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Abstract: Radar-rainfall products provide valuable information for hydro-ecological modeling and
ecosystem applications, especially over coastal regions that lack adequate in-situ rainfall observations.
This study evaluates two radar-based rainfall products, the Multi-Sensor Stage IV and the Multi-Radar
Multi-Sensor (MRMS), over the Louisiana coastal region in the United States. Surface reference
rainfall observations from two independent rain gage networks were used in the analysis. The
evaluation included distribution-based comparisons between radar and gage observations at different
time scales (hourly to monthly), bias decomposition to quantify the contribution of different error
sources, and conditional evaluation of systematic and random components of the estimation errors.
Both products report large levels of random errors at the hourly scale; however, the performance of
the radar-rainfall products improves significantly with the increase in time scales. After decomposing
the total bias, the results show that the largest contributor to the overall bias in radar-rainfall products
is false rainfall detection, followed by missed rainfall. The results also reveal that the Stage IV product
experienced a significant improvement over the area in the past few years (post 2015) compared to
earlier periods. The results have implications for ongoing and future coastal ecosystem modeling and
planning studies.
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1. Introduction

Precipitation is one of the major driving factors in natural ecosystems and is highly critical
to ongoing and future hydrological, environmental, and ecological planning studies. Although
rain gages provide direct and accurate surface rainfall measurement, their point-based observations
hinder their ability to provide high-resolution, spatially continuous areal coverage [1]. In addition,
the typical spatial sparsity of rain gages can be quite limiting for studies that span large-scale
watersheds and ecosystems [2]. The need for reliable information with high spatial and temporal
resolutions is more evident over areas that suffer from sparse rain gage availability. Prime examples
of such areas are coastal ecosystems that are typically under-monitored in terms of key hydrological
variables. Over the last two decades, weather radars have become a highly desirable source of rainfall
information because of their extensive continuous spatial coverage with relatively high spatial and
temporal resolutions [3–5]. Nevertheless, radar-rainfall products are affected by numerous sources
of uncertainties due to the indirect relationships between their raw reflectivity observations and
the desired surface rainfall estimates. The sources of these uncertainties include radar calibration
error, beam attenuation and blockage, ground clutter, anomalous propagation, bright band and range
effects [6,7]. Thus, it is important to characterize the uncertainties associated with radar-rainfall
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products in order to understand their potential impacts on the quality of various modeling and
environmental analysis applications.

The current article focuses on evaluating two radar-rainfall products over the Louisiana coastal
region, namely; the National Center for Environmental Prediction (NCEP) Multi-Sensor Stage IV [8]
and the National Severe Storms Laboratory (NSSL) Multi-Radar Multi-Sensor (MRMS) [9]. These two
products are arguably the most commonly used radar-rainfall products by the hydrological community
and are a result of a continuous development and improvement over the past couple of decades. The
two products will be evaluated over the Louisiana coastal region along the Gulf of Mexico in the
south-central US, as a typical example of other coastal regions that are not adequately monitored
by rain gage networks. The lack of rain gauge coverage affects the calibration and bias correction
of radar-rainfall products [3,4,10,11]. The Hydrometeorological Automated Data System (HADS)
hourly precipitation network [12] used in Stage IV and MRMS bias correction is sparsely available
(about 25 gages over the entire coastal Louisiana). This is not peculiar over the study region since it is
mostly covered by coastal marshes and wetlands, and less by urban areas where rain gauges can be
more readily available. Such lack of availability of rain gage observations can significantly affect the
overall quality of radar-rainfall estimates in the area [13].

Recent studies [14,15] documented the progression in radar-rainfall products’ performance over
the years. This performance enhancement can be directly attributed to the continuous improvements in
the National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) algorithms
as well as the inclusion of additional calibration datasets (e.g., rain gage networks). A common
assessment of previous studies [16–19] is that Stage IV and MRMS provide reliable spatial rainfall
estimates over various parts of the conterminous United States (CONUS). Adams III and Dymond
(2019) [15] showed the significant improvement in Stage IV, especially starting in the year 2016
(median biases close to unity) in the Ohio River Valley, USA. They attributed this to the use of
the initial MRMS estimates (reflectivity fields) in Stage IV production. The performance of Stage
IV and MRMS in hydrological applications has been evaluated in several studies [20–24]. These
studies demonstrated that using Stage IV and MRMS to force various hydrological models resulted in
high quality hydrological simulations. Studies such as Quintero et al. (2016), ElSaadani (2017), and
ElSaadani et al. (2018) [23–25] demonstrated the effect of the propagation of radar-rainfall errors in
hydrological modeling simulations. Such studies also highlighted the importance of characterizing
the errors associated with radar-rainfall products prior to using them in conducting hydrological and
ecological simulations. The importance of addressing the quality of rainfall information was specifically
highlighted over coastal basins [20,26] where rainfall plays a critical role in determining the overall
balance of the freshwater budgets and salinity regimes. Accurate representation of temporal rainfall
variability was found critical in explaining salinity changes, especially in flow-restricted estuarine
systems [27].

Evaluation of the performance of radar-rainfall products needs further attention over coastal
regions that suffer from sparse rain gauge coverage. In this study we provide such evaluation using
reference observations from two independent (i.e., not used for radar-rainfall bias correction) rain gage
networks located in the Louisiana coastal region. This article will provide valuable information to
the developers of the radar-rainfall products on where improvements are needed in the estimation
algorithms, as well as to hydro-ecologic modelers and planners who are interested in using such
products in their respective applications. Our study can also be useful for large-scale ecosystem
restoration and protection initiatives underway in many coastal regions such as the Louisiana Coastal
Master Plan (CMP) [28,29]. The rest of this article is organized as follows. Section 2 provides an
overview of the study area, the two radar-rainfall products to be evaluated, and the rain gage networks
used as ground reference. Section 3 describes the methods used in the evaluation. Section 4 provides
the study results obtained from the different analyses. Discussion of results and final conclusions are
presented in Sections 5 and 6.
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2. Study Area and Datasets

The study area covers the Louisiana coastal zone located in south Louisiana (Figure 1). Coastal
Louisiana has a low-relief topography, and its climate is heavily influenced by the Gulf of Mexico. It is
frequently subject to tropical storms and hurricanes that result in heavy flooding. Coastal Louisiana is
an important natural and economic resource that hosts a rich ecological system. This complex and
fragile system has been negatively impacted by both natural and anthropogenic factors (e.g., climate
change, hurricanes, relative sea level rise, land subsidence, manipulation of the landscape) which
resulted in loss of land at alarming rates [28,29]. Coastal Louisiana covers around one third of the
state total area and is populated by roughly two million citizens [29]. The area is very flat with some
areas below mean sea level which makes it vulnerable to storm surge, land subsidence and major
loss of wetlands [28,29]. The area’s strategic socio-economics can be attributed to oil and natural gas
industry, agriculture, commercial fishing, petrochemical industry, and tourism [28,29]. Thus, assessing
the quality of rainfall information at relevant spatial scales is crucial in order to inform modeling and
planning activities in such vital ecosystems. Constrained by the record of the independent ground
reference data that will be used for evaluating the radar products, the study period of the evaluation
is January 2017 through August 2018. The MRMS was operational at NCEP in September 2014,
nevertheless, the system was subject to significant updates and was implemented operationally by
the NWS in 2016 [9]. However, Stage IV data is available since 2002 and provides the main source of
long-term radar-rainfall data. Studies such as Habib et al. (2013), Prat and Nelson (2015) and Adams III
and Dymond (2019) [13–15] demonstrated how Stage IV performance have changed over the years at
different locations in the US. Thus, in this study we also inspect the changes in Stage IV’s performance
over our study area over the 2012–2017 period.

Figure 1. Map showing the Calcasieu Parish network (green dots) and the Citizen Weather Observer
Program (CWOP) network (red dots) over coastal Louisiana. The white squares depict the locations of
the NWS Doppler radars (WSR-88D) in Lake Charles (KLCH), Slidell (KLIX), Fort Polk (KPOE) and
Shreveport (KSHV).
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2.1. Radar-Rainfall Products

This study evaluates two radar-rainfall products, NCEP’s Stage IV and NSSL’s MRMS over the
Louisiana coastal region. These products are derived from three NWS Doppler radars (WSR-88D)
located in Lake Charles (KLCH), Fort Polk (KPOE) and Slidell (KLIX), (Figure 1). The coastal zone
is not adequately monitored by rain gages, thus limiting the amount of ground observations used
in radar-rainfall bias correction. Stage IV has a long historical record starting from 2002 and has
spatial and temporal resolutions of ~ 4 km × 4 km and 1 hour, respectively [8]. The product is based
on the Multi-Sensor Precipitation Estimator (MPE) algorithm and national mosaic from regional
multi-sensor analyses by NWS River Forecast Centers (RFC’s) [4,30–33]. The MPE algorithm is a
fusion of Digital Precipitation Arrays (DPA) and combines data from several WSR-88D radars with
operational rain gage data to produce hourly gage-adjusted precipitation estimates projected on the
Hydrological Rainfall Analysis Projection (HRAP) grid [34]. The relatively fine spatial and temporal
resolution of Stage IV make it suitable for implementation in different ecological and hydrological
applications, but an understanding of the nature of errors associated with the product is necessary
to ensure and anticipate the quality of model outputs [22–25,35]. The Stage IV data used in this
study was obtained from the University Corporation for Atmospheric Research (UCAR) archive at
https://data.eol.ucar.edu/dataset/21.093.

The MRMS system was developed at NSSL and was deployed operationally to the NWS in 2016.
It was produced from a seamless national 3D radar mosaicked over the CONUS at high spatial and
temporal resolutions. It is a real-time operational system with an automated algorithm that rapidly
integrates multiple over-lapping radars, atmospheric environmental data, satellite data, numerical
weather prediction (NWP) models and rain gages [9]. It takes 3D volume scans data from WSR-88D
radars, and approximately 7000 HADS hourly rain gage data covering the entire US to correct the
product. The final MRMS gage-corrected product has a spatial resolution 0.01◦ (~ 1 km × 1 km) and a
temporal resolution of 1 hour. We obtained the MRMS data used in this study from the Iowa State
University archive at http://mtarchive.geol.iastate.edu.

2.2. Rain Gage Network

The two radar-rainfall products will be evaluated using independent ground observations
obtained from two rain gage networks. The first network is operated by the Calcasieu Parish (‘parish’ is
equivalent to county in other states) in southwest Louisiana and (Figure 1). The second network is
based on the national-scale Citizen Weather Observer Program (CWOP) and we used the data from the
stations located within our study area. Both rain gage networks provide hourly rainfall accumulations,
matching the radar-rainfall products’ temporal resolution. The available Calcasieu parish rain gage
record covers the period from January 2017 to August 2018, thus limiting our radar-gage comparisons
to this period. In order to perform the evaluation, we determined the corresponding radar pixel to
each rain gage based on nearest neighbor method. The number of gages available from the Calcasieu
parish and CWOP networks are 77 and 30, respectively. It is important to note that the Calcasieu parish
gage observations have a minimum threshold of 1 mm/h. Thus, hours with radar-rainfall observations
less than 1 mm/h were omitted from the analysis. We also applied the same threshold to the CWOP
network to ensure the uniformity of our analysis.

Rain gage observations are also prone to errors due to factors such as wind, gage under-catch,
wetting losses, and recording and transfer errors, among others [36]. Thus, we performed additional
quality assessment on the rain gage data in order to exclude erroneous data and only retain high
quality observations [37]. This included visual inspection of the data [38] where neighboring gages
were cross-compared to detect gages that may have missed significant amounts of rainfall [39]. We also
compared gage observations against Stage IV and MRMS radar-rainfall accumulations over different
temporal scales (i.e., hourly, daily, and monthly). If the estimates were unreasonably and drastically
different over a certain time period, this period was eliminated from the analysis.

https://data.eol.ucar.edu/dataset/21.093
http://mtarchive.geol.iastate.edu
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Point-based rain gage observations may not always provide accurate representation of the areal
rainfall over the radar grid pixel scale [16,40]. Therefore, prior to performing a direct comparison
between radar products and our point-based ground observations, it is necessary to examine the
effects of the difference in the spatial scales between the two (i.e., point vs radar pixel) [41]. In order to
verify the representativeness of rain gage observations to those of the corresponding radar pixel, we
calculated the empirical spatial correlation function of rainfall at the hourly and daily scales (Figure 2).
Since the spatial scales of the two radar-rainfall products are 4 km and 1 km, the spatially dense
observations of the Calcasieu parish network are more suitable for deriving the spatial correlation
information compared to the sparser CWOP network. Each point in Figure 2 represents the correlation
between the observations from a pair of rain gages from the Calcasieu parish network and their
corresponding inter-gauge distance. The black lines in the figure represent an exponential fit for
the correlation estimates. As expected, the spatial correlation of rainfall increases (spatial variability
decreases) as the time step of rainfall accumulation increases from hourly to daily. At the hourly scale,
the results indicate relatively moderate and high levels of correlation at 1 km (MRMS resolution) and
4 km (Stage IV resolution), respectively. The correlations are much higher for the daily temporal scale
at the resolutions of both products. This shows that a direct gage–radar comparison is possible due to
the relatively small spatial variability over the radar pixel area, especially for the daily time scale. For
our gauge–pixel comparisons, and in the case that more than one gauge was located within a single
pixel, each gauge was paired separately with its corresponding pixel to be used later in the product
evaluation analysis.

Figure 2. Empirical spatial correlation function of rainfall at hourly (left) and daily (right) scales using
the Calcasieu network observations over the study period (January 2017 through August 2018).

3. Methods

3.1. Spatial Radar-Rainfall Accumulation

Spatial radar-rainfall accumulations help detect systematic errors such as beam blockage, product
mosaicking artifacts, and ground clutter, among others [15]. Based on the findings of studies such as
Habib et al. (2013), Prat and Nelson (2015) and Adams III and Dymond (2019) [13–15], radar-rainfall
products underwent significant development to minimize these systematic errors. Out of the two
products, only Stage IV has a long historical record dating back to the year 2002, which means that it will
continue to serve as a primary input for any modeling studies that require long-term rainfall datasets
over coastal regions, such as the case in Louisiana. Thus, it is important to investigate historical Stage



Remote Sens. 2020, 12, 1477 6 of 18

IV rainfall accumulations over our study area. To do this, we examined annual rainfall accumulation
maps of Stage IV starting from 2012 through the end of the evaluation period (August 2018) to monitor
any changes in the product’s performance. Additionally, during the evaluation period we performed a
visual comparison between Stage IV and MRMS to investigate if there are any noticeable differences in
the rainfall spatial patterns between the two products.

3.2. Unconditional and Conditional Statistical Analysis

A series of graphical comparisons and statistical metrics were used to evaluate Stage IV and
MRMS. Scatter plots of radar-rainfall products against gage observations at different time scales
and probability of exceedance comparisons at hourly and daily scale were developed. In addition,
we evaluated a number of unconditional and conditional statistical metrics to quantify the systematic
and random errors associated with the radar-rainfall products. In this study, the term “error” is defined
as the difference between radar-rainfall estimates and their corresponding gage observations.

We used a suite of summary statistics including, overall bias (B) or mean error, standard deviation
(σ) of differences, Pearson’s linear correlation coefficient (r) and Normalized Root Mean Square Error
(NRMSE). Bias (B; Equation 1) is defined as the mean difference between the radar-gage rainfall
estimates and is a measure of systematic error. Standard deviation of the differences helps in measuring
random errors. Pearson’s correlation coefficient is a measure of linear association between the two
products. Root mean square error is normalized by the mean of rain gage data and is defined as
Normalized Root Mean Square Error (NRMSE). In the following equations, radar-rainfall is denoted
by Rradar and the corresponding gage rainfall is denoted by Rgage, while overbar represents the
average operation:

Bias : B =Rradar −Rgage, (1)

Standard deviation : S =

√{(
Rradar −Rgage

)
−Rradar −Rgage

}2
, (2)

Pearson′s correlation coefficient : r =
(R radar −Rradar)(R gage −Rgage)

σradar σgage
, (3)

Normalized root mean square error : NRMSE =

√
(R radar−Rgage

)2

Rgage
(4)

We calculated the probability of exceedance of rainfall intensities of both radar-rainfall products
and the rain gage networks in order to monitor the performance of the radar-rainfall products
conditional to the spectrum of given hourly and daily accumulations. This is done by comparing the
number of occurrences of intensities exceeding a certain value (over the hourly and daily scales) to the
total number of the corresponding rainy occurrences in that temporal scale. In addition, we calculated
the conditional versions of the summary statistics listed above to provide a more detailed performance
assessment. Following Habib et al. (2009) [16], the total bias, defined at the overall difference between
the radar and corresponding gage accumulations over the entire sample, can be decomposed into
three components: Hit Bias (HB), Missed Bias (MB) and False Bias (FB). Hit bias is the total difference
between the radar and the corresponding gage observations when rainfall is detected by both sensors.
Missed bias is the total depth of rainfall reported by the reference gage data that have not been detected
in the radar product. False bias is the total depth of falsely detected rainfall by the radar that have not
been detected by the corresponding rain gages. These conditional error components help in detecting
any systematic problems in the radar-rainfall products.

HB = Σ(R radar−Rgage)|(R radar> 0 & Rgage> 0
)
, (5)
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MB = ΣRgage
∣∣∣(R radar= 0 & Rgage> 0

)
, (6)

FB = ΣRradar
∣∣∣(R radar> 0 & Rgage= 0

)
, (7)

TB = ΣRradar−Rgage, (8)

Following Habib et al. (2013) and Ciach et al. (2007) [13,42], we also evaluated the statistical
metrics as conditional expectation functions based on rainfall intensities. The conditional bias and
standard deviation of the estimation error (e = Rradar−Rgage) were derived by conditioning on a specific
value (rg) of the reference rainfall (Rgage). The conditional error is described as: e|R gage= rg, where rg

represents a specific value of the random variable Rgage:

Conditional bias : CB = e
∣∣∣Rgage = rg , (9)

Conditional standard deviation of error : CS =

√
(e− e)2

|R gage= rg, (10)

Following Ciach et al. (2007) [42], we expressed the conditional statistics, conditional bias (CB)
and conditional standard deviation of errors (CS) using kernel regression approach with a moving
window averaging formula. The window size is proportional to the Rgage value. When the center of
the window moves to larger Rgage values, the conditional sample size significantly decreases. For this
reason, the conditional statistics are not reported beyond Rgage = 50 mm/h.

4. Results

4.1. Spatial Accumulation Maps

Figure 3 shows the spatial annual accumulation maps of Stage IV for the years 2012 through
2016. Similar plots for years 2017 and 2018 are shown in Figures 4 and 5, respectively. A noticeable
feature which stands out in the accumulations of the years 2012 through 2014 is the gap in rainfall
accumulations and the apparent visibility of the mosaicking polygon around the KLIX radar located
near Slidell and into the Gulf of Mexico. This issue seems to improve starting in 2015, primarily due to
the fact that the Stage IV product started utilizing base radar fields from the MRMS over the region
starting that year (personal communications, Jeffery Graschel and Scott Lincoln, Lower Mississippi
River Forecast Center). Prior to 2015, the Stage IV product relied on a mosaicking algorithm that
takes the lowest altitude datum among the multiple radars that cover the same point on the surface.
While this approach ensures the most accurate surface rainfall rate estimates, it may result in spatial
discontinuities in the merged field, such as those observed in years 2012, 2013 and 2014 in Figure 3.
Starting year 2015, the Stage IV started to use base fields from the MRMS system with a weight-based
mosaicking approach [9] that results in smoother rainfall fields and avoids the spatial discontinuities
noticed earlier. Another noticeable feature is the visible beam blockage over the south-east side
of the radar KLCH located near the city of Lake Charles in southwest Louisiana. There is also a
significant decrease in the rainfall accumulations over the Gulf area in southeastern Louisiana, which
was consistently present till the end of 2015 and has been resolved during the year 2016. These issues
should be considered while conducting modeling studies that use Stage IV observations prior to
2015, especially if such models are sensitive to long-term precipitation accumulations. Years prior
to 2012 show the same spatial mosaicking artifacts but they are not presented in this article for
space considerations.
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Figure 3. Stage IV spatial rainfall accumulation maps in millimeters for the years 2012 through 2016 over
the state of Louisiana. The white dots represent the locations of the different NWS NEXRAD radars.

Figure 4. Spatial rainfall accumulation maps in millimeters of Stage IV (left) and Multi-Radar
Multi-(MRMS), (right), for the year 2017.

Figure 4 shows the spatial accumulation in the year 2017, for Stage IV (left) and MRMS (right).
Over coastal Louisiana, Stage IV estimates are overall lower than those of MRMS especially in
southwest Louisiana covered by KLCH. The figures also show that while the overall spatial patterns
of both radar-rainfall products are similar, there are a few common noticeable artifacts. Despite the
disappearance of the mosaicking artifacts mentioned earlier, beam blockage is still present in both
products and is visible for the KLCH and KMOB radars located in Lake Charles, Louisiana and Mobile,
Alabama, respectively. The blockage of the KLCH radar is a result of a tower located close to the radar
(personal communication, NWS Lake Charles Office). In addition, a ring shape of higher intensity
rainfall accumulations is visible for both products around the KDGX radar in Jackson. Such artifacts
could be attributed to the radar scanning strategy and the use of different tilts at different distances.
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Determining the specific cause of this effect may require examining the individual radar scans, which
is beyond the scope of this study. Figure 5 shows the accumulations of January through August of 2018
(end of our study period) for both radar-rainfall products. In addition to the observations from Figure 4,
the spatial distribution of MRMS preserves details of the high-intensity rainfall clusters, mainly due to
its higher spatial resolution than that of Stage IV (e.g., north and west of Mobile, Alabama (KMOB)
radar, west of Lake Charles, Louisiana (KLCH), and between KLCH and Slidell, Louisiana (KLIX)).
Large areas of heavy rain are completely missed by Stage IV, e.g., east of Jackson, Mississippi (KDGX).
MRMS also tends to show more pronounced patterns of beam blockages around the KMOB radar
compared to Stage IV.

Figure 5. Spatial rainfall accumulation maps (millimeters) of Stage IV (left) and MRMS (right) for the
period January through August of 2018.

4.2. Assessment of Unconditional Error Statistics

Graphical comparisons using scatterplots of the radar versus rain gages are presented in Figure 6
at hourly, daily, and monthly scales. The figure shows large differences between the observations of
both gage networks and the two radar products at the hourly scale; however, such differences are
significantly reduced as the rainfall estimates are accumulated to larger time scales such as daily and
monthly. At hourly scales, differences as large as 15–30 mm/h are common. The scatterplots show
several failed and false detections by the radar products compared to the gage observations. Missed
and false detections up to 25 mm/h at the hourly scale and up to 50 mm/day at the daily scale are
present. Note that despite careful quality control of the gages, some of these failed or false detections
can still be attributed to gage quality issues. Significant difference as large as 30–45 mm/day at the daily
scale and 50–70 mm/month at the monthly scale are also observed. In few instances, the radar product
missed extremely high rainfall values (over 100 mm/h) over the Calcasieu network, these gages are
not located near any beam blockages. Overall, the degree of scatter is similar for both radar products
and both networks. Nevertheless, deviations from observed values are more evident at hourly scale
for CWOP network compared to Calcasieu network, possibly indicating a lesser gage quality for this
citizen network. Issues related to gage maintenance and inconsistencies in collection times [10] are
supported by the larger deviations at the hourly time scale and how they were significantly reduced at
the daily and monthly scales (Figure 6).

To quantify the differences between the radar products and the gauge observations, the basic
statistical skill scores described in equations 1 through 4 are reported in Table 1. These statistics
were calculated using time intervals where either gage or radar reported non-zero amounts. The
results indicate relatively low overall bias values, which are consistent with previous studies [9,10],
especially for the case of Calcasieu network. The overall bias values for the daily and monthly scales
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are larger in the case of CWOP compared to the Calcasieu network indicating possible data quality
issues with the CWOP network. The results also show that MRMS has a slightly higher positive
bias (overestimation) compared to Stage IV. Both radar products correlate highly with the reference
networks (correlation coefficient of 0.7 and higher). The random error, characterized by the standard
deviation of the differences and by the NRMSE statistics, has similar levels for both products. Both
statistics are noticeably high at the hourly scale, indicating considerable random errors at this time
scale. The NRMSE values are always less than unity at all timescales, but can be as high 0.88 at the
hourly scale. As expected, both products experience a significant decrease in the magnitude of random
errors with the increase of time scale from hourly to daily to monthly. A further examination of the
performance at sub-daily scales is presented in Figure 7 by plotting the correlation (left column) and
NRMSE (right column) versus time scale. The greatest improvement in the performance of both
products is attained over the range of 1–6 hours, after which a gradual improvement with less gradient
is observed.

Figure 6. Scatter plots of the radar products (Stage IV and MRMS) versus surface reference rainfall for
the Calcasieu network (top panel) and Citizen Weather Observation Program (CWOP), (bottom panel),
at hourly (left), daily (middle), and monthly (left) scales.
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Table 1. Basic statistical skill scores for both radar-rainfall products over the entire study period
(January 2017 through August 2018).

Average
Rainfall

Depth (mm)

Bias
(mm/Unit

Time)

Standard
Deviation of Error
(mm/Unit Time)

Correlation
Coefficient NRMSE

Calcasieu
Network

Stage IV
Hourly 4.76 0.03 4.78 0.79 0.86

Daily 14.70 0.17 9.22 0.93 0.58

Monthly 146.85 0.55 35.63 0.96 0.24

MRMS
Hourly 5.03 0.33 4.88 0.79 0.88

Daily 15.37 0.39 9.46 0.92 0.60

Monthly 150.57 3.82 37.41 0.96 0.26

CWOP
Network

Stage IV
Hourly 5.09 0.14 5.39 0.70 0.87

Daily 14.15 1.53 9.15 0.88 0.60

Monthly 135.70 15.54 39.47 0.93 0.34

MRMS
Hourly 5.43 0.32 5.40 0.71 0.86

Daily 15.02 1.95 9.09 0.89 0.61

Monthly 138.79 18.87 39.59 0.93 0.36

Figure 7. Correlation coefficient and normalized root mean square error (NRMSE) of radar and gage
estimates as a function of different temporal scales.
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4.3. Probability of Exceedance Analysis

The comparison of the rainfall distributions of radar products against the gage rainfall is further
analyzed using probability of exceedance (Figure 8), which is defined as the probability of rainfall
exceeding a certain threshold. This will reveal the ability of radar-rainfall in reproducing the distribution
of surface rainfall, which can be especially important for extreme event analysis. The probability
of exceedance of both radar products agrees with the surface gage observations (the three lines
mostly overlap) for small rainfall intensities (between 2–10 mm/h). The agreement is better for the
Calcasieu parish network more than the CWOP network. The distributions deviate at the extreme tail
(1% exceedance or lower) where both radar products show lower number of occurrences of extreme
rain compared to gage observations. This is consistent with the results observed in Figure 6. The results
also show that Stage IV tends to generally underestimate the probability of exceedance compared to
MRMS, except at very large rainfall intensities. Given that about 90% of the hourly intensities observed
by radar and gage networks are less than or equal 10 mm/h, it is expected that intensities at this range
will have the most significant impact on the bias statistics of radar products. In addition, it is important
to note that the small sample size at the extreme rates may affect the accuracy of the performance
statistics at the tail of the distribution. It is also important to note that the scales of observations of gage
(point-based) and radar (area-averaged) have significant impacts on the probability of occurrence of
such high hourly rainfall rates. Extreme rainfall rates (larger than 50 mm/h) are likely to occur during
convective storms that happen over small scales and may present challenges to both radar and gages.
Most of these issues are resolved over larger time scales as demonstrated in the daily probability of
exceedance plots.

Figure 8. Comparison of probability of exceedance of rainfall intensities for the Stage IV and MRMS
products against the surface rainfall networks. The comparison is performed for hourly (left column)
and daily (right column) scales.
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4.4. Bias Decomposition

Figure 9 shows the total bias and its three conditional components; hit, missed, and false rain
biases. The three bias components were calculated at the hourly scale and expressed as percentages of
the total reference rainfall accumulations. Analyzing these biases individually provides information
about the sources of systematic errors in the radar-rainfall products. Based on the two gage networks
it seems that both products have an overall total positive bias; however, the MRMS shows a higher
overestimation than the Stage IV. False rain biases are the highest relative to other types of biases
for both products, especially when the CWOP is used as a ground reference. The missed rainfall
biases are the second contributor to the total bias and can possibly be related to relatively high rainfall
rates shown in the scatter plots of hourly rainfall intensities (Figure 6). Despite the relatively small
number of missed rainfall instances (see Figure 6), they apparently resulted in considerable missed
bias components. The hit biases of MRMS and Stage IV are not consistent across the two networks.
MRMS showed positive and negligible hit biases in the case of Calcasieu and CWOP, respectively;
while Stage IV showed negligible and negative biases. While this can be again attributed to the
difference in the observational quality of the two networks, it can also be due to the fact that the region
covered by the Calcasieu parish network (southwest) has seen more rainfall volumes (see annual
spatial maps in Figures 4 and 5) compared to the entire coastal region where the CWOP network is
distributed. Attributing hit biases to a certain range of intensities is further examined in the analysis of
intensity-conditional analysis presented in the next section.

Figure 9. Decomposition of the total bias of radar-rainfall products (Stage IV and MRMS) into three
components (hit, missed, and false rain bias) for the Calcasieu and CWOP networks. The decomposed
bias components are expressed as percentages of the total rainfall depth.

4.5. Conditional Analysis

In order to gain more insight on the performance of the radar-rainfall products under different
surface rainfall conditions, the conditional bias (CB) and standard deviation of the error were evaluated
at different rainfall intensities (Figure 10). This is done by conditioning both statistics over a range
of reference rainfall intensity values (Equations (9) and (10)). For the Calcasieu parish network, both
radar products show negative CB consistently over different rainfall values except for low rainfall
amounts (less than 5 mm/h) where small positive bias exists. The Stage IV conditional bias deteriorates
almost linearly with increasing rainfall intensities, with a bias value exceeding –12 mm/h at the
50 mm/h intensity. MRMS shows better performance compared to Stage IV across all intensities
and both networks. The conditional bias shows higher negative levels when using the CWOP as an
evaluation reference compared to the Calcasieu parish network. One should note that despite the
small positive biases at the beginning of the intensity distribution, these intensities are quite large in
number (about 90% of the total observed rainfall) and the accumulation of errors over these small
intensities can be larger than those observed at larger intensities. This happened in the case of MRMS
where, despite the large underestimation at higher intensities, the hit bias was still positive in the case
of the Calcasieu network. In the case of CWOP, the MRMS negative biases at larger intensities were
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able to cancel out those occurring at smaller intensities. As for Stage IV, the overwhelmingly negative
biases at larger intensities caused the hit bias to be negative over both networks. This is especially
evident for CWOP where the negative conditional biases are much higher, resulting in a large negative
overall hit bias compared to the Calcasieu network.

Figure 10. Conditional bias and standard deviation of the radar estimation error as a function of surface
reference rain rate for Calcasieu and CWOP networks.

The results of the conditional standard deviation of error (CS) are overall similar for both products.
However, the MRMS product shows higher standard deviation over intensities between 20–45 mm/h
for the Calcasieu network and in the tail of the distribution (40 mm/h and higher) for the CWOP
network. This large variability in random errors at higher intensities in the case of MRMS can be
attributed to its finer spatial scale compared to Stage IV where averaging of random errors is expected
(4 km vs 1 km). The values in Figure 10 are in-line with the results presented in Habib and Qin
(2011) [3], nevertheless, there is a slight improvement in the radar products’ performance in terms of
the random errors compared to earlier years of the products’ record.

5. Discussion

Evaluation of radar-rainfall products have been the focus of numerous studies [13,14,17,30,43–49];
this section discusses the results of the current analysis in relation to such studies. The progressive
improvement in radar-rainfall product performance over the years, as clearly revealed in our study,
is consistent with earlier inter-product-comparison and evaluation studies that showed how the
product performance varied over the years. This can be attributed to the continuous development
and improvements in the National Weather Service (NWS) Weather Surveillance Radar−1988 Doppler
(WSR-88D) algorithms as well as the inclusion of additional calibration datasets (e.g., rain gage
networks). Our analysis specifically highlights the value of the recent use of the MRMS base reflectivity
fields to alleviate the spatial discontinuities in the Stage IV products. The improvement in product
performance at larger time scales (e.g., daily and higher) that we observed over coastal Louisiana is
consistent with results from other coastal areas such as the Carolinas [50]. This was also consistent with
earlier findings from southern Louisiana [16] where the overall estimation bias was significantly smaller
when calculated on an annual scale compared to event-based biases. The conditional dependence of
both the systematic and random errors of the Stage IV product on the surface rainfall rate was a key
finding in our studies, similar to Habib et al. (2009) [16] where Stage IV overestimated rainfall amounts
of relatively low rainfall rates and underestimated relatively large rainfall rates. Similarly, a comparison
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of Stage IV to rain gage observations over the United States Mid-West [51] showed that Stage IV
overestimated in case of lower rainfall amounts and underestimated or relatively matched higher
rainfall amounts. While results from a US continental-scale study [17] showed that the MRMS product
consistently had higher correlations and lower biases than the Stage IV, our study did not necessarily
reveal any superior performance of one of the two products. The apparent regional-dependent
behavior across the two products was also evident in a recent study over central and northeastern
Iowa [19] that assessed the performance of six radar products, including Stage IV and MRMS, and
found that Stage IV performed better than MRMS and other radar-rainfall estimates. Our conditional
bias analysis indicated that both the MRMS and Stage IV rainfall products underestimated the heavy
rainfall, some of this heavy rain could be attributed to tropical rain events that occurred over our study.
Such systematic underestimation could be caused by issues such as attenuation, vertical variations of
reflectivity, and unrepresentative rainfall-reflectivity relationships. Future developments on the use
of dual-polarization estimation techniques (e.g., differential reflectivity, [9]) can bring much needed
improvements to the rainfall products. Both products also show some signs of beam blockages over the
study area that need to be addressed. Overall, our study showed that the two products had different
levels of performance depending on the evaluation criteria and the time scale of interest. This may
highlight the contribution of inadequate rain gauge coverage necessary for bias-correction algorithms
of multi-sensor rainfall products such as Stage IV and MRMS products, especially in remote coastal
regions such as our study area.

6. Summary and Conclusions

In this study we evaluated the performance of radar-rainfall estimates from two products, Stage
IV and MRMS, over Louisiana’s coastal region, an area that has scarce ground observations. Such
evaluation can inform ongoing and future hydro-ecological modeling and coastal planning studies on
the strengths and limitations of radar-based rainfall products. The evaluation analysis also provides
an insight on the possible improvements needed in the estimation algorithms of the radar products
over gauge-sparse coastal areas. We used two independent rain gage networks, the Calcasieu parish
and CWOP, as ground reference to perform the evaluation. The evaluation criteria included a series of
visual and statistical measures, both unconditional and conditional, evaluated at different temporal
scales. Prior to performing the direct comparisons between radar and gage rainfall, we first confirmed
the adequacy of the point-based rain gage observations in representing rainfall rates at the spatial
resolution of the radar products. The analysis started by identifying spatial artifacts that are visible
in the radar-rainfall accumulation maps and their possible causes. Next, we conducted a statistical
characterization of the differences between the radar-based rainfall products and the reference rainfall
at multiple time scales (hourly to monthly). Using the probability of exceedance plots, we were able to
investigate the distribution of the rainfall intensities obtained from both radar and rain gage rainfall
and how they compare to each other. In addition, we categorized different sources of biases that
contribute to the overall bias between the radar-rainfall products and our reference rainfall. This was
done by decomposing the overall bias into hit, missed, and false rain biases. Lastly, we investigated the
products’ performance dependency on the magnitude of rainfall intensity by conditioning the mean
and standard deviation of the estimation errors on incremental values of the reference rainfall rate.

The following conclusions can be derived based on the analysis performed in the current study:

1. Overall, based on visual inspection of the annual accumulation maps, both products show similar
spatial accumulations at the annual scale, with MRMS showing more high-intensity clusters,
attributable to its higher spatial resolution. Improvements in spatial mosaicking in Stage IV
rainfall product were apparent starting in 2015, mainly due to the incorporation of base reflectivity
fields from the MRMS system. Nevertheless, other spatial artifacts such as beam blockage and
halo-shaped rainfall overestimation around some radar locations are still present in both products.

2. Direct comparisons against the reference rainfall showed considerable differences as large as
15–30 mm/h at the hourly scale, 30−45 mm/day at the daily scale and 50−70 mm/month at the
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monthly scale. Despite the significant scatter at the hourly scale, both radar products showed
better agreement with the surface rainfall as the time scale increases beyond hourly. The most
improvement is achieved by going from the hourly to 6-hour scale.

3. The distributions of radar-rainfall intensities slightly overestimated the occurrence of small
rainfall intensities compared to the reference rainfall, but deviate significantly at the extreme
tail (large intensities) where the radar products underestimate the probability of occurrences
compared to the rain gages. Closer agreement is evident between the tails of the radar-gage
distributions at daily scale indicating an improved performance as time scale increases.

4. Both products have an overall total positive bias, with false-rain and missed-rainfall bias
components being the largest contributors.

5. Stage IV and MRMS consistently underestimated rainfall when conditioned on specific reference
rainfall rates. The conditional bias deteriorates almost linearly with increasing rainfall rates,
with biases reaching −10 to −15 mm/h at the 50 mm/h rate of surface rainfall. Similarly, both
products show dependence of the random error on the magnitude of surface rainfall. The
standard deviation of the random increases proportionally to rainfall intensities, reaching as high
as 15 mm/h at the 50 mm/h rate of surface rainfall.
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