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Abstract: The West African Sahel Cropland map (WASC30) is a new 30-m cropland extent product for
the nominal year of 2015. We used the computing resources provided by Google Earth Engine (GEE)
to fit and apply Random Forest models for cropland detection in each of 189 grid cells (composed of
100 km2, hence a total of ~1.9 × 106 km2) across five countries of the West African Sahel (Burkina
Faso, Mauritania, Mali, Niger, and Senegal). Landsat-8 surface reflectance (Bands 2–7) and vegetation
indices (NDVI, EVI, SAVI, and MSAVI), organized to include dry-season and growing-season band
reflectances and vegetation indices for the years 2013–2015, were used as predictors. Training data
were derived from an independent, high-resolution, visually interpreted sample dataset that classifies
sample points across West Africa using a 2-km grid (~380,000 points were used in this study, with 50%
used for model training and 50% used for model validation). Analysis of the new cropland dataset
indicates a summed cropland area of ~316 × 103 km2 across the 5 countries, primarily in rainfed
cropland (309 × 103 km2), with irrigated cropland area (7 × 103 km2) representing 2% of the total
cropland area. At regional scale, the cropland dataset has an overall accuracy of 90.1% and a cropland
class (rainfed and irrigated) user’s accuracy of 79%. At bioclimatic zones scale, results show that
land proportion occupied by rainfed agriculture increases with annual precipitation up to 1000 mm.
The Sudanian zone (600–1200 mm) has the highest proportion of land in agriculture (24%), followed
by the Sahelian (200–600 mm) and the Guinean (1200 +) zones for 15% and 4%, respectively. The new
West African Sahel dataset is made freely available for applications requiring improved cropland area
information for agricultural monitoring and food security applications.

Keywords: agricultural land area; Sahel; West Africa; machine learning; Earth Engine

1. Introduction

Timely and accurate information on cultivated areas is of paramount importance for food security
planning [1,2]. This is particularly true in developing regions, like the West African Sahel, where
most cropland is rainfed and agricultural production is susceptible to fluctuations in precipitation [3].
Earth Observation (EO) satellites can contribute significantly to providing information to the agricultural
sector, as they allow for consistent land surface imaging over broad spatial extents (regionally or
globally) with high revisit frequency [4]. That makes these technologies suitable for monitoring
vegetation [5], cropland area [6–8], and agricultural production [9–12]. Optical remote sensing in
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particular offers unique possibilities for mapping cropland extent, in addition to monitoring the growth
and eventual yield of cultivated lands [13,14].

The accuracy of remote-sensing-based land cover (including cropland) products varies
considerably depending on the scale of assessment, the statistical approaches adopted, and the
quality and quantity of training and evaluation data. Samasse et al. [15] recently reviewed eight global
and regional land cover maps [8,16–22] using high-density evaluation data for the five countries of
the Western Sahel (Burkina Faso, Mali, Mauritania, Niger, and Senegal). The study focused uniquely
on cropland classes. They found large errors in all existing products, particularly in the coarser
resolution (>300 m) products. However, even the higher resolution (~30 m) datasets had accuracy
statistics (“user’s accuracy”) of less than 75%, and all existing products were greatly biased towards
overestimating the area of active cropland in the region. More recent studies benefitted from high
spatial resolution data (10 m or less) to map cropland in the region. For example, Tong et al. [23]
used full-year Sentinel-2 NDVI data and Random Forest classifiers to separate cropland from fallow
across the Sahel belt [23] at 10 m resolution, reporting an overall average accuracy of 88% for crop
and fallow classes. However, they also used several land cover products with known moderate or
low accuracy for cropland extent to develop the fallow/cropland map. Specifically, the CGLS LCC
100 m [24], and ESA CCI 300 m [18] maps, used as croplands mask in Tong et al. [23], have low cropland
class-specific accuracy (~60%) [25] and high area overestimation [15], respectively. That may lead,
via error propagation, to important misclassifications in the final product, attenuating our ability to
retrieve cultivated land area as a precursor to yield modeling and prediction.

The clear need for improvements in cropland area assessments in the Sahel region, coupled with
the potential for improvements made possible by using higher resolution data, also increases the need
for computational resources, new methods, and technical skills for effective processing and analysis.
Google Earth Engine (GEE) [26] is one of the platforms currently facilitating access and processing of
larger data volumes for diverse operational applications including cropland mapping. The Landsat
data archive in particular, with 30 m spatial resolution, long temporal record, and no cost, provides an
opportunity to map large scale agricultural regions consistently and in greater detail [27,28]. Recent
satellite instrument additions (e.g., Copernicus Sentinel Instruments) provide increasing opportunities
to combine data from multiple sources for improved spatial, temporal, and radiometric resolution.

In this study, we leverage the availability of more than 400,000 land-cover training data points
for the year 2013 [15,29], with hundreds of cloud-free Landsat-8 images (for the years 2013–2015),
to train locally-optimized Random Forest models predicting presence and absence of rainfed and
irrigated agricultural fields across the non-desert (MAP > 200 mm/y) land area of the West African
countries of Mauritania, Senegal, Mali, Burkina Faso, and Niger. Our analysis grid is composed of 267
(100 × 100 km) grid squares, each processed separately using Google Earth Engine (GEE) to fit and
apply locally optimized Random Forest models for cropland detection at 30 m. We analyze our results
to estimate accuracy and uncertainty of the new classification, present summary statistics for cropland
in the region, and make the new West African Sahel Cropland dataset (under the name WASC30)
freely available for applications requiring improved crop area data for agricultural monitoring and
food security.

2. Materials and Methods

2.1. Reference Data

Reference data on presence and absence of rainfed and irrigated agriculture were obtained from
the Rapid Land Cover Mapper (RLCM) [29–31] for the year 2013. The RLCM approach uses local
experts and visual interpretation of 30 m Landsat images to assess land cover type, sampled at 2 km
intervals across West Africa [29,30,32]. While RCLM data are available for several epochs (1975, 2000,
2013), we use only the 2013 data as training data for this study. The dataset provides classification into
one of 25 land cover types for each centroid of the 2 km grid, with possible land cover classes including



Remote Sens. 2020, 12, 1436 3 of 22

multiple non-agricultural classes, and agricultural classes including rainfed and irrigated cropland.
The approach, based on expert visual interpretation, with specific local knowledge of the environments
being classified, is expected to show better results than semi- or fully automated classifiers, particularly
for the cropland class across West Africa [32].

Quality control for the reference data was carried out using multiple sources of ancillary data,
including thousands of aerial photographs taken by the USGS team, high-resolution verification using
Google Earth satellite imagery, and field validation in each country, facilitating systematic verification
of land cover assessments [30]. In addition, image interpretation and land cover assessments carried
out by national experts were reviewed and revised during regular collaborative workshops in West
Africa, to ensure consistent practice between country teams and USGS partners. Further details are
provided by Samasse et al. [15].

In this study, we regrouped the 25 land cover classes into 3 classes (rainfed and irrigated
agriculture and non-agricultural) and used 50% of the 2 km by 2 km data points for year 2013 as
reference information for training the classification algorithm and the other 50% for assessing the
classified product. Reduced data-density in some areas (e.g., on the coastal and desert margins)
resulted in a total of 383,464 reference data points (non-crop, rain-fed, and irrigated classes) across our
West Africa study domain.

2.2. Google Earth Engine (GEE)

Google Earth Engine is a cloud-based platform for regional and planetary scale earth observation
data retrieval and processing. Its advantage is to store the petabytes of freely available data (e.g., Landsat
imagery) in the cloud, avoiding the need for data download, while providing high-performance parallel
computing resources to process large datasets [26]. GEE thus facilitates computationally cumbersome
geospatial analysis with minimal local computing and storage resources. GEE makes use of an
application programming interface (API in JavaScript or Python), allowing for data processing and
visualization at different scales. The GEE platform also implements several Machine Learning
algorithms (Support Vector Machine, Random Forest) known to be effective for land cover and land
use classification in general and cropland mapping in particular [8,33–35].

2.2.1. Landsat 8 Surface Reflectance (SR)

The Landsat mission is a joint initiative of the USGS and NASA providing consistent earth
observation data at sub-100 m spatial resolution since the 1970s. Surface reflectance data from the
Landsat-8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) is available in GEE from
April 2013 to present. Table 1 contains information on the Landsat-8 SR Tier 1 collection spectral bands
used in this study.

Table 1. Landsat 8 band description and wavelengths. The “pixel_qa” band provides metadata on
scene quality such as cloud cover for each pixel.

Name Band description Wavelength (µm)

B2 Band 2 (blue) surface reflectance 0.452–0.512
B3 Band 3 (green) surface reflectance 0.533–0.590
B4 Band 4 (red) surface reflectance 0.636–0.673
B5 Band 5 (near infrared) surface reflectance 0.851–0.879
B6 Band 6 (shortwave infrared 1) surface reflectance 1.566–1.651
B7 Band 7 (shortwave infrared 2) surface reflectance 2.107–2.294

pixel_qa Pixel quality attributes generated from the CFMASK algorithm. —

(Source: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR.).

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR
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2.2.2. Vegetation Indices

In addition to the individual band reflectances, remote sensing derived vegetation indices (VI)
have been extensively applied to detect vegetation and monitor vegetation condition over large
areas. These indices are generally based on the capability of vegetation to strongly reflect incident
electromagnetic signal in the near-infrared (NIR) band compared to the optical bands. In this study we
calculated four vegetation indices as candidate predictor variables for the RF classification algorithm
to help separate crop and non-crop zones.

NDVI

The Normalized Difference Vegetation Index (NDVI) is commonly used in satellite remote
sensing-based vegetation analysis [2,36–38]. It is computed using the red (B4) and near-infrared (B5)
bands following Equation (1).

NDVI = (B5 –B4)/(B5 + B4) (1)

The NDVI can effectively detect growing vegetation [39] but gets quickly saturated in high biomass
surfaces. In such conditions, other vegetation indices like EVI (Enhanced Vegetation Index) have been
proposed to replace or supplement the NDVI.

EVI

The Enhanced Vegetation Index (EVI), described by Equation (2) provides improved sensitivity to
vegetation condition and changes in high biomass areas as compared to the NDVI and also reduces
the background effect of soil on vegetation index calculation [40,41]. In addition to the red and
near-infrared bands, EVI includes in the calculation the blue band (B2) to correct atmospheric effects
of aerosol.

EVI = G ∗ ((B5− B4)/(B5 + C1 ∗ B4−C2 ∗ B2 + L)) (2)

where G is a gain factor; C1 and C2 are the coefficients of the aerosol resistance term, which uses blue
band B2 to correct for aerosol influences in the red band B4, and L is the soil-adjustment factor as in
SAVI. In this we used the coefficients adopted in the MODIS EVI algorithm, which are L = 1, C1 = 6,
C2 = 7.5, and G = 2.5 [42].

SAVI

The soil-adjusted vegetation index (SAVI; Huete, 1988) was developed to compensate for the
effects of the soil background in sparsely vegetated areas. Equation (3) is the commonly used expression
of SAVI with a soil adjustment factor L. This factor is found to reduce soil noise using the value L = 0.5
for a wide range of vegetation classes [43].

SAVI = ((B5− B4)/(B5 + B4 + L)) ∗ (1 + L) (3)

MSAVI

The Modified Soil-Adjusted Vegetation Index (MSAVI; [44]; Equation (4)) was proposed as an
improved version of SAVI that minimizes the effect of bare soil [44].

MSAVI =
(
2 ∗ B5 + 1−

√(
(2 ∗ B5 + 1)2

− 8 ∗ (B5− B4)
))

/2 (4)

2.3. Random Forest (RF)

We used the random forest (RF) technique as the main classification algorithm in this study. The RF
model is an ensemble learning algorithm that can be used to predict both continuous (regression) and
categorical (classification) responses. For a classification problem, the response variable is a class which
links certain independent values to one of the categories present in the dependent variable [45]. An RF
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model comprises an ensemble of decision trees, where each tree constitutes a classifier, which can predict
the response-variable using a random sub-sample of the independent variables and observations. Each
tree uses a sub-ensemble of training values chosen randomly with replacement (i.e., bootstrap sample).
The optimum number of predictors used to split data at each tree’s node is log(m+1), where m is the
total number of predictors involved. An ensemble of diverse trees minimizes the effect of bias from
individual trees considerably improving the overall predictive accuracy of the model. The final class
prediction is chosen by a maximum vote (classification). It has been shown that by increasing the
number of trees in the model, the errors of prediction (also known as out-of-bag errors or OOB errors)
converge, reducing problems with overfitting [45]. In this study, we used OOB error estimation during
the training process to finetune RF model parameters and provide internal cross-validation before
independent accuracy assessment.

2.4. Gridding and Accuracy Metrics

A grid of 100 km by 100 km squares was created using ArcMap based on the extent of the available
training data. In total, 267 squares (labelled from S1 to S267 in Figure 1) were generated covering the
study area. For simplicity, Figure 1 shows the positions and labels of the first and last grid-squares.
Satellite image (Landsat) data for each square was classified independently using the RLCM reference
data to train and evaluate local RF models.

Remote Sens. 2020, 12, x FOR PEER REVIEW        5 of 24 

 

and categorical (classification) responses. For a classification problem, the response variable is a class 
which links certain independent values to one of the categories present in the dependent variable 
[45]. An RF model comprises an ensemble of decision trees, where each tree constitutes a classifier, 
which can predict the response-variable using a random sub-sample of the independent variables 
and observations. Each tree uses a sub-ensemble of training values chosen randomly with 
replacement (i.e., bootstrap sample). The optimum number of predictors used to split data at each 
tree’s node is log(m+1), where m is the total number of predictors involved. An ensemble of diverse 
trees minimizes the effect of bias from individual trees considerably improving the overall predictive 
accuracy of the model. The final class prediction is chosen by a maximum vote (classification). It has 
been shown that by increasing the number of trees in the model, the errors of prediction (also known 
as out-of-bag errors or OOB errors) converge, reducing problems with overfitting [45]. In this study, 
we used OOB error estimation during the training process to finetune RF model parameters and 
provide internal cross-validation before independent accuracy assessment. 

2.4. Gridding and Accuracy Metrics 

A grid of 100 km by 100 km squares was created using ArcMap based on the extent of the 
available training data. In total, 267 squares (labelled from S1 to S267 in Figure 1) were generated 
covering the study area. For simplicity, Figure 1 shows the positions and labels of the first and last 
grid-squares. Satellite image (Landsat) data for each square was classified independently using the 
RLCM reference data to train and evaluate local RF models. 

 
Figure 1. The grid of 100 × 100 km cells. 

Classification accuracy in this study was measured using the following metrics: Quantity 
disagreement (Q), Allocation disagreement (A), Overall Accuracy (OA), and class-specific measures 
such as User’s Accuracy (UA) for Crop class, as suggested by Pontius and Millones [46]. Appendix 
A4 gives more details on disagreements analysis. The new dataset was also validated using detailed 
local field surveys conducted on agricultural activities at IPR/IFRA (Institut Polytechnique Rural de 
Formation et de Recherche Appliquée), a higher education institution in Mali. 

2.5. Workflow 

Figure 2 illustrates the steps employed in developing the cropland extent map, using the GEE 
platform and Random Forest machine learning approach. Landsat-8 images for each 16-day period 
were processed for each ~1o grid cell. The Tier 1 Landsat-8 image collection was filtered spatially 
(Sahel grid level) and temporally (years 2013, 2014, and 2015, to match training data) before being 
filtered for clouds using the pixel_qa information (Table 1). Cloud-free images were used to compute 
vegetation indices in GEE using custom functions in JavaScript. 

In total, twenty bands were exported from GEE as candidate model predictors. Predictors 
included Landsat 8 surface reflectance bands (B2-B7) and VI averages for growing season (e.g., B2) 
and dry season (e.g., B2_1), with growing season defined from July-October of each year and 
November-June considered the dry season. In total, we have twelve (12) surface reflectance and eight 
(8) vegetation indices (Table 2). 
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Classification accuracy in this study was measured using the following metrics: Quantity
disagreement (Q), Allocation disagreement (A), Overall Accuracy (OA), and class-specific measures
such as User’s Accuracy (UA) for Crop class, as suggested by Pontius and Millones [46]. Appendix A.4
gives more details on disagreements analysis. The new dataset was also validated using detailed
local field surveys conducted on agricultural activities at IPR/IFRA (Institut Polytechnique Rural de
Formation et de Recherche Appliquée), a higher education institution in Mali.

2.5. Workflow

Figure 2 illustrates the steps employed in developing the cropland extent map, using the GEE
platform and Random Forest machine learning approach. Landsat-8 images for each 16-day period
were processed for each ~1o grid cell. The Tier 1 Landsat-8 image collection was filtered spatially
(Sahel grid level) and temporally (years 2013, 2014, and 2015, to match training data) before being
filtered for clouds using the pixel_qa information (Table 1). Cloud-free images were used to compute
vegetation indices in GEE using custom functions in JavaScript.

In total, twenty bands were exported from GEE as candidate model predictors. Predictors included
Landsat 8 surface reflectance bands (B2-B7) and VI averages for growing season (e.g., B2) and dry
season (e.g., B2_1), with growing season defined from July-October of each year and November-June
considered the dry season. In total, we have twelve (12) surface reflectance and eight (8) vegetation
indices (Table 2).
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Table 2. Predictors used in the Random Forest classification.

Wet Period (Growing Geriod) Dry Period

Surface Reflectance B2, B3, B4, B5, B6, B7 B2_1, B3_1, B4_1, B5_1, B6_1, B7_1,
Vegetation Indices NDVI, EVI, SAVI, MSAVI NDVI_1, EVI_1, SAVI_1, MSAVI_1

The land-cover training data were reclassified to produce three classes corresponding to rain-fed
crops (level “1”), irrigated crops (level “2”) and the non-crop class (level “0”), with levels 1 and 2
combined as needed to make up the “Crop” class. The training samples were derived by sampling
50% of “Crop” and 50% of “Non-crop” classes selected randomly within each grid cell, representing a
stratified random sampling approach. R software was used to fit the RF classifiers external to GEE
to benefit from greater model-fitting flexibility in R. Optimal fitted RF models were then used for
regional predictions. Predictions of crop (rainfed and irrigated) and non-crop classes were based on
the best-fit models, optimal parameters, and non-correlated predictors from the tuning process (see
Appendix A.1 for more details on optimal RF parameters, and Appendix A.3 for removing correlated
variables). Classification outputs were initially assessed at grid-cell level using independent reference
samples (i.e., samples not used for training and/or OOB error estimation), then grouped at country and
regional levels.

3. Results

3.1. Predictors

The Landsat-8 Tier 1 image collection available on GEE for the study area comprised 6803 image
scenes as filtered for the years 2013, 2014, and 2015. Depending on the location and the time, the number
of available images changes. This is due, for example, to the degree of cloud coverage in different
years and locations. Figure 3 shows that the availability of Landsat images increases in 2014 and 2015,
relative to 2013, with the increase related to launch and partial Landsat-8 collection in 2013.
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The candidate predictor variables are shown in Figure 4. Values of surface reflectance (SR)
in Landsat bands are between 0 and 1, while vegetation index (VI) values range between −1 and
1, as expected. On average, the shortwave infrared 1 band (B6) has the highest reflectance value
in both wet and dry periods, probably due to minimal atmospheric attenuation in this part of the
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electromagnetic spectrum and low surface vegetation moisture on average in the savanna areas, which
would otherwise lower SWIR reflectance. The second highest value occurs at the near infrared band
(B5). This band also shows the most pronounced difference between wet and dry means, showing its
sensitivity to green vegetation that is mostly present in the wet seasons. All the vegetation indices
(Figure 4) show net distinctions between the wet and dry periods, particularly in the range of wet
season values.
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Figure 5. Cells with valid training data (i.e., containing two or more classes (crop and non-crop) after
reclassification of the training grid points). A total of 189 cells among the 267 include some cropland
in the training data allowing us to run the RF algorithm. 3-classes occur only in those regions with
irrigated cropland, mostly associated with the major rivers in the region.

3.2. Reclassified Training Data

Absence of cropland in the training data examined for some grid squares prevented fitting
meaningful local models in these regions. These grid squares are therefore assumed to have little or no
agriculture (Figure 5). Some cells, particularly in the northern drylands lacked any training data (RF
algorithm requires >1 class in the training data). In total, 189 cells (~71% of the study domain) include
some amount of cropland. The other 78 cells (white cells in Figure 5) are mainly located in the Northern
Sahel and Sahara, where agricultural activities are absent (or occur only intermittently). On average,
2028 reference data on presence of rainfed and irrigated cropland and non-cropland were available in
each of the 189 retained grid cells (~1014 for model training and ~1014 for error assessment).
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3.3. Accuracy at Grid Level

Results show an average overall accuracy (OA) above 80%, with most 100 km squares having an
OA in the range of 75% to 100% (Table 3). Despite the relatively high OA, the reliability of classified
product is best measured in terms of the users’ accuracy, which quantifies accuracy from the perspective
of the user of the classified product. In total, 11% of assessed cells had a user’s accuracy of less than 50%;
58% were between 50% and 75%, and the remaining 31% had a user’s accuracy above 75% (Table 3).
On average, accuracy at grid level was 78.8% and 56.6% for OA and UA, respectively. Please refer to
Appendix A.2 of this document for further details on grid level assessment.

Table 3. Summary of overall accuracy and crop class user’s accuracy at grid level.

Overall accuracy

No data 0–50 50–75 75–100
Number of cells 99 0 36 132

Average OA - - 70.59 87.07

User’s accuracy

Number of cells 99 18 98 52
Average UA - 22.73 64.10 82.95

3.4. Accuracy at Country Level

Assessment at country-scales indicates that the overall accuracy is around 90% for all the countries,
except for Burkina Faso where it is slightly lower at ~77% (Figure 6). The country of Mauritania has
the highest overall accuracy of 99%, but the accuracy to reliably identify crop class from the user’s
perspective in Mauritania is only about 71%, which is the lowest among the five countries.
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Assuming 75% as targeted value for crop user’s accuracy, Mauritania is the only country where the
classification performance fails to meet expectations. Highest accuracies occurred in Niger, with 85.6%
accuracy, followed by Senegal, with 84.5%. Crop user’s accuracy in Mali and Burkina Faso was between
75% and 80%.
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In terms of crop area estimation, results show that rainfed agriculture is far more common than
irrigated agriculture in the 5 countries, with irrigated cropland occupying only ~2% of the total
(Figure 7). Cropland area is greatest in Niger (with 119 × 103 km2 of cropland, representing 37.6% of the
total agricultural area in the five Sahelian countries), followed by Burkina Faso (91 × 103 km2; 28.8%),
Mali (67 × 103 km2; 21.3%), Senegal (38 × 103 km2; 12.1%), and finally Mauritania (0.6 × 103 km2;
0.21%) where agriculture is confined to the south of the country and the Senegal River Valley (Table 4
and Figure 7).Remote Sens. 2020, 12, x FOR PEER REVIEW        11 of 24 
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Table 4. Estimated area classified as cropland in each of five Sahelian countries.

Burkina Faso Mali Mauritania Niger Senegal Total

Rainfed crop (km2) 90,799 62,513 372 118,022 37,434 309,139
Irrigated crop (km2) 203 4615 291 820 758 6688

Total 91,002 67,128 664 118,841 38,192 315,827

Expressed as fraction of the total irrigated area in the five countries, more than the half of the total
irrigated areas are in Mali (69.0%), particularly in the “Office du Niger” region, which is one of the
oldest and largest irrigation schemes in West Africa [47]. The country of Mauritania, with less than 1%
in rainfed agriculture area, has a larger share (4.4%) of the irrigated cropland in the region, more for
example than in Burkina Faso with only 3.4% of irrigated cropland (Table 4 and Figure 7).

4. Discussion

The 30 m West African Sahel Cropland map (WASC30) covers five Sahelian countries of West
Africa and shows in much more detail than previously available the agricultural zones of West Africa,
including the “breadbasket” regions of Niger, Mali, Burkina Faso, and Senegal that are critical to the food
security and economies at national and regional scales. We leveraged a distributed and dense sample
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dataset on actual land cover [29], with Landsat-8 data, to train locally optimized machine-learning
predictors for rainfed and irrigated agriculture using the Google Earth Engine (GEE) platform. Earlier
cropland products, covering the Sahelian region, generally combine irrigated and rainfed agriculture
into a single cropland class, with accuracies generally less than 70% [15]. The average user’s accuracy
of the new crop extent map, considering the five countries of Burkina Faso, Mali, Mauritania, Niger,
and Senegal (Figure 6), is 79%, which is a considerable improvement relative to the best performing
earlier products (GlobeLand30, 69%, and GFSAD30, 64%; [15]). Our accuracy statistic is also influenced
by low accuracy in Mauritania, representing less than 1% of cropland area in the region (Figure 7).
The user’s accuracy for Senegal, Mali, Burkina Faso, and Niger (excluding Mauritania) is 81% for
the new WASC30 cropland area map. The low accuracy reported for Mauritania is consistent with
our previous findings in a study comparing accuracy of cropland classes in 12 pre-existing landcover
products (Samasse et al., 2018). Explanations for this include the particularly small size of farms and
the low intensity of agricultural activities in this country. However, it must be noted that, despite
having lower accuracy compared to other countries, the cropland estimates for Mauritania in our new
WASC30 map are an improvement on the pre-existing products.

4.1. Irrigated Cropland

Based on the estimated crop areas (Table 4), irrigated land represents just 2% of the total cropland
area. Thus, a specific accuracy is not reported for this sub-class of “Crop”. However, Figure 8 shows
clearly the intensive irrigation activities in Senegal and Mauritania adjacent to the Senegal River, in Mali
in the “Office du Niger” zone, and in Niger adjacent to the Niger River. Irrigated croplands in the region
are generally supported by hydroelectric dams on the major rivers (e.g., Niger, Senegal), providing
both electricity and increased agricultural production. For example, the Diama dam in Senegal and the
Markala dam in Mali are two operational hydroelectric infrastructures promoting intensive irrigated
crop production in the Senegal valley and the Office du Niger zone in Mali, respectively [48,49].
In Mauritania, 44% of the 664 km2 mapped as cropland is irrigated.
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Figure 8. Irrigated cropland adjacent to the Senegal River in South Mauritania and North Senegal,
in the Niger River floodplain of Central Mali (with center-pivot irrigation techniques), and adjacent to
the Niger River, near Niamey. Rivers are extracted from Hydrological data and maps based on SHuttle
Elevation Derivatives at multiple Scales (HydroSHEDS). Extracted areas are 12 × 12 km.



Remote Sens. 2020, 12, 1436 12 of 22

4.2. Intensive Rainfed Cropland Zones

Analysis of the more dominant rainfed cultivated areas shows several “hot spots” of intensive
agricultural activities (Figure 9). For example, the Seno Plain (red circle), east of the Dogon Plateau in
Mali, has been devoted to intensive agricultural activities since the 1930s [50]. Recent studies using
Earth Observation data have reported cropland expansion in this region driven by the need to feed a
rapidly increasing population with accelerated expansion between 2000 and 2013 facilitated by modern
technology [32]. Rapid population growth and conducive soils, with development of processing
infrastructure, have also contributed to the high density of rainfed cropland in south-eastern Niger
(blue circle). This area, known as the Tarka Plain and Goulbi Agricultural Zone, in the Maradi-Zinder
region of Niger, is considered the most important agricultural zone of Niger (CILSS, 2016). It is
an area of enormous agricultural potential, mainly in rainfed cropland [51]. Cereal (Millet, Maize,
Sorghum, and Rice) cultivation is practiced, with more advanced systems in the Tarka plain, where the
rural population density is particularly high. Because of the anthropogenic pressure, it is common
to see an integrated system where agriculture, livestock, and forests share the same space [52].
Similarly, the West-Central Agricultural Zone in Senegal (black circle), known as the Peanut Basin
(Bassin Arachidier) for the suitability of dominant soils to grow peanuts, is also characterized by high
rural populations, with rainfed agriculture focused on cultivation of peanut, millet, sorghum, and
beans [53].
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4.3. Cropland Distribution Relative to Climate and Climate Zones

For the purpose of this work, we divided the study area based on the annual precipitation,
following a steep gradient of decreasing rainfall from south to north. Figures 10 and 11 show the
distribution of both rainfed and irrigated cropland as located in the West African Sahel Cropland map
(WASC30) under 100 mm rainfall bins. Mean Annual Precipitation (MAP) is derived from eleven years
(2005–2015) of CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) data retrieved
from Google Earth Engine. Results show that rainfed cropland area generally increases with MAP
between 200 and 1000 mm MAP, reflecting water limitations to agricultural activities in the arid zones
(200–400 mm) and more suitable conditions in the South Sahel and Soudan (400–1000 mm). Above 1000
mm MAP, rainfed cropland proportion declines (Figure 11), in part due to shift to forest production
and in part since wetter forested zones may have soils unsuitable for agriculture. However, irrigated
cropland area is largely decoupled from MAP, being clustered around the flood plains of the perennial
rivers in West Africa.
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Figure 11. Rainfed and irrigated cropland as percentage of the total area in MAE interval (e.g., The total
area of 800–900 mm zone is about 100 × 103 km2, and the fraction of this area occupied by rainfed
cropland is about 30%).

The Saharan desert region (MAP < 200 mm/y; Figure 10) constitutes about 61% of the total study
area (Table 5). Significant part of northern Mauritania, Mali, and Niger fall in this region. It is generally
characterized by an arid climate with high average temperatures, a very low relative humidity, and rare
and highly irregular precipitation, making difficult for crops to grow. However, irrigated farming
may be present in some areas using appropriate irrigation technologies [54,55], mainly for small
scale production of vegetables. Figure 11 shows our results illustrating the very low to non-existent
agricultural activities in the Sahara.
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Table 5. Proportion of area and cropland by climatic zones in our study domain including Senegal,
Mauritania, Mali, Burkina Faso, and Niger.

Saharan Sahelian Sudanian Guinean

% Area 61.02 23.50 14.85 0.63
% Rainfed 0.00 14.79 24.54 3.78
% Irrigated 0.01 0.48 0.26 0.17

% All Cropland 0.01 15.27 24.80 3.95

The second largest zone is the Sahelian (200–600 mm), occupying 23% of the total study area.
Rainfed cropland intensity increases with annual rainfall (Figure 11). Compared to the other climatic
zones, the Sahel has the highest proportion of irrigated cropland, as irrigation activities along both
Niger and Senegal rivers occur mainly in this climatic zone (Figure 10). This irrigation proportion is,
however, less than 1% against about 15% for rainfed agriculture (Table 5).

Among the four climatic zones (Figure 10), rainfed agriculture activities are most intensive in the
Sudanian zone (600–1200 mm). Representing 15% of the study area, the Sudanian is the third largest
climatic zone, after the Sahara and the Sahel. About 24% of this climatic zone is occupied by rainfed
cropland (Table 5). It covers major cereal production zones in Mali and Burkina Faso and southern
parts of the Peanut Basin in Senegal (Figure 10). The precipitation range is also suitable for cash crops
(e.g., cotton), root crops, and mixed cereal-root system (e.g., cassava, yam, sweet potato, particularly in
Southern Mali). Irrigation is not common in the Sudanian zone, largely due to the low occurrence of
main rivers in the region.

At more than 1200 mm MAP, the Guinean zone covers little of the total area of the study domain
(less than 1%). In this region, some 4% is occupied by rainfed cropland, dominated by root crop
cultivation (yams, sweet potatoes, cassava) [56].

4.4. Fallows in WASC30

The visual interpretation approach adopted for the 2 km RLCM dataset [29,31] and used as training
or reference information in this study classified large and long-term fallows as savanna. However, in
the more intensive rainfed cropland regions with reduced fallow periods, small areas of fallow were
generally classified as active agricultural land use. Overall, therefore, we consider that the WASC30
represents active agriculture, inclusive of short-term fallow fields but exclusive of longer-term fallow
(or abandoned) areas that have not been actively cropped in recent years. That makes the final cropland
class a reliable reference for developing active cropland extent.

4.5. Validation Using Local Scale Data

At local scale, our new cropland dataset has been assessed using recent (2012) GPS field surveys
mapping land use and land cover at an Agricultural College (IPR/IFRA (Institut Polytechnique Rural
de Formation et de Recherche Appliquée)) in the town of Koulikoro, just north of Bamako. Data was
collected in collaboration with Laval University (Quebec, Canada) as part of the PACM research project
(Des arbres et des champs contre la pauvreté au Mali). IPR/IFRA is a higher education institution in
Mali managing an area of about 380 ha, including experimental farms and other lands for cereals and
tree crop production. Figure 12 shows that the WASC30 captures the distribution of cultivated areas at
IPR/IFRA with an area ratio of 195 ha/199 ha = 98% (i.e., the WASC30 product underestimates cropland
area at this field station by 2%). This slight difference could be attributed to the small size of some
sparse experimental plots making difficult their detection in the 30 m Landsat data. No irrigated pixels
were detected at IPR/IFRA, which is consistent with the absence of irrigation trials at the site.
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12 Figure 12. Assessment of the new cropland map (WASC30) using field surveys at IPR/IFRA (Institut
Polytechnique Rural de Formation et de Recherche Appliquée) field station in Mali.

5. Conclusions

In this study, the Random Forest ensemble learning method has been applied to individual
100 km grid cells to develop a 30 m Landsat-derived active cropland dataset across five Sahelian
countries with unprecedented details and higher accuracy as compared to existing land cover products.
The developed dataset has an overall accuracy of 90.1% and a cropland class (rainfed and irrigated)
user’s accuracy of 79%.

Information derived from the new dataset reveals the total cropland area in West African Sahel to
be 316 × 103 km2 with 7 × 103 km2 irrigated and 309 × 103 km2 rainfed. This confirms that agriculture
in Sahelian West Africa is almost entirely rainfed. The Sudanian zone (600–1200 mm) comprises most
of the rainfed cultivated areas, while the Sahelian areas in proximity to main rivers present the highest
proportion of irrigated land. Results also show that these irrigation activities in the region remain not
well developed, comprising only about 2% of the total cropland area, despite the tremendous potential
offered by, for example, the Senegal and Niger rivers. This may be due to the lack of well-developed
infrastructure for irrigation and high investment costs to manage water and make it available where
it is most needed. More efforts in developing irrigated land in Sahel region would expand farmers’
production opportunities by reducing risks linked to climate fluctuations.

This study benefitted from the large and regularly distributed RLCM training dataset that allowed
us to fit locally optimized random forest models in each of 189 grid cells (each 100 × 100 km) across the
five-country study domain. This allowed us to minimize the effects of soil, topographic, and climatic
differences that would increase errors in models fit at coarser regional and continental scales, thus
improving overall accuracy of the final WASC30 product.

Geospatial data in general, and Landsat time series in particular, provide a critical source of
information for the important task of producing accurate statistics on cultivated areas, particularly in
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developing countries where timely accurate georeferenced agricultural data are sometimes missing.
The new cropland dataset will contribute to filling this void in West Africa Sahel.

Data Availability: The West African Sahel Cropland Dataset (WASC30) is currently available for visualization
as a Google Earth Engine Application (https://savannalabnmsu.users.earthengine.app/view/wa-cropmap-30m).
Further inquiries on data availability including download options should be addressed to the corresponding author.
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Appendix A.

Appendix A.1. Tuning RF Major Parameters

Separate RF models were developed for each of the 189 cropland cells. Correlated predictors were
removed following the example illustrated by Figure A4 before fitting models and tuned using the
“tuneRF” function in R software. This tuning function helps determine the best number of variables
available for splitting at each tree node (mTry) for a number of trees (nTree) based on the minimum
values of the Out-Of-Bag (OOB) errors. The chosen values of nTree to run “tuneRF” included 500, 1000,
1500, and 2000. Occurrences of nTree corresponding to the optimal mTry are reported in Figure A1A.
It appears that RF models (classifiers) show better performance in 44% of the cells for nTree = 500 and
15% of the cells for nTree = 2000. Between these two limits, 24% and 17% of the cells have shown
minimal errors of OOB at nTree = 1000 and nTree = 1500, respectively. Frequency distribution of
resulting optimum mTry values from the tuning process is shown on Figure A1B. Numbers 2, 1, 4, 8,
16, and 3 have been used as mTry values to fit the best models for the classification.

The Random Forest (RF) is widely accepted as an efficient ensemble approach for land
cover classification using remotely sensed data. It handles well imbalanced data, missing values,
and outliers [57]. However, tuning RF two major parameters (number of trees: nTree, number of
variables available for splitting at each tree node: mTry) to get optimum values may be time and
resource consuming, even in parallel processing environments like Google Earth Engine. In this study,
we selected nTree in {500, 1000, 1500, 2000} for reduced computational time while ensuring sufficient
trees for model convergence (Breiman, 2001). The best mTry for most of the grid cells has been achieved
with nTree = 500, others for nTree = 2000, which are the limits of tuned nTree values (Figure A1A).
Using a larger range of nTree values (e.g., including values below 500 and above 2000) could probably
result in better mTry, yielding higher classification performance for the final cropland product.

Appendix A.2. Accuracy at Grid Level

Results on the accuracy assessment do not show all the 189 trained and classified squares (100 km
by 100 km grid unit). Twenty-one (21) of them have been entirely classified as Non-crop. They are
considered as NoData for the assessment. The general trend appearing on Figure A2 is that in average
classified squares have an overall accuracy above 80%. For most squares, overall accuracy falls in the
range of 75% to 100%. The country of Burkina Faso has the maximum of units with overall accuracy
within 50%–75%, and none in the grid has been classified with a correct proportion of less than 50%.

https://savannalabnmsu.users.earthengine.app/view/wa-cropmap-30m
https://pubs.er.usgs.gov/publication/fs20173004
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This relatively high overall accuracy is contrasted by the crop class specific accuracy. Figure A3 gives
insight into the “Crop” class user’s accuracy at grid level. In total, 11% of assessed cells have a user’s
accuracy less than 50%, 58% of them have theirs between 50% and 75%, and the remaining 31% have a
user’s accuracy above 75% (Table 3).Remote Sens. 2020, 12, x FOR PEER REVIEW        18 of 24 

 

 

Figure A1. Occurrences of the number of tree (nTree) corresponding to minimum out-of-bag errors 
(A) and the obtained number of variables available for splitting at each tree node, mTry (B). 

The Random Forest (RF) is widely accepted as an efficient ensemble approach for land cover 
classification using remotely sensed data. It handles well imbalanced data, missing values, and 
outliers [57]. However, tuning RF two major parameters (number of trees: nTree, number of variables 
available for splitting at each tree node: mTry) to get optimum values may be time and resource 
consuming, even in parallel processing environments like Google Earth Engine. In this study, we 
selected nTree in {500, 1000, 1500, 2000} for reduced computational time while ensuring sufficient 
trees for model convergence (Breiman, 2001). The best mTry for most of the grid cells has been 
achieved with nTree = 500, others for nTree = 2000, which are the limits of tuned nTree values (Figure 
A1,A). Using a larger range of nTree values (e.g., including values below 500 and above 2000) could 
probably result in better mTry, yielding higher classification performance for the final cropland 
product. 

A2. Accuracy at Grid Level 

Results on the accuracy assessment do not show all the 189 trained and classified squares (100 
km by 100 km grid unit). Twenty-one (21) of them have been entirely classified as Non-crop. They 
are considered as NoData for the assessment. The general trend appearing on Figure A2 is that in 
average classified squares have an overall accuracy above 80%. For most squares, overall accuracy 
falls in the range of 75% to 100%. The country of Burkina Faso has the maximum of units with overall 
accuracy within 50%–75%, and none in the grid has been classified with a correct proportion of less 
than 50%. This relatively high overall accuracy is contrasted by the crop class specific accuracy. Figure 
A3 gives insight into the “Crop” class user’s accuracy at grid level. In total, 11% of assessed cells have 
a user’s accuracy less than 50%, 58% of them have theirs between 50% and 75%, and the remaining 
31% have a user’s accuracy above 75% (Table 3). 

 

Figure A1. Occurrences of the number of tree (nTree) corresponding to minimum out-of-bag errors (A)
and the obtained number of variables available for splitting at each tree node, mTry (B).

Remote Sens. 2020, 12, x FOR PEER REVIEW        18 of 24 

 

 

Figure A1. Occurrences of the number of tree (nTree) corresponding to minimum out-of-bag errors 
(A) and the obtained number of variables available for splitting at each tree node, mTry (B). 

The Random Forest (RF) is widely accepted as an efficient ensemble approach for land cover 
classification using remotely sensed data. It handles well imbalanced data, missing values, and 
outliers [57]. However, tuning RF two major parameters (number of trees: nTree, number of variables 
available for splitting at each tree node: mTry) to get optimum values may be time and resource 
consuming, even in parallel processing environments like Google Earth Engine. In this study, we 
selected nTree in {500, 1000, 1500, 2000} for reduced computational time while ensuring sufficient 
trees for model convergence (Breiman, 2001). The best mTry for most of the grid cells has been 
achieved with nTree = 500, others for nTree = 2000, which are the limits of tuned nTree values (Figure 
A1,A). Using a larger range of nTree values (e.g., including values below 500 and above 2000) could 
probably result in better mTry, yielding higher classification performance for the final cropland 
product. 

A2. Accuracy at Grid Level 

Results on the accuracy assessment do not show all the 189 trained and classified squares (100 
km by 100 km grid unit). Twenty-one (21) of them have been entirely classified as Non-crop. They 
are considered as NoData for the assessment. The general trend appearing on Figure A2 is that in 
average classified squares have an overall accuracy above 80%. For most squares, overall accuracy 
falls in the range of 75% to 100%. The country of Burkina Faso has the maximum of units with overall 
accuracy within 50%–75%, and none in the grid has been classified with a correct proportion of less 
than 50%. This relatively high overall accuracy is contrasted by the crop class specific accuracy. Figure 
A3 gives insight into the “Crop” class user’s accuracy at grid level. In total, 11% of assessed cells have 
a user’s accuracy less than 50%, 58% of them have theirs between 50% and 75%, and the remaining 
31% have a user’s accuracy above 75% (Table 3). 

 

Figure A2. Overall accuracy (OA) at grid level.

Remote Sens. 2020, 12, x FOR PEER REVIEW        19 of 24 

 

Figure A2. Overall accuracy (OA) at grid level. 

 
Figure A3. Crop User’s accuracy at grid level. 

A3. Correlated Variables / Predictors 

An example of removal of highly correlated variables, based on a correlation coefficient > 0.99 is 
shown in Figure A4. In these cases, we anticipate no additional useful explanatory information is 
available by including both variables. Predictor EVI is similar to SAVI and MSAVI, thus only MSAVI 
was maintained to develop the model by the algorithm. Similarly, predictors EVI_1 and SAVI_1 bring 
the same information as MSAVI_1; they can then be removed, reducing computational time in 
classifying this grid cell. Since RF is generally robust to correlation, correlations < 0.99 were permitted.

Figure A3. Crop User’s accuracy at grid level.

Appendix A.3. Correlated Variables/Predictors

An example of removal of highly correlated variables, based on a correlation coefficient > 0.99
is shown in Figure A4. In these cases, we anticipate no additional useful explanatory information is
available by including both variables. Predictor EVI is similar to SAVI and MSAVI, thus only MSAVI
was maintained to develop the model by the algorithm. Similarly, predictors EVI_1 and SAVI_1
bring the same information as MSAVI_1; they can then be removed, reducing computational time in
classifying this grid cell. Since RF is generally robust to correlation, correlations < 0.99 were permitted.
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Appendix A.4. Disagreements Analysis

Error of classification, expressed as total disagreement, can be divided into two components,
which are the quantity disagreement and allocation disagreement [46]. Quantity disagreement can be
interpreted as the differences in the areas allocated to the classes in the reference data and the classified
map, and allocation disagreement is related to the misallocation of classified pixels for the same
level of quantity agreement [58]. The overall accuracy is the complement of the total disagreement
(100%—total disagreement). Figure A5 illustrates results of the developed cropland map considering
these two categories of disagreement at country level. Overall, the highest total disagreement is less
than 25%. That means for the 5 countries, overall accuracy is greater than 75%. It also appears that
quantity disagreement is more important in Mali, Mauritania, and Niger. Thus, this measure is the
major contributor to the map’s total disagreement in these countries. The opposite is true for Burkina
Faso and Senegal where spatial mismatch of pixels dominates the disagreement. Considering 10% as
threshold of disagreement significance, Burkina Faso is the only country exceeding this level.
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