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Abstract: One of the most critical steps in a multitemporal D-InSAR analysis is the resolution of the
phase ambiguities in the context of phase unwrapping. The Extended Minimum Cost Flow approach
is one of the potential phase unwrapping algorithms used in the Small Baseline Subset analysis. In a
first step, each phase gradient is unwrapped in time using a linear motion model and, in a second
step, the spatial phase unwrapping is individually performed for each interferogram. Exploiting the
temporal and spatial information is a proven method, but the two-step procedure is not optimal. In
this paper, a method is presented which solves both the temporal and spatial phase unwrapping in
one single step. This requires some modifications regarding the estimation of the motion model and
the choice of the weights. Furthermore, the problem of temporal inconsistency of the data, which
occurs with spatially filtered interferograms, must be considered. For this purpose, so called slack
variables are inserted. To verify the method, both simulated and real data are used. The test region
is the Lower-Rhine-Embayment in the southwest of North Rhine-Westphalia, a very rural region
with noisy data. The studies show that the new approach leads to more consistent results, so that the
deformation time series of the analyzed pixels can be improved.

Keywords: D-InSAR; SBAS; multitemporal phase unwrapping; temporal inconsistency

1. Introduction

1.1. General Aspects and Motivation

Multitemporal differential interferometric (D-InSAR) data are used to detect deformation time
series of the Earth’s surface. There are two widely used methods, the Persistent Scatterer Interferometry
(PSI) [1] and the Small Baseline Subset (SBAS) method [2]. The two main limitations of interferometry
are the spatial and temporal decorrelation which increases with larger baselines between the two SAR
images. To eliminate this effect, PSI uses only so called persistent scatterers whose backscattering
characteristics, measured by the amplitude of the returning signal, remain stable over time. However,
these pixels are very rare, especially in rural areas. Over the years, further methods have been
developed to obtain spatially denser results. Two examples are SqueeSAR [3], where both persistent
and distributed backscatterers are evaluated together, or the Stanford Method for Persistent Scatterers
(STAMPS) [4,5], where the pixel selection is based more on the phase characteristic and less on the
amplitude. SBAS, on the other hand, reduces the decorrelation effects by only allowing interferograms
between SAR images whose spatial and temporal baselines do not exceed a certain threshold. The
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SBAS method developed by [2] is based on spatially filtered, so called multilooked interferograms
to further reduce the phase noise. Additionally, only pixels with coherence values above a certain
threshold are evaluated.

The test region in this work is the Lower-Rhine-Embayment in the southwest of North
Rhine-Westphalia, Germany. Within this area, there is one of the largest brown coal areas in Europe
with the still active open-cast mines Garzweiler, Hambach, and Inden and the already closed coal
mines Sophie-Jacoba in the mining region Erkelenz and Emil Mayrisch in the mining region Aachen.
Thus, the Earth’s surface is subject to continuous movements which have to be monitored regularly [6].
D-InSAR data should be used for this purpose. As this is a very rural region, only very few persistent
scatterers are available. If the amplitude dispersion index with a typical threshold value of 0.25 is
chosen [1], this results in an average of 2.24 persistent scatterers per square kilometer. In order to
obtain a denser spatial sampling, the analysis is performed using the SBAS method. In this work, a
pixel is defined as stable if its coherence value is greater than or equal to 0.7 in at least 95 percent of the
interferograms. This results in an average of 7.65 stable pixels per square kilometer.

The main problem when using interferometric data are that the phase can only be measured
modulo 2π. To derive the information of interest, for instance the deformation, the phase ambiguities
have to be solved. This is done in the context of phase unwrapping. In a typical SBAS processing,
the phase unwrapping is done iteratively to reduce phase unwrapping errors. However, the phase
unwrapping remains a critical task in the analysis [7]. This paper will address this problem and
presents a new approach that leads to more consistent results.

1.2. Scientific Context

In many applications, such as magnetic resonance imaging (MRI) or fringe projection profilometry
(FPP), the problem of phase ambiguities occurs. In general, the process of phase unwrapping is
the reconstruction of an absolute, so called unwrapped phase from the measured wrapped phase.
However, this is an ill-posed problem. There is no unique solution unless additional assumptions are
made ([8], p. 55). Most methods estimate finite differences between adjacent pixels and assume that
these are smaller than half the wavelength. Under this assumption, the phase unwrapping problem is
a finite integration problem [9]. In reality, this assumption is rarely true due to noise or a subsampling
resulting in a more complex phase unwrapping which depends on the integration path.

A phase image provides information in two dimensions. If measurements are made over time,
there is a third dimension: the time. In principle, a distinction is made between spatial and temporal
methods. Spatial phase unwrapping methods solve phase ambiguities based on one image. Temporal
methods on the other hand solve the phase ambiguities of a phase gradient in time. Therefore, a motion
model is derived using the temporal information of this gradient in all images. The estimation of the
motion model simplifies the phase unwrapping and is essential for its success. Over the years, many
phase unwrapping methods have been developed, whereas especially three-dimensional methods
that include both temporal and spatial phase unwrapping became a research focus. The methods
developed specifically for FPP data, e.g., [10,11] or the methods developed specifically for MRI data,
e.g., [12,13] cannot be applied directly to InSAR data [14]. The radar signal is predetermined by the
signal of the satellites, so that, in contrast to FPP or MRI systems, no differently structured patterns or
multifrequency methods can be applied.

There are also three-dimensional approaches specifically for D-InSAR data. On the one hand,
there are two-step approaches in which the temporal phase unwrapping is carried out first and then
in a second step the spatial phase unwrapping follows [7,14]. The disadvantage of this step-by-step
approach is that the spatial phase unwrapping destroys the previously established temporal consistency.
On the other hand, there are procedures that work in one single step but cannot be easily integrated
into the SBAS Workflow [15,16]. These approaches are not based on the temporal and spatial double
differences that enter the phase unwrapping algorithm in a typical SBAS workflow.
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Currently, there is no three-dimensional approach in the literature that works in one step and is
specifically applicable for SBAS interferograms or, to go one step further, that is specifically applicable
for spatially filtered so called multilooked SBAS interferograms. This work focuses on the Extended
Minimum Cost Flow (EMCF) algorithm [7]. It is a rather popular three-dimensional phase unwrapping
method and fully compatible to the SBAS method. The only disadvantage is that it works in two steps.
First, each spatial phase gradient is temporally unwrapped. This temporal phase unwrapping is done
iteratively for a predefined set of modified observations. These modified observations consist of a
linear motion model, whereas the motion model parameters are unknown. The results of the temporal
phase unwrapping are then used in the second step to spatially unwrap the phases independently
for each image. The temporally unwrapped results serve on the one hand as a starting solution for
the spatial phase unwrapping and on the other hand they are used to weight the phase gradients for
the spatial phase unwrapping. Three-dimensional phase unwrapping is thus performed by solving
two simpler and less dimensional problems. To solve the spatial and temporal phase unwrapping
in one step, the EMCF algorithm has to be modified so that the motion model parameters and the
weights of the spatial phase unwrapping are estimated independently of the solution of the temporal
phase unwrapping. Another point is that the phase unwrapping approach should be applicable
for multilooked SBAS interferograms. The multilooking step poses another challenge. Due to this
preprocessing step, which is carried out individually for each interferogram, the interferograms are not
completely consistent in time. This temporal inconsistency has to be taken into account. Otherwise, the
temporal and spatial constraints, combined in one single large constraint matrix, will lead to conflicts.

1.3. Outline

The paper is structured as follows. Section 2 gives an overview of the conventional EMCF
approach according to [7]. Afterwards, Section 3 provides some modifications including the estimation
of the motion model and the choice of the weights, so that finally in Section 4 a one-step approach
can be presented, which is simply integrable into the SBAS Workflow and can also deal with
multilooked data. The approach is applied to simulated data and finally, in Section 5, to real data of
the Lower-Rhine-Embayment. Section 6 ends with a conclusion.

2. State-of-the-Art Extended Minimum Cost Flow Approach

2.1. Problem Formulation

Assume that there is a setM′ of m′ SAR images between which a set N ′ of n′ interferograms is
generated according to the SBAS method. This results in a triangulation in the temporal/ perpendicular
baseline plane, as shown in Figure 1 for one D-InSAR stack based on ERS 1/2 data from May 1992 to
December 2000 as used in the numerical study later on. The white points represent the m′ SAR images,
the black arcs the n′ interferograms resulting in a setR′ of r′ triangles. The triangulation is optimized
according to [17]. In order to improve the resulting deformation time series, two preprocessing steps
are inserted before the SBAS workflow. These preprocessing steps imply an effective noise filtering
and an efficient interferogram selection procedure. It has to be mentioned that this triangulation in
the temporal/ perpendicular baseline plane is absolutely necessary for the application of the EMCF
algorithm. If the triangulation represents a plane graph, the advantage is that the problem can be
solved very efficiently as a network flow problem [18]. However, a triangulation is not absolutely
necessary. Ref. [19] allows a free choice of the network in the temporal/ perpendicular baseline plane
with overlapping arcs. Thus, the problem can no longer be solved as a network flow problem, but an
increased degree of freedom is obtained.
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Figure 1. Temporal triangulation related to the Small BAseline Subset (SBAS) method with a setM′ of
SAR images and a set N ′ of interferograms. The white dots represent the individual SAR scenes at
the individual acquisition times with corresponding orthogonal spatial baseline relating to the master
scene. The black lines represent the interferograms. The spatial and temporal baseline information
comes from the ERS 1/2 data from May 1992 to December 2000.

In addition to the triangulation in the temporal/ perpendicular baseline plane, a second
triangulation is generated in the azimuth/ range plane. For this purpose, the same setM of m pixels
is evaluated in each interferogram. These pixels have a low noise level, which can be selected, for
example, by the coherence value [18]. Based on these pixels, the second triangulation in the azimuth/
range plane is generated. This results in a set N of n spatial arcs and a setR of r triangles. The EMCF
algorithm proposed by [7] is based on these two triangulations and works in two steps: the temporal
and the spatial unwrapping. The algorithm extends the MCF algorithm, originally developed by [18]
for the spatial phase unwrapping of one single interferogram. The multitemporal phase unwrapping
of the D-InSAR stack is achieved by downscaling the three-dimensional problem into two simpler
problems that are two-dimensional. As most phase unwrapping methods, it starts with the estimation
of the wrapped phase gradient between two adjacent pixels xl and xk within an interferogram with
time difference ∆tαβ = tβ − tα

ψ
∆tαβ

∆xkl
= 〈ψ∆tαβ

xl − ψ
∆tαβ
xk 〉−π,π ∀∆xkl ∈ N ∀∆tαβ ∈ N ′ (1)

with the modulo 2π-operator 〈.〉−π,π. The wrapped phase gradients differ from the unwrapped ones
by an unknown multiple of 2π

φ
∆tαβ

∆xkl
= ψ

∆tαβ

∆xkl
+ 2πk̃

∆tαβ

∆xkl
(2)

with the unknown phase ambiguity factor k̃
∆tαβ

∆xkl
∈ Z of the phase gradient.

2.2. Temporal Phase Unwrapping

First, one spatial phase gradient, for example the gradient ∆xkl , is individually unwrapped in
time. With time, the two pixels xk and xl are moving with a certain motion model. The relative
deformation of this phase gradient is measured in all n′ interferograms, collected in the wrapped
observation vector ψ∆t

∆xkl
. To detect this motion, the temporal information is used to estimate a linear

motion model

M(v∆xkl , ∆h∆xkl ) =
4π
λ

∆t · v∆xkl +
4π
λ

∆b⊥
r sin (θ)

· ∆h∆xkl (3)



Remote Sens. 2020, 12, 1473 5 of 20

with the temporal baseline ∆t and the orthogonal spatial baseline ∆b⊥ between the SAR images, the
wavelength λ, the sensor target distance r in line-of-sight and the incidence angle θ. The error of the
scene topography ∆h∆xkl and the deformation velocity variation v∆xkl between the pixels xk and xl are
the unknown parameters. In the following, the model M(v∆xkl , ∆h∆xkl ) is briefly referred to as M.
This motion model is used as preliminary information to estimate new modified observations

χ∆t
∆xkl

= M + 〈ψ∆t
∆xkl
−M〉−π,π (4)

which offer a reduced number of phase ambiguities. This makes the phase unwrapping less complex.
The modified and unwrapped gradients differ again by a multiple of 2π, but this time by a smaller
multiple than the original observations ψ∆t

∆xkl
. Thus, the relationship is given by

φ∆t
∆xkl

= χ∆t
∆xkl

+ 2πk∆t
∆xkl

(5)

with the unknown phase ambiguity factors k∆t
∆xkl
∈ Zn′ of the modified phase gradients. Due to some

preprocessing steps, e.g., the multilooking which is performed individually to each interferogram,
the interferograms are not fully consistent in time. This means that the sum of the unwrapped phase
gradients in each of the r′ triangles of the temporal triangulation, see again Figure 1, is unequal to
zero [3,20] resulting in

BT
tempφ∆t

∆xkl
6= 0 (6)

with the constraint matrix BT
temp ∈ Zr′×n′ . One row of BT

temp contains zeros except the columns which
belong to the defining arcs of the actual triangle. These are filled with one or minus one depending on
the orientation of the arc. If Equation (5) is inserted into Equation (6), the temporal constraint results in

BT
tempk∆t

∆xkl
= −b

BT
tempχ∆t

∆xkl

2π
e︸ ︷︷ ︸

btemp

. (7)

Due to the temporal inconsistency, the right-hand side btemp will usually not be an integer value and
assumes values between −π and π. To ensure that the solution of the unknown phase ambiguity
factors k∆t

∆xkl
will be integer values, the rounding operator b.e is necessary.

Analogous to the spatial MCF approach proposed by [18], the problem is defined as minimizing
the L1-norm of the phase ambiguity factors

Ctemp(k∆t
∆xkl

) = p∆t
∆xkl

T
|k∆t

∆xkl
| . . . min (8)

with the weights p∆t
∆xkl

which are generally set to one for the sake of simplicity. As the constraint

matrix BT
temp is totally unimodular and additionally, the weights p∆t

∆xkl
and the right-hand side

vector btemp have all integer entries, the problem can be solved as a Linear Program (LP) resulting in

integer parameters k∆t
∆xkl

( [21] p. 266). As already mentioned, provided that the triangulation represents
a plane graph, the problem can be solved efficiently as a network flow problem [18].

The problem remains that the variables v∆xkl and ∆h∆xkl which are included in the sequence

of modified observations χ∆t
∆xkl

are unknown. Therefore, the parameter vector k∆t
∆xkl

is sequentially
estimated for each (v∆xkl , ∆h∆xkl )-pair in a predefined discrete search space, resulting in one cost
function value Ctemp. The optimal solution is obtained by the pair where the cost value is minimal.
This solution is symbolized with a bar afterwards.
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2.3. Spatial Phase Unwrapping

In a second step, the temporally unwrapped phase gradients

φ̄
∆tαβ

∆x = χ̄
∆tαβ

∆x + 2πk̄
∆tαβ

∆x (9)

are used to unwrap each interferogram individually via the spatial MCF approach, c.f. [18]. The

previously calculated temporally unwrapped phase gradients φ̄
∆tαβ

∆x are used as starting point. The
problem is again defined as a weighted L1-norm minimization problem

Cspatial(k
∆tαβ

∆x ) = p
∆tαβ

∆x
T
|k∆tαβ

∆x | . . . min (10)

under the constraint that the unwrapped phase gradients should be spatially consistent, this time. This
means that the sum of the unwrapped phase gradients in each of the triangles in the azimuth/ range
plane should be zero, resulting in the constraint

BT
spatialk

∆tαβ

∆x = −
BT

spatialφ̄
∆tαβ

∆x
2π︸ ︷︷ ︸

bspatial

(11)

with the constraint matrix BT
spatial ∈ Zr×n referring to the spatial triangulation in the azimuth/ range

plane. As the phase gradients are consistent in space, the right-hand side vector bspatial will be an

integer value and a rounding operator is not necessary. The weights p
∆tαβ

∆x
T

in Equation (10) are derived
by using the previously calculated temporal cost value C̄temp∆xkl

for the corresponding arc ∆xkl . Large
costs mean that the probability of an occurring phase ambiguity is large and therefore the unwrapped
phase can be erroneous. Hence, this arc is less familiar and its influence is lowered by low weights.
The weights are derived by an inverse exponential relation [7]

p
∆tαβ

∆xkl
=

2S/2
C̄temp∆xkl C̄temp∆xkl

< ρ

1 C̄temp∆xkl
≥ ρ

(12)

with an upper limit for the maximum cost 2S and a threshold ρ. As the spatial constraint matrix BT
spatial

is also totally unimodular, the spatial phase unwrapping can be solved as an LP or due to its special
structure as a network flow problem.

3. Modified Extended Minimum Cost Flow Approach

The step-wise EMCF algorithm has the disadvantage that the second spatial phase unwrapping
step destroys the previously created temporal constraints in Equation (7). Thus, the aim of this work
is the development of a phase unwrapping method that solves the temporal and the spatial phase
unwrapping in one single step. Intuitively, the problem seems to be solved simply by putting all the
temporal and spatial constraints in one big constraint matrix and by minimizing the weighted L1-norm
of the phase ambiguity factors. However, the problem is that the temporal phase unwrapping is based
on the modified observations which include the unknown motion model parameters. These parameters
are estimated iteratively by solving the temporal phase unwrapping for a predefined search space and
defining these parameters as optimal which cause minimal temporal costs. Furthermore, the results of
the temporal phase unwrapping are required to define the weights of the spatial phase unwrapping,
see Equation (12). Therefore, the EMCF algorithm has to be modified so that the motion model
parameters and the spatial weights are independent of the results of the temporal phase unwrapping.
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3.1. Estimation of the Motion Model Parameters

First, the problem of the motion model is discussed. In contrast to the conventional method, where
the motion model parameters are defined as optimal, where the temporal cost function is minimal, an
alternative approach is used, which has already been discussed and analyzed in [22]. This alternative
approach estimates the motion model parameters by searching for the maximum of the Ensemple
Phase Coherence (EPC) [23] function. The EPC gives a value for the quality of the estimated model for
each phase gradient. For the arc ∆xkl , it is defined as

EPC(v∆xkl , ∆h∆xkl ) =

∣∣∣∣∣∣∣∣∣∣
∑

∀∆tαβ∈N ′
e

i(ψ
∆tαβ
∆xkl
−M)

n′

∣∣∣∣∣∣∣∣∣∣
(13)

with M from Equation (3) which depends on the parameters v∆xkl and ∆h∆xkl . The EPC function
is continuous with values between zero and one, see the exemplary shown EPC function for one
simulated phase gradient in Figure 2. A value of zero means that model and observation do not
fit and a value of one corresponds to an optimal fit. It can be seen that the function shows a clear
maximum. The idea is to find this maximum of the EPC function and to use the corresponding
parameters as optimal motion model parameters to calculate the modified observations, equal to [3].
Especially with noisy data, where the global maximum is not as pronounced, a modified algorithm
that combines simulated annealing and the local Nelder–Mead search algorithm is the best way to find
the maximum [22]. If the maximum found by simulated annealing falls below a certain threshold, it
is assumed that the motion model cannot be estimated reliably enough. Instead of using a possibly
too extreme motion model, which is very unreliable and may lead to phase unwrapping errors, the
maximum around an appropriate approximate value is locally searched using Nelder–Mead. In
contrast to the conventional iterative approach, this alternative approach has the advantage that the
motion model can be estimated independently of the temporal phase unwrapping. Consequently,
the temporal phase unwrapping only needs to be solved once for each phase gradient. This offers an
improved run time. Furthermore, it is no longer necessary to define a discrete search space for the
parameters. More information on the analysis and comparison of the alternative and conventional
methods can be found in [22].

Figure 2. EPC function exemplary for one phase gradient depending on the error of the scene
topography and the deformation velocity variation.
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3.2. Choice of the Weights

The second modification concerns the choice of the weights during the spatial phase unwrapping.
Thus far, the spatial weights are derived from an inverse exponential relationship to the temporal costs.
Alternatively, the EPC function can be used [19] resulting in

p∆xkl (EPC∆xkl ) = EPC∆xkl . (14)

The higher the EPC value, the better fit observation and model, and the more reliable the result should
be. The problem remains that the estimated parameters in form of the phase ambiguity factors k∆t

∆x
must be integer values. To get an integer solution from the LP, the weights must also be integers [21,
p. 266]. A simple rounding of Equation (14) would only return values of 0 and 1. In order to obtain
a slightly more detailed classification, the weight factors are increased by a power of ten and then
rounded. An increase by a further power is not necessary. Since only integer values are allowed, the
solution is less sensitive to a small change of the weights [24]. In order to obtain a clearer classification,
the weight factor is then potentiated to base 2. This results in the following integer weights on the
basis of the EPC values

p∆xkl (EPC∆xkl ) = 2bEPC∆xkl
·10e. (15)

4. One-Step Three-Dimensional Phase Unwrapping Approach

4.1. Problem Formulation

Using the two modifications described in Section 3, the one-step three-dimensional phase
unwrapping approach is defined. Therefore, the two steps, temporal and spatial phase unwrapping,
are combined into a single step. However, before the phase unwrapping is performed, it is necessary to
estimate the motion model. For this purpose, the EPC function is maximized for each phase gradient
using the modified algorithm combining simulated annealing and Nelder–Mead. Based on these
modified observations, the multitemporal phase unwrapping is done. For this purpose, the modified
observations are all written into a vector

χ∆t
∆x =

[
χ

∆tαβ

∆xkl
χ

∆tβγ

∆xkl
χ

∆tγα

∆xkl
. . . χ

∆tαβ

∆xlm
χ

∆tβγ

∆xlm
χ

∆tγα

∆xlm
. . .
]T

. (16)

Putting all constraints, temporal and spatial ones, into one single constraint matrix BT
3D ∈ Zr′ ·n+r·n′×n′ ·n,

the one-step three-dimensional phase unwrapping approach can be defined as

Objective function: C3D(k∆t
∆x) = p∆t

∆x
T
|k∆t

∆x| . . . min

Constraint: BT
3Dk∆t

∆x = −b
BT

3Dχ∆t
∆x

2π
e︸ ︷︷ ︸

b3D

(17)

Variable: k∆t
∆x ∈ Z.

The dimension of the constraint matrix BT
3D quickly becomes large for an entire D-InSAR stack.

However, one row of the matrix has only three entries which are non-zero. Therefore, it is a sparse
matrix. Figure 3 shows a small D-InSAR stack consisting of n′ = 6 interferograms shown in the right
subfigure. Each interferogram consists of n = 5 spatial phase gradients, see black lines between the
white points which represent the stable pixels. In time, there exist r′ = 3 temporal constraints between
the spatial phase gradients. In the left subfigure, the structure of the global constraint matrix is shown.
The three temporal constraints fill three rows in the global constraint matrix, see one blue framed
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block, with three non-zero entries per each row symbolized as black dots. As there are n = 5 spatial
gradients in total, there are five times the blue framed block. The green bordered blocks symbolize the
spatial constraints. In each interferogram r = 2 spatial constraints can be set up. Since there are n′ = 6
interferograms in total, six of these green blocks exist. The dimension of the constraint matrix BT

3D is
therefore 3 · 5 + 2 · 6× 5 · 6 = 27× 30.

Example:

BT
3D ∈ Z27×30

0 20

nz = 81

0

10

20

BT
temp

BT
space

Φ
∆tδγ

∆x

Φ∆tδα
∆x

Φ
∆tδβ

∆x

Φ∆tγα

∆x

Φ
∆tβγ

∆x

Φ
∆tαβ

∆x

Figure 3. Exemplary structure of global constraint matrix for a small D-InSAR stack consisting
of six interferograms between which a total of three temporal constraints can be generated and five
spatial gradients, between which two spatial constraints must be fulfilled.

The problem remains of the weights p∆t
∆x. With this one-step approach, it is no longer possible

that the spatial weights are dependent of the temporal costs. Therefore, the EPC based weights, cf.
Equation (15), are used to define the weights p∆t

∆x. Since the EPC value refers to a spatial phase
gradient and is the same in all interferograms, the weights are still constant in time and only in space
different weights occur for each phase gradient.

4.2. Temporal Inconsistency

A posteriori filtering steps which are done for each interferogram separately, like the multilooking,
lead to temporal inconsistent interferograms. For this reason, a rounding operator has to be inserted on
the right-hand side of the temporal constraint in Equation (7). A rounding operation always includes
errors. It is not clear if rounding down or up represents the truth. Therefore, the rounding can lead
to conflicts in the constraints, if the problem is defined in a one-step three-dimensional approach as
desired in this work. When formulating the problem in a one-step three-dimensional approach, it must
therefore be taken into account that these contradictions are compensated by so called slack variables.
The temporal constraints for the phase gradient between the pixels xk and xl are thus extended to

BT
tempk∆t

∆xkl
+ 1[r′ ·n+r·n′×r′ ·n]y = −b

BT
tempχ∆t

∆xkl

2π
e︸ ︷︷ ︸

btemp

(18)

with the slack variables y ∈ Zr′ ·n. With the help of these slack variables, the temporal inconsistency
of the data are compensated. However, it must be avoided that the inclusion of a slack variable
replaces the estimation of a phase ambiguity factor. Consequently, the objective function must be
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adapted accordingly, so that it is expensive to insert such slack variables. Overall, the one-step
three-dimensional phase unwrapping can be defined as

Objective function: C3D(k∆t , y) = p∆t
∆x

T
|k∆t

∆x|+ p∆t
y

T
|y| . . . min

Constraint:
[

BT
3D BT

y
]

︸ ︷︷ ︸
BT

3D,y

[
k∆t

∆x
y

]
= −b

BT
3Dχ∆t

∆x
2π

e︸ ︷︷ ︸
b3D

(19)

Variable: k∆t
∆x, y ∈ Z

with the constraint matrix BT
y ∈ Zr′ ·n+r·n′×r′ ·n, which consists of an identity matrix for the temporal

constraints and has only zero columns for the spatial constraints. Thus, the whole constraint
matrix BT

3D,y expands to a dimension of r′ · n + r · n′ × n′ · n + r′ · n. For the above example, the
global matrix is extended by the columns framed in red, see Figure 4. A slack variable is added for each
of the 3 · 5 temporal constraints. Thus, the constraint matrix BT

3D,y gets a size of 27× 30 + 3 · 5 = 45.
However, there are a maximum number of four non-zero entries per row, so that the matrix is sparse
again. The weights of the slack variables pT

y must be chosen very high, so that it is more expensive to
insert a slack variable than to estimate a phase ambiguity factor. The constraint matrix remains totally
unimodular, so that the phase unwrapping can still be solved with standard LP solvers resulting in
integer parameters. The observations represent double differences in space and time based on two
graphs, one in the temporal/ perpendicular baseline plane and the other one in the azimuth/ range
plane. However, it is not possible to represent the observations in a three-dimensional graph, so the
one-step approach can no longer be defined as a network flow problem. Similar to [19], this enables the
potential to select other D-InSAR distributions with overlapping arcs in the temporal/ perpendicular
baseline plane.

Example:

BT
3D,y,[27×45]

0 10 20 30 40

nz = 96

0

10

20

BT
temp

BT
y

BT
space

Figure 4. Exemplary structure of a global constraint matrix with slack variables for a small D-InSAR
stack consisting of six interferograms between which a total of three temporal constraints can be
generated and five spatial gradients between which two spatial constraints must be fulfilled.

4.3. Application to Simulated Data

4.3.1. Simulation Scenario

The one-step three-dimensional approach described in Equation (19) shall be applied to a
simulated D-InSAR stack and compared with the conventional EMCF algorithm [7]. The ERS 1/2 data
from May 1992 to December 2000, which cover the test region of the Lower-Rhine-Embayment, serve
as data basis. Based on the temporal and spatial configuration of the 64 SAR images, a settlement
depression is simulated related to the first image. The test region is limited to 401×401 pixels with
the settlement depression in the center. The deformation consists of a linear trend where the mean
deformation velocity is limited to a range from 8 to 12 cm/yr. The deformations within the subsidence
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basin of the still active open-cast mine Garzweiler, Hambach, and Inden are in a comparable range
of values, so that the simulation is realistic. In addition to the deformation, a topography error is
added. This reaches values between −5 and 40 m. To make the simulation more realistic, a normally
distributed noise is added per SAR image. The standard deviation varies from 0.2 to 0.9 rad. The
typical signal-to-noise ratio for ERS data are 10 to 20 db ([25], p. 26) corresponding to 0.3 to 0.7 rad
[26]. Between the 64 SAR images, 161 interferograms are generated according to the SBAS method
resulting in 98 temporal constraints, see the corresponding temporal triangulation already shown in
Figure 1. Since the interferograms are spatially filtered, the real data are not consistent in time. To
simulate this, an additional normally distributed noise is added to each simulated interferogram. The
standard deviation depends on the unbiased coherence [27] taken from the real data. These coherence
values are also used to select the so called stable pixels. A pixel is defined as stable if it has a coherence
value greater than or equal to 0.7 in at least 95% of the interferograms. Within the 401×401 test region,
this is the case for m = 9346 pixels defining n = 27, 900 arcs and r = 18, 555 spatial constraints.

4.3.2. Results of Closed Loop Simulation

The simulated phase serves as the reference phase. This phase is wrapped in a value range
from −π to π representing the measured phase which has to be unwrapped multitemporally. In the
best-case scenario, the unwrapped phase will then return to the reference phase. To multitemporally
unwrap the measured phases, the conventional EMCF algorithm [7] is used first. In addition,
an alternative EMCF algorithm is applied, where the motion model parameters are estimated by
maximizing the EPC function using the modified algorithm and where EPC based weights are used.
Finally, the phase ambiguities are solved using the one-step three-dimensional phase unwrapping
approach.

The first validation criterion is the temporal consistency. Due to the insertion of slack variables,
the results of the one-step approach will not be completely consistent in time. As explained above,
this is mostly not the case due to preprocessing steps such as multilooking. However, it is assumed
that the results of the one-step approach are more consistent than the results of the two-step EMCF
approach. To validate the temporal consistency, the absolute number of temporal inconsistencies is
calculated for each phase gradient

TINC∆xkl = ∑ |b
BT

timeφ∆t
∆xkl

2π
e| ∀∆xkl ∈ N (20)

and again summarized for all phase gradients, resulting in

TINC = ∑
∀∆xkl∈N

TINC∆xkl . (21)

Table 1 lists the total number of temporal inconsistencies for different noise levels and different
phase unwrapping methods. For comparison, the number of the reference phases is also shown. Since
the noise is added per SAR image, the number of temporal inconsistencies remains the same for
different noise levels. This is the case with the solution of the one-step approach. It is also obvious
that the one-step approach provides the most consistent results. The solution is even more consistent
than the reference data. If the noise level is lower, the other two methods also provide a lower
number of temporal inconsistencies than the reference. However, especially at higher noise levels, it
becomes obvious that the conventional EMCF algorithm leads to significantly more inconsistencies.
The alternative EMCF approach can reduce the temporal inconsistencies somewhat, but also here
the spatial phase unwrapping that follows in the second step destroys the temporal consistencies
previously created in the temporal phase unwrapping.
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Table 1. Total number of temporal inconsistencies for different noise levels. In addition to the reference,
the number is listed for different phase unwrapping methods.

Method
Total Number of Temporal Inconsistencies

for Different Noise Levels [rad]

0.2 0.4 0.6 0.8 0.9

reference 59 59 59 59 59
conventional EMCF approach 23 23 46 30,705 142,090
alternative EMCF approach 33 19 88 28,336 65,599
one-step three-dimensional approach 14 14 14 14 14

Since the reference number is never reproduced exactly, the accuracy of the results is further
investigated. Therefore, Figure 5 shows the percentage of correctly unwrapped phase gradients
depending on the noise level. The green bars represent the results of the conventional EMCF algorithm,
the dark blue bars of the alternative EMCF algorithm, and the orange bars of the new one-step method.
Up to a noise level of 0.6 rad, there are no significant differences. Nearly all phase gradients are
unwrapped correctly. Above a noise level of 0.8 rad, it looks different. The alternative EMCF algorithm
shows an improvement compared to the conventional approach. At a noise level of 0.8 rad, the number
of correctly unwrapped phase gradients increases from 96.05% to 98.56% and at a noise level of 0.9 rad
from 88.24% to 97.15%. By applying the one-step three-dimensional method, the percentage can be
increased even further to 99.26% at a noise level of 0.8 rad and to 98.41% at a noise level of 0.9 rad.

0
.2

0
.4

0
.6

0
.8

0
.9

Figure 5. Percentage of correctly unwrapped phase gradients depending on the noise level added per
SAR image. The green bars show the results of the conventional EMCF approach, the dark blue bars
are the results using the alternative EMCF algorithm and the orange bars are the results using the
one-step three-dimensional approach.

5. Application to Real Data

5.1. Data Basis

In the following, it will be tested if the one-step three-dimensional approach also leads to better
results when applied to ERS 1/2 real data. The test region is the Lower-Rhine Embayment in North
Rhine-Westphalia, Germany with the still active open-cast mines Garzweiler, Hambach and Inden
and the already closed coal mines Sophie-Jacoba in the mining region Erkelenz and Emil Mayrisch
in the mining region Aachen. Analogous to the simulation, the data consist of m′ = 64 SAR images
collected from May 1992 to December 2000. The temporal triangulation is already shown in Figure 1.
A total of n′ = 161 D-InSAR images are generated according to the SBAS method resulting in r′ =
98 temporal constraints. The SBAS analysis is carried out with the Remote Sensing Software Graz (RSG)
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(http://www.remotesensing.at/en/remote-sensing-software.html). Pixels are defined as coherent
when their coherence values are greater than or equal to 0.7 in at least 95% of the interferograms.
For the whole ERS 1/2 scene, this is the case for m = 96, 531 pixels defining n = 289, 489 arcs and
r = 192, 959 triangles. Figure 6 shows the mean deformation velocity map of the coherent pixels using
the conventional EMCF approach which is the state of the art in the RSG software. Since the phase
gradients represent temporal and spatial double differences, there is a datum defect. To overcome
this defect, both a temporal and a spatial reference must be chosen. The spatial reference is a pixel
in Cologne, since it can be assumed that this region is stable. In time, the first SAR image in May
1992 serves as reference. In Figure 6, it is clearly visible that the Earth’s surface decreases by −6 to −8
cm/yr around the still active open-cast mines Garzweiler and Hambach and increases by a few cm/yr
near the closed coal mines Sophie-Jacoba in the mining region Erkelenz and Emil Mayrisch in the
mining region Aachen.

The SBAS analysis is repeated, whereas this time the phase unwrapping is performed externally
in MATLAB© (R2019b, The MathWorks, Natick, MA, USA) once using the alternative EMCF algorithm
and once using the new one-step approach. The deformation maps are very similar to that shown in
Figure 6. The average difference is only 0.004 cm/yr in both cases. Therefore, other criteria have to be
found to compare the results.

Figure 6. Mean deformation velocity map of the Lower-Rhine-Embayment based on ERS 1/2 data
from May 1992 to December 2000 for pixels with a coherence value greater 0.7 in at least 95% of
interferograms and estimated using the conventional EMCF approach. The highlighted test regions 1
to 3 are examined in more detail as time series in Figure 8.

5.2. Temporal Consistency

Similar to the simulated data, the total sum of temporal inconsistency is calculated according to
Equation (21). As a reminder, the phase unwrapping is carried out iteratively during the SBAS analysis
to reduce phase unwrapping errors. Therefore, the total number of temporal inconsistency is calculated
once after the first and once after the second phase unwrapping, see Table 2. The values clearly show
that the conventional EMCF approach leads to most temporal inconsistencies. The alternative EMCF
approach shows a slight improvement and the one-step three-dimensional approach shows the most
consistent results.
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Table 2. Number of total temporal inconsistencies for ERS 1/2 data. The number is listed for different
phase unwrapping methods after the first and the second phase unwrapping step in the SBAS workflow.

Method Total Number of Temporal Inconsistencies after
1st Phase Unwrapping 2nd Phase Unwrapping

conventional EMCF approach 16,309 2947
alternative EMCF approach 15,711 2810
one-step three-dimensional approach 10,491 938

5.3. Smoothness in Space

The second criterion is the smoothness in space. It is assumed that no large movements should
occur between adjacent pixels. Therefore, the Root Mean Square (RMS) error is calculated for each
pixel xj in space. For each pixel xj ∈ M, there is a deformation time series htα

xj , ∀tα ∈ M′. This
deformation time series is compared to the deformation time series of the setMxj of mxj pixels within
a radius of 300 m around xj. If at least five pixels lie within this radius, the difference between the
deformation time series of the analyzed pixel and the individual pixels within the radius is squared
and averaged over the number of mxj pixels. Then, the average over all m′ time acquisitions is taken to
obtain one RMS value for each pixel

RMSxj =
1

m′ ∑
tα∈M′

√
∑

xk∈Mxj

(htα
xk − htα

xj)
2/mxj , ∀xj ∈ M. (22)

In this way, the RMS is calculated for 89.4% of pixels for the results of the conventional and the
alternative EMCF approach and for the results of the one-step three-dimensional approach. Figure 7a
shows the comparison between the conventional method and the one-step approach. The difference of
the RMS value of the methods is formed in such a way that positive differences indicate that the RMS
value is lower when using the one-step approach. The differences are mostly all close to zero. The
histogram shows the relative frequencies, which sum up to one. The bar around zero thus goes almost
to one. In order to make anything visible, the histogram has been cut off. There are also RMS differences
of a few centimeters, for example 2.8 cm, which corresponds to half a wavelength and thus indicates
phase unwrapping errors. These larger differences are in the positive range, so that the one-step
three-dimensional approach leads to a reduction of the RMS value. Figure 7b shows analogously
the histogram of the differences between the alternative EMCF and the one-step three-dimensional
approach. Here, again, the histogram is truncated at the top. Positive differences also mean that the
one-step approach leads to lower RMS values than the alternative EMCF approach. However, it can be
seen that the differences are very small and less than 1 cm. Consequently, by just comparing the RMS
values, it is not possible to say which approach delivers better and which worse results.
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(a) (b)

Figure 7. Difference of RMS values of the deformation time series estimated with (a) the conventional
EMCF approach minus RMS of one-step three-dimensional approach and (b) the alternative EMCF
approach minus RMS of one-step three-dimensional approach.

5.4. Single Pixel Evaluation

For a further investigation, the time series of five pixels located in the three test regions highlighted
in Figure 6 are analyzed and compared with the closest leveling point. Therefore, the leveling data
measured by GeoBasis NRW in a four-year cycle from 1993 to 2001 are used. The campaigns are
individually evaluated in an adjustment following [28] with a total of four reference points located in
Viersen, Cologne, Aachen, and Rheinbach. When comparing interferometric and leveling data, the
problem of different spatial and temporal resolution and the problem of different reference points
occur. For the analyzed pixels, the nearest leveling data are within a radius of 300 m or less. It can
therefore be assumed that both data sets observe a similar deformation, since no abrupt changes
are assumed. In general, the D-InSAR data measure movements in line-of-sight and the leveling
data relate to vertical height changes. However, since only ERS data from descending orbits are
available in this study, it must be assumed that no horizontal movements take place. The time offset is
compensated by transferring the interferometric data to the leveling data with help of a local offset, cf.
[29]. Figure 8a–c show the corresponding deformation time series after applying the local offset. The
reader is reminded that the vertical axes of the plots were chosen differently, since the analyzed pixels
show differently strong motions. The green triangles are the results using the conventional EMCF
method, the dark blue points are the results using the alternative EMCF method and the results of
the one-step three-dimensional approach are shown as orange points. In addition, the closest leveling
point is shown as black squares.
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(a) test region 1: Monheim at the Rhine, Mettmann

(b) test region 2: Koslar, Jülich

(c) test region 3: Odenkirchen, Mönchengladbach

Figure 8. Deformation time series of five pixels lying in each of the three highlighted test regions
shown in Figure 6. (a) shows the pixels in Mohnheim at the Rhine, (b) in Koslar and (c) in Odenkirchen.
The results using the conventional EMCF approach are shown as green triangles, using the alternative
EMCF as dark blue points and using the one-step three-dimensional approach as orange points. The
black squares indicate the data from the closest leveling point.
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Test region 1 examines pixels in Mohnheim at the Rhine. It is a region where movement is almost
non-existent, see Figure 8a. Based on the leveling data, a slight elevation of the Earth’s surface in
the range of one centimeter can be observed after 2001. Within this test region, however, there is
a pixel at which the RMS value using the conventional EMCF method is 3.84 cm, so greater than
half the wavelength, see Figure 7a. For comparison, with the other two methods, the RMS value of
this pixel is 0.10 cm in both cases. With the conventional method, the motion model parameters of
the corresponding phase gradients are estimated too strong, so that the pixel seems to experience a
strong subsidence. Maximizing the EPC function results in more realistic motion model parameters
that better match the neighboring pixels and the leveling data. There are no differences between
the alternative EMCF and the one-step three-dimensional approach. Looking at the total number of
temporal inconsistencies for the phase gradients, which include the conspicuous pixel, it becomes clear
that the results of the conventional EMCF algorithm are not temporally consistent after the first phase
unwrapping. The total number of temporal inconsistencies is 56. If the alternative EMCF algorithm or
the one-step approach is used, the number can be reduced to 26 or 24.

Test region 2 shows pixels in Koslar, Jülich near the still active open-cast mine Inden. The
resulting subsidence of the Earth’s surface is visible both in the interferometric and in the leveling
data, see Figure 8b. Especially at the beginning of the D-InSAR time series, it becomes apparent that
the results based on the alternative EMCF algorithm, represented as dark blue points, show a jump
of about 2 cm in contrast to the other two methods. This jump is more of an unnatural behavior and
indicates a phase unwrapping error. This does not occur in the corresponding RMS values, since all
pixels have this jump and the pixels fit together. However, if one looks at the temporal inconsistencies
of the associated phase gradients, it becomes apparent again that the one-step three-dimensional
approach provides the most consistent results in time. The temporal inconsistencies are conspicuously
high after the second phase unwrapping step when using the alternative EMCF approach. The spatial
phase unwrapping carried out in the second step caused these temporal inconsistencies, resulting in
the unnatural jumps at the beginning of the deformation time series.

The last test region is in Odenkirchen, Mönchengladbach. This region also shows a slight
subsidence of the Earth’s surface, see Figure 8c. In this example, all problems discussed before occur.
Starting with the conventional EMCF algorithm, it becomes apparent that one pixel has a slightly
different behavior than the surrounding pixels. The RMS value of this pixel is 1.42 cm. The reason
can be found in incorrectly estimated motion model parameters of the corresponding phase gradients.
This also results in a temporal inconsistency after the first phase unwrapping. Using the alternative
EMCF algorithm, the RMS value of this conspicuous pixel can be reduced to 0.36 cm. However, a
temporal inconsistency is also inserted here by the two-step procedure. The situation is different with
the one-step three-dimensional approach. The results are temporally consistent and the RMS value of
the pixel can be further reduced to 0.16 cm.

6. Conclusions and Outlook

In summary, it can be concluded that a three-dimensional phase unwrapping approach has
been successfully defined which solves the temporal and the spatial phase unwrapping in one single
step. This approach is based on the two-step EMCF algorithm and can therefore be easily integrated
into the SBAS workflow. The conventional EMCF algorithm has to be modified with respect to the
estimation of the motion model and the choice of spatial weights. Furthermore, the problem of
temporal inconsistency due to preprocessing steps such as multilooking is addressed in the form of
slack variables. However, since it is not desirable that the slack variables replace the estimation of
ambiguity factors, the slack variables must be highly weighted in the objective function. The one-step
approach is therefore based on the assumption that the phase gradients should be as consistent as
possible in time.

Both on the basis of the simulated data and on the basis of the ERS 1/2 real data, it has been
proven that this assumption is justified. With the simulated data, it could be shown that especially at a
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higher noise level the one-step method leads to a higher percentage of correctly unwrapped phase
gradients compared to the conventional two-step EMCF approach. The resulting deformation time
series of the Lower-Rhine-Embayment reflect the essential movement patterns, i.e., the subsidence
in the areas of the still active open-cast mines Hambach, Inden, and Garzweiler and the uplift in the
already closed coal mines Sophie-Jacoba in the mining region Erkelenz and Emil Mayrisch in the
mining region Aachen. Compared to the two-step EMCF approach, the results of the one-step approach
are temporally more consistent and the analysis of single pixels has shown that the detected motions
partly fit better to the leveling data. In this study, the ERS 1/2 data was chosen consciously, as the
phase unwrapping is especially difficult with these older data and there is potential for improvement.
However, the proposed approach can easily be applied one-to-one to other sensors such as Sentinel-1
and TerraSAR-X.

Nevertheless, it has to be mentioned that there is no phase unwrapping algorithm that can
be used for all scenarios. The approach presented here estimates the deformation parameters by
maximizing the EPC function. This function includes a linear motion model. This means that the
proposed approach assumes that the phase gradients move linearly with time. If nonlinear motion
components are present, the EPC function has to be extended by this nonlinear effect to estimate
realistic deformation model parameters.

Moreover, so far, the evaluation of real data has been limited to pixels with a coherence value
greater than or equal to 0.7 in at least 95% of the interferograms. These pixels therefore have only a very
low noise level. The simulated data demonstrated that the one-step approach shows its performance
especially at a high noise level. Consequently, the new approach is well suited to also include less
coherent pixels in the evaluation. Thus, spatially more dense results can be achieved. However, this
leads to the fact that the one-step three-dimensional problem takes on a very high dimension and
requires high computing resources in combination with performance computing strategies which are
outside the scope of this study. However, the current literature shows that there is research in this field,
so that the solution of such complex problems is quite feasible. One possibility to apply the approach
also to higher dimensional systems can be the transition to massively parallel computers as well as the
further investigation and analysis of the special structure of the constraint matrix with respect to its
efficiency, cf. for example [30]. Furthermore, it would be conceivable to use a region growing based
technology, similar to [31] or [32], a hierarchical algorithm [33] or a tiling strategy [34].
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