems, coastlines would migrate landwards, but because
most of the world’s human population occupies the coast, anthropogenic structures (such as sea walls
or buildings) have been constructed to defend the shore and prevent loss of property. This can result
in a net reduction in beach area, a phenomenon known as “coastal squeeze”, which will reduce beach
availability for species such as marine turtles. As of yet, no global assessment of potential future
coastal squeeze risk at marine turtle nesting beaches has been conducted. We used Google Earth
satellite imagery to enumerate the proportion of beaches over the global nesting range of marine
turtles that are backed by hard anthropogenic coastal development (HACD). Mediterranean and
North American nesting beaches had the most HACD, while the Australian and African beaches had
the least. Loggerhead and Kemp’s ridley turtle nesting beaches had the most HACD, and flatback
and green turtles the least. Future management approaches should prioritise the conservation of
beaches with low HACD to mitigate future coastal squeeze.

Keywords: Google Earth; climate change; coastal management; habitat loss; anthropogenic
development; remote sensing; marine vertebrates

1. Introduction

Coastal regions are dynamic and productive, and therefore have high biodiversity [1]. They also
host human coastal populations at densities three times higher than the global average [2]. However, sea
levels are predicted to increase by 0.23 to 0.82 m in the next 100 years with climate change (global mean sea
level rise, medium confidence [3]) and therefore threaten coastal areas [4]. In natural systems, coastlines
would migrate landwards with sea level rise, but highly developed areas (e.g., coastal towns or cities) at
risk may invest in sea walls, groynes, and coastal armouring to protect property and to offset economic
and social costs of land loss [5]. This can result in a net reduction in beach area, a phenomenon known as
“coastal squeeze”. Coastal ecosystems are among the most modified and threatened globally [6]; for
example, 14% of the coastline of the USA and as much as 50% of shorelines in coastal cities like Hong
Kong and Sydney have been hardened with coastal armouring or shoreline protection, or urbanized
with residential, business, and industrial structures [7]. Overall, 28% of global coastlines have been
altered by human activities [8], and anthropogenic development is a major threat to coastal ecosystems
and to the flora and fauna that depend on them [9,10]. Given expected human population increases
(to 9.3 billion by 2050 [11]), coastal development is expected to grow further, increasing the likelihood
of more fortification and thus further coastal squeeze. In addition, natural habitats provide billions of
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dollars” worth of shoreline protection for human populations [12] and can be more cost effective against
sea level rise, storms, and flooding than hard anthropogenic structures [4,13,14].

Coastal Squeeze and Marine Turtles

All seven species of marine turtles, which are of conservation concern, use tropical and temperate
beaches of the world to lay their eggs. Over the last few thousand years, global sea levels have been
dramatically different to those of the present [15], but natural coastal recession and accretion cycles
have provided for suitable nesting beach habitat [15]. Studies that have measured beach slope and
elevation at sea turtle nesting beaches have suggested that 30-50% of beaches could be lost under
intermediate (0.5 to 0.9 m) sea level rise scenarios without coastline recession [10,16-23]. While these
studies can accurately quantify coastal squeeze for individual beaches, they give no wider insight as to
how coastal squeeze may vary between species and between regions that host marine turtle nesting
beaches [16]. Global data on beach geomorphology, which could be used to model the extent of beach
loss with sea level rise for individual sites, are not available at present [24], but marine turtles nest
only on beaches with particular geomorphology—beaches both steep and wide enough to ensure eggs
can remain dry above the high tide for incubation. Indeed, there is an adaptive trade-off between
the energetic cost of searching for a nest site and the reproductive benefit of selecting a site that will
produce large numbers of offspring [25]. It is therefore reasonable to assume that most marine turtle
nesting beaches have a broadly similar geomorphology [25].

The present work provides the first synthetic overview of the extent of hard anthropogenic coastal
development behind marine turtle nesting beaches worldwide. We highlight key differences between
regions that host marine turtle nesting beaches and the differences between the seven species, which
are all of conservation concern. The results are relevant for policy and practice of coastal management
in the face of climate change.

2. Materials and Methods

We used data from the State of the World’s Sea Turtles (SWOT; [26]), detailing all known nesting
sites for all seven species of marine turtles, namely loggerhead (Caretta caretta), leatherback (Dermochelys
coricacea), green (Chelonia mydas), hawksbill (Eretmochelys imbricata), flatback (Natator depressus), olive
ridley (Lepidochelys olivacea), and Kemp's ridley (Lepidochelys kempii), to determine the start and end of
nesting ranges for marine turtles. SWOT data detail the abundance of nesting at each site as <25 nests per
year, 25 to 100 nests per year, 100 to 500 nests per year, 500 to 1000 nests per year, and >1000 nests per year.
Turtle nesting localities were categorised into 11 geographic regions: North America, Western Central
America (including islands of the Caribbean), Central America, South America, the Mediterranean,
Africa, Middle East, Indian Ocean, Southeast Asia, Australia, and Pacific Islands. To determine the
spatial extent of nesting for each of these regions, the two furthest nesting populations acted as the start
and end points of each transect.

Points were created at 10 km intervals along a high-resolution global coastline (polyline) shapefile
that had been cropped to the extent of the global marine turtle nesting range using ArcMap (ESRI,
Redlands, California) and imported as a .kml file into Google Earth. At each point, the finest resolution
(smallest scale) imagery was viewed (range of latest imagery from 1998 to 2015), where it was possible
to clearly distinguish between natural land cover (e.g., trees, fields, and sand dunes) and anthropogenic
structures (e.g., buildings, car parks, and sea walls). We considered that hard anthropogenic coastal
development (HACD) was any man-made hard structure that would prevent the landward retreat of
beaches under future sea level rise scenarios. Natural barriers, such as embankments or vegetation,
were not considered a barrier to beach recession as they would naturally recede over time, and roads
were not counted as hard anthropogenic structures because they are usually flat and therefore do not
strictly prevent marine turtles accessing the beach behind them. Importantly, there is no peer-reviewed
evidence of marine turtles being able to cross roads that we are aware of; moreover, roads may have
traffic barriers or guard rails that do prevent access, and management to maintain roads in situ may
cause additional obstacles to marine turtles, particularly hatchlings. At each survey point (n = 16,009
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points) the extent of coastal development was manually scored (see below), considering the area
from the water to 100 m inland, as previous studies have shown that a 90 m set back of development
prevented beach loss at the maximum Intergovernmental Panel on Climate Change (IPCC) sea level
rise scenario [27]. Due to the complexity of inspecting and categorising development at each survey
point, we did not use supervised automated classification of tasked satellite images, and instead
we manually assessed and scored all 16,009 points. Scoring at each point was standardized by the
main bulk of the categorising being conducted by one person (S.B.). However, when other members
contributed, this was done under supervision of the main author to provide consistency. A random
subset of 110 survey points (10 from each of the 11 regions surveyed) was further reviewed by another
author for internal consistency. The work was carried out in 2015 using the most recent imagery, and
we note that satellite images are continually updated and made available in Google Earth.

Coastal development was assigned to bins of 0% (no HACD behind the turtle nesting beach), 1%
to 25% (approximately one quarter of the area behind the beach was covered by HACD), 26% to 50%
(approximately half of the area behind the beach was covered by HACD), 51% to 75% (approximately
three quarters of the area behind the beach was covered by HACD), and 76% to 100% (all the land
behind the nesting beach was backed by HACD; Figure 1). Beaches with 50% or more of the land
behind them covered in HACD were considered “highly developed” (and thus at high risk of coastal
squeeze), and beaches with 25% were considered moderately developed.

Figure 1. Google Earth imagery demonstrating the extent of hard anthropogenic coastal development
(HACD), forming barriers to the landward retreat of beaches scored as 0%, 25%, 50%, 75%, and 100%,
and higher resolution examples of HACD. White circles indicate schematic representation of scoring,
where HACD within 100 m of the survey point was enumerated.
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Statistical Analysis

Proportions of development scores were calculated for each marine turtle species and for each of the
11 regions, and they were utilized for comparing the HACD using Kruskal-Wallis tests between species
and regions. A Tukey contrast test was then used to compare pairwise differences in development
between the different species, at a 95% confidence level.

3. Results

3.1. HACD by Regions

There was a significant difference in the distribution of HACD scores between global nesting
regions (Kruskal-Wallis X; 19 = 1751.1, p < 0.01; Figure 2A, Figure S1, Table S1, Table S2), with the
greatest in the Mediterranean (where 40% of survey points were highly developed) and the least in
Australia (where 1.5% were highly developed). Australian sea turtle nesting beaches were significantly
less developed than all other global regions, while Mediterranean beaches were more developed than

all other regions (Table S2).
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Figure 2. Stacked bar plots displaying the proportion of hard anthropogenic coastal development
(HACD) scores for (A) turtle nesting regions ordered by longitude (NAM—North America, WCA—
Western Central America, CAM—Central America, SAM—South America, MED—Mediterranean,
AFR—Africa, MDE—Middle East, IND—Indian Ocean, SEA—South East Asia, AUS—Australia,
PAC—Pacific Islands) and (B) marine turtle species (Cm—green, Ei—hawksbill, Dc—leatherback,
Cc—loggerhead, Nd—flatback, Lo—olive ridley, Lk—Kemp’s ridley) where 0 = no HACD behind the
nesting beach and 100 = all land behind the nesting beach was backed by HACD.
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3.2. Most Developed Regions

In the Mediterranean, the greatest extent of HACD was in Southern Italy and Sicily, Central
Northern Egypt, Turkey, and the coast of Lebanon (Figure 3). Other major highly developed regions
included the Americas and Caribbean: In total, 24% of North American nesting beaches were highly
developed, and in Florida 16% of beaches were backed by 100% development. Island nesting beaches
in Central America and the Caribbean had significantly more HACD compared to mainland nesting
beaches. In particular, Jamaica (where 57% of the land behind the beach was highly developed), the
Cayman Islands (where the nesting beach was entirely backed by HACD), and much of the Lesser
Antilles from the Dominican Republic to Grenada were highly developed. In South America, highly
developed nesting beaches were found in Eastern Brazil and in Central Northern Venezuela. There
were relatively few surveys points covering the Pacific Islands, but overall 28% of the beaches there
were highly developed. Just over a quarter (28%) of the Pacific Island turtle nesting beaches were
highly developed, in particular the Hawaiian island of Oahu (70%), Tahiti (90%), and Samoa (41%
highly developed).
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Figure 3. Maps showing the locations of marine turtle rookeries with the most (n = 3 numbered black
crosses per map, where numbers indicate rank position) and least (n = 3 numbered white crosses
per map) HACD: for (A) all turtles, (B) loggerhead turtles, (C) hawksbill turtles, (D) green turtles,
(E) leatherback turtles, (F) olive ridley turtles, (G) Kemp’s ridley turtles, and (H) flatback turtles. Maps
shown to different scales.

3.3. Least Developed Regions

By contrast, 91% of Australian nesting beaches had no coastal development behind them. African
countries had the second lowest extent of HACD in the world, with 78% of the coastline free of coastal
development. The most developed marine turtle nesting beaches in Africa were in Senegal (24%),
Ghana, Togo, and Benin (41%), and the islands of Reunion (48%), Seychelles (50%), and Mauritius
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(58% highly developed). Three quarters of the Middle Eastern marine turtle nesting beaches had no
coastal development behind them, but the western extent of the Middle East, namely Kuwait (41%),
Saudi Arabia (27%), Qatar (18%), and Northern Oman (24%), hosted nesting beaches that were highly
developed. In the Indian Ocean, HACD was low overall, but hot spots in Sri Lanka (22%) and at key
coastal cities in India—Mumbai, Chennai, and Trivandrum—were highly developed. Only 10% of the
Southeast Asian coastline was highly developed, but Japan and Thailand were notable exceptions (49%
and 36% highly developed).

3.4. HACD by Species

There was a significant difference in the distribution of HACD scores between species with
loggerhead and hawksbill turtles having significantly more HACD behind their nesting beaches than
green turtles (loggerhead turtles z = 4.74, p < 0.01 and hawksbill turtles z = —3.14, p < 0.01; Figure 2B,
Table S3), with loggerhead turtle nesting beaches having the greatest extent of HACD and flatback
and green turtle nesting beaches the least (Figure 2B). Considering only the largest nesting rookeries
(>1000 nests.yr‘l), loggerhead turtle nesting beaches still had the greatest extent of HACD, and green,
leatherback, and Kemp's ridley turtle nesting beaches the least (Table S4).

3.5. Species with Most HACD

Overall, 38% of the global loggerhead turtle nesting range was backed by highly developed land.
Most of this was located along the eastern seaboard of North America (where the second largest
population of loggerheads nests [28]), the Eastern Mediterranean, and Southern Mexico. Nearly one
fifth (18%) of the global loggerhead nesting range was completely backed by HACD (i.e., landward
retreat of the nesting beach would be impossible), all of which was on the USA'’s eastern seaboard.
Compared to other species, Kemp’s ridley turtles have a restricted nesting range, only nesting in
Mexico and the Southeastern USA [29]. Half of the Kemp’s ridley turtle nesting range in Central
Mexico was highly developed, but there was no coastal development behind their nesting beaches in
Northern Mexico and the Southern USA.

3.6. Species with Least HACD

In contrast, flatback turtles in Northern Australia had the least developed nesting range, followed
by leatherback turtles nesting in Central Western Africa and green turtles nesting on the northeastern
coast of Mexico. The median green turtle nesting beach had no HACD behind it, and only 9% of the
green turtle’s nesting range was highly developed. The parts of the green turtle nesting range with
the greatest extent of HACD were located in Southeastern Mexico, the Eastern Mediterranean basin,
and the United Arab Emirates, and the least extent was found in Northwestern Australia, Central
Eastern Africa, and Cuba. The hawksbill turtle’s nesting range also had, on average, no HACD behind
it (for example in Northeastern Australia, Central Western Africa and Costa Rica), although a minority
(27%) of the range was highly developed, mainly in Southeastern Barbados, the Seychelles, and Samoa.
Most of the leatherback turtle’s nesting range also had no HACD behind it, but 11% of beaches were
highly developed, mostly in Puerto Rico, Costa Rica, and Grenada. The leatherback turtle’s nesting
range in Central Western Africa, Northern Brazil, and Northern Mexico had the least HACD. Finally,
the majority of the olive ridley turtle’s nesting range had no HACD behind it, but 17% was highly
developed, mainly in El Salvador, Pacific Northern Mexico, and Brazil. Beaches in their nesting range
in Central Western Africa, Western Panama, and Southwestern Mexico had the least HACD.

4. Discussion

Overall, the results of the present study suggest that approximately one quarter of global coastlines
that are used for nesting by marine turtles are backed by hotels, malls, car parks, sea walls, rock
revetments, flood barriers, and other hard anthropogenic structures. Although the likelihood of nesting
beach loss through coastal squeeze also depends on factors such as beach slope (see also [30]), these
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beaches certainly lack the capacity to retreat landwards. Key conservation action to mitigate nesting
beach loss should be prioritised in the Mediterranean and Southeastern United States of America, and
coastal squeeze should be considered most urgently for loggerhead turtles. Ultimately though, unless
HACD is removed, marine turtles can only adapt by nesting elsewhere, and only if there are alternate
nesting beaches that have not been lost to sea level rise. Paleontological records demonstrate that
marine turtles have persisted through past climatic changes, when shorelines may have been radically
different to those of the present day [15]. Some modern populations of marine turtles can also cope
with strongly varying shorelines; for example in French Guyana, highly dynamic olive ridley and
leatherback turtle nesting beaches may be completely eroded and accreted between years, but overall,
cohorts of turtles still produce successful nests, indicating adaptive potential [31]. This is hopeful, but
the rate and scale of shoreline change is likely to be unprecedented [32], and the coastal armouring
of property is seen by property owners as desirable and appears likely to continue [33]. Increasing
frequency and severity of coastal storms and wave surges may additionally lead to rates of coastal
erosion at two orders of magnitude greater than the rate of sea level rise [30,34].

Marine turtle species will likely differ in their ability to cope with the loss of nesting beaches, due
to nest site fidelity (the propensity of a species to return to the same site repeatedly to lay eggs) [35].
Although nest site fidelity may vary between species (e.g., loggerhead turtles may lay nests up to
109 km apart [36], while hawksbill turtles may nest within 100 m of previous nests [37]), it also
likely varies within species and between populations bounded by differing geography. There is no
clear consensus to date of what drives different levels of nest site fidelity in marine turtles, but such
understanding will be critical to predicting their future response to nesting beach loss. In particular, the
conservation status of different marine turtle populations will also have impact on their likely genetic
resilience and population level plasticity (e.g., while some populations of Eastern Pacific green turtles
and North Atlantic leatherback turtles are thought to be at low risk, other populations of olive ridley,
hawksbill, loggerhead, and leatherback turtles are among the most endangered in the world [38]).

Future management approaches could prioritise the preservation of major nesting beaches that
currently have little HACD (white crosses; Figure 3, see also [23]) using construction “set back”
regulations to limit or prevent new construction within a certain distance from the shore [27]. This
would ensure persistence of marine turtle nesting within extant ranges, as beaches would be able to
retreat landwards. This type of proactive management may particularly benefit species with limited
nesting range or high nest site fidelity, such as flatback or Kemp’s ridley turtles. It would also be
instructive to quantify the proportion of such habitat that lies in existing or proposed protected
areas [39]. Whether the conservation of marine turtles per se is more important than the socio-economic
progress of developing nations is an important consideration, as developing countries typically had
low levels of coastal HACD in the present study [40]. However, where the coast is already highly
developed (black crosses; Figure 3), mitigation will need to be explored, although it is complex and
usually expensive [41]. In extreme cases, the removal of hard structures may be the only means with
which to ensure that turtles can successfully continue nesting. A major opportunity in the mitigation
of coastal squeeze is that the integrity of coastal habitats is vital to their role in shoreline protection for
human populations—intact coastal habitats can halve the number of vulnerable people and property
exposed to coastal hazards [4,12]. For example, coral reef, mangrove, and seagrass ecosystems off the
Florida coast provide approximately $4 billion worth of coastal protection for residential properties
within one kilometre of the coast [12]. The question then becomes whether marine turtles, or other
coastally dependent iconic species such as shorebirds [42,43], might serve as flagship species to foster
public support to restore coastal ecosystems to their natural state, yielding synergistic benefits for
wildlife and humans [14,44-49].

5. Conclusions

In the present study, coastal development was used as a qualitative proxy for coastal squeeze;
however, the geomorphology of each nesting beach and spatial variation in predicted SLR will
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influence the vulnerability of specific beaches to coastal squeeze [10,22,50]. Future research should
incorporate altimetric models into imagery analysis using elevation, slope, and other elements of
beach geomorphology to more robustly and quantitatively assess the expected reduction of marine
turtle nesting beaches with the expected global mean SLR over the next 100 years. Such analyses
could also be coupled with supervised semiautomatic classification of satellite imagery to monitor the
change in coastal anthropogenic development, such as HACD. Studies using satellite altimetry have
shown that sea levels are not rising uniformly, and certain areas are at disproportionately greater risk
from SLR, such as the islands of Southeast Asia [51]. The present study adds to this by suggesting
that HACD is disproportionately more present at Mediterranean and North American turtle nesting
beaches, threatening loggerhead and Kemp’s ridley turtles more than other regions and species.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/9/1492/s1,
Figure S1, Tables S1-54. Data canbe accessed at: https://figshare.com/articles/A_global_analysis_of_anthropogenic_
development_of_marine_turtle_nesting_beaches/12213320.

Author Contributions: Conceptualization, S.J.B. and L.A.H.; methodology, S.J.B. and L.A.H.; investigation, S.].B.
and E.A.S.; writing—original draft preparation, S.J.B.; writing—review and editing, S.].B., E.A.S., and L.A.H.;
supervision, L.A.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was completed as part of S.J.B.”s Masters dissertation at the University of Exeter,
UK. The authors thank the State of the World’s Turtles (SWOT) report, OBIS-SEAMAP, and Duke University for
the global marine turtle nesting data. The manuscript benefitted from the review and statistical advice from M. J.
Witt (University of Exeter). We also thank J. Goodfellow (University of Exeter). S.J.B. was supported by a travel
grant from C. and A. Trevorrow. The manuscript benefitted from the constructive comments of three anonymous
reviewers to whom we are very grateful.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Tittensor, D.P; Mora, C.; Jetz, W.; Lotze, HK.; Ricard, D.; Berghe, E.V.; Worm, B. Global patterns and
predictors of marine biodiversity across taxa. Nature 2010, 466, 1098-1101. [CrossRef]

2. Small, C.; Nicholls, R. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 3, 584-599.

3. IPCC. Climate Change 2014 Synthesis report. In Summary for Policymakers. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva,
Switzerland, 2014.

4. Currin, C.A. Living Shorelines for Coastal Resilience. In Coastal Wetlands: An Integrated and Ecosystem
Approach, 2nd ed.; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S., Eds.; Elsevier: Amsterdam,
The Netherlands, 2019; pp. 1023-1053.

5. Firth, L.B.; Thompson, R.C.; Bohn, K.; Abbiati, M.; Airoldi, L.; Bouma, T.; Bozzeda, F.; Ceccherelli, V,;
Colangelo, M.; Evans, A.; et al. Between a rock and a hard place: Environmental and engineering
considerations when designing coastal defence structures. Coast. Eng. 2014, 87, 122-135. [CrossRef]

6. Adger, W.N.; Hughes, T.P; Folke, C.; Carpenter, S.R.; Rockstrom, J. Social-Ecological Resilience to Coastal
Disasters. Science 2005, 309, 1036-1039. [CrossRef] [PubMed]

7. Gittman, R K.; Fodrie, EJ.; Popowich, A.M.; Keller, D.; Bruno, J.E; Currin, C.; Peterson, C.H.; Piehler, M.F.
Engineering away our natural defenses: An analysis of shoreline hardening in the US. Front. Ecol. Environ.
2015, 13, 301-307. [CrossRef]

8. Martinez, M.L.; Intralawan, A.; Vazquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our
world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254-272. [CrossRef]

9.  Chu, M.L,; Mufioz-Carpena, R.; Kiker, G.; Emanuelsson, A.; Linkov, I. Exploring vulnerability of coastal
habitats to sea level rise through global sensitivity and uncertainty analyses. Environ. Model. Softw. 2011, 26,
593-604.

10. Von Holle, B.; Irish, J.L.; Spivy, A.; Weishampel, ].E; Meylan, A.; Godfrey, M.H.; Dodd, M.; Schweitzer, S.H.;
Keyes, T.; Sanders, F; et al. Effects of future sea level rise on coastal habitat. J. Wildl. Manag. 2019, 83,
694-704. [CrossRef]


http://www.mdpi.com/2072-4292/12/9/1492/s1
https://figshare.com/articles/A_global_analysis_of_anthropogenic_development_of_marine_turtle_nesting_beaches/12213320
https://figshare.com/articles/A_global_analysis_of_anthropogenic_development_of_marine_turtle_nesting_beaches/12213320
http://dx.doi.org/10.1038/nature09329
http://dx.doi.org/10.1016/j.coastaleng.2013.10.015
http://dx.doi.org/10.1126/science.1112122
http://www.ncbi.nlm.nih.gov/pubmed/16099974
http://dx.doi.org/10.1890/150065
http://dx.doi.org/10.1016/j.ecolecon.2006.10.022
http://dx.doi.org/10.1002/jwmg.21633

Remote Sens. 2020, 12, 1492 90f 10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Merino, G.; Barange, M.; Blanchard, ].L.; Harle, J.; Holmes, R.; Allen, I.; Allison, E.; Badjeck, M.-C.; Dulvy, N.K,;
Holt, J.; et al. Can marine fisheries and aquaculture meet fish demand from a growing human population in
a changing climate? Glob. Environ. Chang. 2012, 22, 795-806. [CrossRef]

Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.;
Silver, ].M.; Lacayo-Emery, M. Coastal habitats shield people and property from sea-level rise and storms.
Nat. Clim. Chang. 2013, 3, 913-918. [CrossRef]

Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, 1.].; Van Wesenbeeck, B.; Pontee, N.; Sanchirico, ].N.;
Ingram, ].C.; Lange, G.-M.; Burks-Copes, K.A. The Effectiveness, Costs and Coastal Protection Benefits of
Natural and Nature-Based Defences. PLoS ONE 2016, 11, e0154735. [CrossRef] [PubMed]

Temmerman, S.; Meire, P; Bouma, T.J.; Herman, PM.].; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal
defence in the face of global change. Nature 2013, 504, 79-83. [CrossRef]

Dutton, A.; Carlson, A.E.; Long, A]J.; Milne, G.A.; Clark, P.U.; DeConto, R.; Horton, B.P.; Rahmstorf, S.;
Raymo, M.E. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 2015, 349,
aaa4019. [CrossRef] [PubMed]

Mazaris, A.D.; Matsinos, G.; Pantis, ].D. Evaluating the impacts of coastal squeeze on sea turtle nesting.
Ocean Coast. Manag. 2009, 52, 139-145. [CrossRef]

Fish, M.R.; Coté, LM.; Gill, J.A.; Jones, A.P; Renshoff, S.; Watkinson, A.R. Predicting the Impact of Sea-Level
Rise on Caribbean Sea Turtle Nesting Habitat. Conserv. Biol. 2005, 19, 482-491. [CrossRef]

Katselidis, K.; Schofield, G.; Stamou, G.; Dimopoulos, P.; Pantis, ].D. Employing sea-level rise scenarios to
strategically select sea turtle nesting habitat important for long-term management at a temperate breeding
area. |. Exp. Mar. Biol. Ecol. 2014, 450, 47-54. [CrossRef]

Fuentes, M.M.P.B.; Fish, M.R.; Maynard, J.A. Management strategies to mitigate the impacts of climate
change on sea turtle’s terrestrial reproductive phase. Mitig. Adapt. Strat. Glob. Chang. 2011, 17, 51-63.
[CrossRef]

Fuentes, M.M.P.B.; Limpus, C.; Hamann, M. Vulnerability of sea turtle nesting grounds to climate change.
Glob. Chang. Biol. 2010, 17, 140-153. [CrossRef]

Fuentes, M.; Limpus, C.; Hamann, M.; Dawson, J.; Fuentes, M.M.P.B. Potential impacts of projected sea-level
rise on sea turtle rookeries. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 132-139. [CrossRef]

Varela, M.R.; Patricio, A.R.; Anderson, K.; Broderick, A.C.; Debell, L.; Hawkes, L.A ; Tilley, D.; Snape, R.T.E,;
Westoby, M.; Godley, B.J. Assessing climate change associated sea-level rise impacts on sea turtle nesting
beaches using drones, photogrammetry and a novel GPS system. Glob. Chang. Biol. 2018, 25, 753-762.
[CrossRef]

Butt, N.; Whiting, S.; Dethmers, K. Identifying future sea turtle conservation areas under climate change.
Biol. Conserv. 2016, 204, 189-196. [CrossRef]

Hinkel, J.; Nicholls, R.J.; Tol, R.S.; Wang, Z.-B.; Hamilton, ].M.; Boot, G.; Vafeidis, A.T.; McFadden, L.;
Ganopolski, A.; Klein, R.J. A global analysis of erosion of sandy beaches and sea-level rise: An application of
DIVA. Glob. Planet. Chang. 2013, 111, 150-158. [CrossRef]

Yamamoto, K.H.; Powell, R.L.; Anderson, S.; Sutton, P. Using LiDAR to quantify topographic and bathymetric
details for sea turtle nesting beaches in Florida. Remote. Sens. Environ. 2012, 125, 125-133. [CrossRef]

The State of the World’s Sea Turtles Online Database: Data provided by the SWOT Team and hosted on
OBIS-SEAMAP [Internet]. Oceanic Society, Conservation International, IUCN Marine Turtle Specialist
Group (MTSG), and Marine Geospatial Ecology Lab, Duke University. 2015. Available online: http:
//seamap.env.duke.edu/swot (accessed on 1 January 2020).

Fish, M.; Céte, I.; Horrocks, J.; Mulligan, B.; Watkinson, A.; Jones, A. Construction setback regulations and
sea-level rise: Mitigating sea turtle nesting beach loss. Ocean Coast. Manag. 2008, 51, 330-341. [CrossRef]
Ehrhart, L.M.; Bagley, D.A.; Redfoot, W.E. Loggerhead turtles in the Atlantic Ocean: Geographic distribution,
abundance, and population status. In Loggerhead Sea Turtles; Bolten, A.B., Witherington, B.E., Eds.;
Smithsonian: Washington, DC, USA, 2003; pp. 157-174.

Plotkin, P.T. Biology and Conservation of Ridley Sea Turtles; John Hopkins University Press: Baltimore, MA,
USA, 2007.

Fitzgerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I. Coastal Impacts Due to Sea-Level Rise. Annu. Rev.
Earth Planet. Sci. 2008, 36, 601-647. [CrossRef]


http://dx.doi.org/10.1016/j.gloenvcha.2012.03.003
http://dx.doi.org/10.1038/nclimate1944
http://dx.doi.org/10.1371/journal.pone.0154735
http://www.ncbi.nlm.nih.gov/pubmed/27135247
http://dx.doi.org/10.1038/nature12859
http://dx.doi.org/10.1126/science.aaa4019
http://www.ncbi.nlm.nih.gov/pubmed/26160951
http://dx.doi.org/10.1016/j.ocecoaman.2008.10.005
http://dx.doi.org/10.1111/j.1523-1739.2005.00146.x
http://dx.doi.org/10.1016/j.jembe.2013.10.017
http://dx.doi.org/10.1007/s11027-011-9308-8
http://dx.doi.org/10.1111/j.1365-2486.2010.02192.x
http://dx.doi.org/10.1002/aqc.1088
http://dx.doi.org/10.1111/gcb.14526
http://dx.doi.org/10.1016/j.biocon.2016.10.012
http://dx.doi.org/10.1016/j.gloplacha.2013.09.002
http://dx.doi.org/10.1016/j.rse.2012.07.016
http://seamap.env.duke.edu/swot
http://seamap.env.duke.edu/swot
http://dx.doi.org/10.1016/j.ocecoaman.2007.09.002
http://dx.doi.org/10.1146/annurev.earth.35.031306.140139

Remote Sens. 2020, 12, 1492 10 of 10

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Plaziat, J.C.; Augustinius, PG.E.F. Evolution of progradation/erosion along the French Guiana magrove
coast: A comparison of mapped shorelines since the 18th century with Holocene data. Mar. Geol. 2004, 208,
127-143. [CrossRef]

Chen, X.; Zhang, X.; ChurchiD, J.A.; Watson, C.S.; King, M.; Monselesan, D.; Legresy, B.; Harig, C. The
increasing rate of global mean sea-level rise during 1993-2014. Nat. Clim. Chang. 2017, 7, 492-495. [CrossRef]
Hill, M.K.; Monroe, M.C.; Ankersen, T.T.; Carthy, R R.; Kay, T.A. Coastal Armoring and Sea Turtles: Beachfront
Homeowners’ Opinions and Intent. Coast. Manag. 2019, 47, 594-610. [CrossRef]

Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global Warming and Coastal Erosion. Clim. Chang. 2004, 64,
41-58. [CrossRef]

Kamel, S.J.; Mrosovsky, N. Repeatability of nesting preferences in the hawksbill sea turtle, Eretmochelys
imbricata, and their fitness consequences. Anim. Behav. 2005, 70, 819-828. [CrossRef]

Tucker, A. Nest site fidelity and clutch frequency of loggerhead turtles are better elucidated by satellite
telemetry than by nocturnal tagging efforts: Implications for stock estimation. |. Exp. Mar. Biol. Ecol. 2010,
383, 48-55. [CrossRef]

Walcott, J.; Eckert, K.; Horrocks, J.A. Tracking hawksbill sea turtles (Eretmochelys imbricata) during
inter-nesting intervals around Barbados. Mar. Biol. 2012, 159, 927-938. [CrossRef]

Wallace, B.P; DiMatteo, A.D.; Bolten, A.; Chaloupka, M.Y.; Hutchinson, B.J.; Abreu-Grobois, F.A;
Mortimer, J.A.; Seminoff, ].A.; Amorocho, D.; Bjorndal, K.A.; et al. Global Conservation Priorities for
Marine Turtles. PLoS ONE 2011, 6, €24510. [CrossRef]

Boonzaier, L.; Pauly, D. Marine protection targets: An updated assessment of global progress. Oryx 2015, 50,
27-35. [CrossRef]

Visbeck, M.; Kronfeld-Goharani, U.; Neumann, B.; Rickels, W.; Schmidst, J.O.; Van Doorn, E.; Matz-Liick, N.;
Ott, K.; Quaas, M.E. Securing blue wealth: The need for a special sustainable development goal for the ocean
and coasts. Mar. Policy 2014, 48, 184-191. [CrossRef]

Pike, D.A. The benefits of nest relocation extend far beyond recruitment: A rejoinder to Mrosovsky. Environ.
Manag. 2007, 41, 461-464. [CrossRef] [PubMed]

Studds, C.E.; Kendall, B.E.; Murray, N.J.; Wilson, H.B.; Rogers, D.I.; Clemens, R.S.; Gosbell, K.; Hassell, C.J.;
Jessop, R.; Melville, D.S,; et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal
mudflats as stopover sites. Nat. Commun. 2017, 8, 14895. [CrossRef]

Piersma, T.; Lindstrom, A. Migrating shorebirds as integrative sentinels of global environmental change. Ibis
2004, 146, 61-69. [CrossRef]

Temmerman, S.; De Vries, M.B.; Bouma, T.J. Coastal marsh die-off and reduced attenuation of coastal floods:
A model analysis. Glob. Planet. Chang. 2012, 92, 267-274. [CrossRef]

Wamsley, T.V.; Cialone, M.A.; Smith, ].M.; Atkinson, ].H.; Rosati, ].D. The potential of wetlands in reducing
storm surge. Ocean Eng. 2010, 37, 59-68. [CrossRef]

Shepard, C.C.; Crain, C.M.; Beck, M.W. The Protective Role of Coastal Marshes: A Systematic Review and
Meta-analysis. PLoS ONE 2011, 6, e27374. [CrossRef] [PubMed]

Gedan, K.B.; Kirwan, M.L.; Wolanski, E.; Barbier, E.; Silliman, B. The present and future role of coastal
wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Clim. Chang.
2010, 106, 7-29. [CrossRef]

Barbier, E.; Koch, E'W,; Silliman, B.; Hacker, S.D.; Wolanski, E.; Primavera, J.; Granek, E.F,; Polasky, S.;
Aswani, S.; Cramer, L.A; et al. Coastal Ecosystem-Based Management with Nonlinear Ecological Functions
and Values. Science 2008, 319, 321-323. [CrossRef] [PubMed]

Zhang, K.; Liu, H.; Li, Y.; Xu, H.; Shen, J.; Rhome, J.; Smith, T.]J. The role of mangroves in attenuating storm
surges. Estuar. Coast. Shelf Sci. 2012, 102, 11-23. [CrossRef]

Schlacher, T.A.; Dugan, J.; Schoeman, D.; Lastra, M.; Jones, A.; Scapini, F.; McLachlan, A.; Defeo, O. Sandy
beaches at the brink. Divers. Distrib. 2007, 13, 556-560. [CrossRef]

Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517-1520.
[CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.margeo.2004.04.006
http://dx.doi.org/10.1038/nclimate3325
http://dx.doi.org/10.1080/08920753.2019.1669102
http://dx.doi.org/10.1023/B:CLIM.0000024690.32682.48
http://dx.doi.org/10.1016/j.anbehav.2005.01.006
http://dx.doi.org/10.1016/j.jembe.2009.11.009
http://dx.doi.org/10.1007/s00227-011-1870-9
http://dx.doi.org/10.1371/journal.pone.0024510
http://dx.doi.org/10.1017/S0030605315000848
http://dx.doi.org/10.1016/j.marpol.2014.03.005
http://dx.doi.org/10.1007/s00267-006-0434-0
http://www.ncbi.nlm.nih.gov/pubmed/17638042
http://dx.doi.org/10.1038/ncomms14895
http://dx.doi.org/10.1111/j.1474-919X.2004.00329.x
http://dx.doi.org/10.1016/j.gloplacha.2012.06.001
http://dx.doi.org/10.1016/j.oceaneng.2009.07.018
http://dx.doi.org/10.1371/journal.pone.0027374
http://www.ncbi.nlm.nih.gov/pubmed/22132099
http://dx.doi.org/10.1007/s10584-010-0003-7
http://dx.doi.org/10.1126/science.1150349
http://www.ncbi.nlm.nih.gov/pubmed/18202288
http://dx.doi.org/10.1016/j.ecss.2012.02.021
http://dx.doi.org/10.1111/j.1472-4642.2007.00363.x
http://dx.doi.org/10.1126/science.1185782
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	HACD by Regions 
	Most Developed Regions 
	Least Developed Regions 
	HACD by Species 
	Species with Most HACD 
	Species with Least HACD 

	Discussion 
	Conclusions 
	References

