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Abstract: The Sentinel-2 and Sentinel-3 satellite constellation contains most of the spatial, temporal
and spectral characteristics required for accurate, field-scale actual evapotranspiration (ET) estimation.
The one remaining major challenge is the spatial scale mismatch between the thermal-infrared
observations acquired by the Sentinel-3 satellites at around 1 km resolution and the multispectral
shortwave observations acquired by the Sentinel-2 satellite at around 20 m resolution. In this study
we evaluate a number of approaches for bridging this gap by improving the spatial resolution of
the thermal images. The resulting data is then used as input into three ET models, working under
different assumptions: TSEB, METRIC and ESVEP. Latent, sensible and ground heat fluxes as well as
net radiation produced by the models at 20 m resolution are validated against observations coming
from 11 flux towers located in various land covers and climatological conditions. The results show
that using the sharpened high-resolution thermal data as input for the TSEB model is a sound
approach with relative root mean square error of instantaneous latent heat flux of around 30% in
agricultural areas. The proposed methodology is a promising solution to the lack of thermal data
with high spatio-temporal resolution required for field-scale ET modelling and can fill this data gap
until next generation of thermal satellites are launched.

Keywords: evapotranspiration; data fusion; field-scale; machine-learning; physical model;
Sentinel-2; Sentinel-3

1. Introduction

The fluxes of water (e.g., evapotranspiration—ET) and energy (e.g., of latent and sensible
heat) at the surface of the Earth are critical to quantify for many applications in the fields of
climatology, meteorology, hydrology and agronomy. Easy access to reliable estimations of ET is
considered a key requirement within natural resource management, and if ET can be estimated
accurately enough it holds a vast potential to assist in the current attempts of meeting the UN
Sustainable Development Goals (SDG), e.g., SDG2—zero hunger, or SDG6—clean water and sanitation
(https://sustainabledevelopment.un.org, last accessed 10 December 2018).

Water and energy fluxes show large spatio-temporal variability since they are highly dependent
not only on the meteorological conditions, but also on different characteristics and properties of the land
surface, such as soil moisture/water availability, land cover type and amount of vegetation biomass
and its health. Remote sensing data can provide spatially-distributed information about relevant land
surface states and properties used to model the relevant fluxes and hence this technology addresses
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a key limitation of conventional point scale observations when estimating fluxes at watershed and
regional scales. In particular, thermal remote sensing has been widely used for assessing land surface
turbulent fluxes [1]. While there are a variety of existing remote sensing ET methods and data options
available [2,3], none is fully satisfying the user needs for reliable, operational and easy accessible
estimates and tools able to derive ET at agricultural-parcel scale. The limitations have so far primarily
been centred on the lack of suitable satellite-based input data sources.

With the recent launch of Sentinel-2 and Sentinel-3 satellites, the data foundation for producing
operational ET maps has been set since as a constellation they contain most of the required spatial,
temporal and spectral characteristics [4]. Sentinel-3 Sea and Land Surface Temperature Radiometer
(SLSTR) instrument acquires daily thermal infrared (TIR) information of the surface at ca. 1 km scale [5].
However, the reliable estimation of ET in agricultural and heterogeneous landscapes requires that the
model’s spatial resolution matches the dominant landscape feature scale, usually tens or hundreds of
meters. Sentinel 2, with a spatial resolution ranging from 10 to 60 m and 5 day revisit time with Sentinel
2A & B combined [6], can resolve part of these scaling issues, although it lacks a TIR instrument
at high spatial resolution such as in the Landsat missions. Therefore sharpening [7–9] and/or
disaggregation methods [10] are required to bridge the spatial gap between the currently available
Sentinel constellation’s thermal-infrared (referred to as “thermal” in the reminder of the paper) and
optical-shortwave (referred to as “shortwave” in the reminder of the paper) observational capabilities
in order to optimally exploit the synergies of both types of sensors for field-scale ET estimations. The
aim of this study is to develop an optimal combination of thermal sharpening and ET modelling
methods for the derivation field-scale ET with combined Sentinel-2 and Sentinel-3 observations.

Several data fusion methods have been proposed to merge low resolution thermal infrared
imagery with high resolution shortwave imagery in order to obtain estimates of surface temperature
(Trad) and/or ET at high spatial resolution. In this study we focus on different, but possibly
complementary, approaches: empirical and semi-empirical methods that exploit relationships between
shortwave bands and thermal or ET data (hereinafter called image sharpening methods); and
physically-based ET downscaling methods (hereinafter called ET disaggregation).

Thermal image sharpening uses information from the thermal and shortwave images themselves
to calibrate empirical or semi-empirical models. Those models relate coarse resolution Trad (or ET)
with coarse resolution (or fine resolution aggregated to coarse resolution) shortwave bands, and then
apply the calibrated model to the fine scale shortwave image, producing either a sharpened Trad, or
directly an ET product.

One of the first attempts to sharpen Trad was TsHARP [11], who tested different regression models
between Trad and NDVI. Since then, TsHARP has been utilised as reference method for developing and
testing other sharpening methods [8,12,13]. The Data Mining Sharpening (DMS) approach [8] used
local and global regression trees between reflective bands and Trad of homogeneous samples at coarse
scale (based on coefficient of variation threshold). Residual analysis was performed to ensure energy
conservation (based on emitted radiances) between original resolution and sharpened images. To avoid
overfitting of regression trees such as in DMS the use of random forests was proposed instead [14].
Following with the machine learning algorithms, Yang et al. [15] used an Artificial Neural Network
with Genetic Algorithm and Self-Organizing Feature Mapping trained with different land surface
parameters for each land cover class (vegetation, bare soil, urban and water). A different approach
used an unmixing method to derive brightness temperature and emissivity at fine scale [16]. The
unmixed brightness temperature and emissivity were then the inputs to a generalized split-window
algorithm to retrieve fine resolution Trad.

The use of a contextual algorithm can also be applied in sharpening, such as is the case of
DISPATCH-LST (DISaggregation based on Physical And Theoretical scale CHange) by Merlin et al. [7]
who used shortwave information on fractional vegetation cover and fractional photosynthetically
active vegetation cover in contextual scatterplots of fractional green vegetation cover versus Trad
and albedo versus Trad to define minimum and maximum soil and canopy endmember temperatures.



Remote Sens. 2020, 12, 1433 3 of 27

Finally, two or more different methods can be used together and combined through weighted averaging,
such as in Chen et al. [17], who combined TsHARP and a Thin Plate Spline interpolation by weighting
their corresponding residuals. Besides of the fact that all methods described above can be used as well
to sharpen ET, other studies have already suggested methods to directly downscale coarse scale ET
using shortwave data [18–21]. In any case, shortwave images provide limited information related to
some surface energy balance processes, such as turbulent transport, soil moisture, and meteorological
forcing. Therefore ancillary variables could be included in Trad or ET sharpening such as land cover
maps (to account for different aerodynamic roughness), local meteorology, or surface geometry [22].

A previous study [4] found that using a “disaggregation” approach [10,23] significantly enhanced
the accuracy of turbulent fluxes derived with sharpened Trad. That approach ensures spatial consistency
between fluxes derived at fine and coarse spatial scales by first estimating them at the coarse scale at
which the thermal observations were acquired. In the following step, the low-resolution air temperature
is varied to adjust the flux estimates for all high-resolution pixels falling within one low-resolution
pixel. This is repeated until a consistency between the two scales is obtained. This approach assumes
that since the coarse scale estimates are derived with Trad at original spatial resolution they are of
higher accuracy. The disaggregation was shown to improve ET model skill when compared with
outputs produced at either coarse or fine resolution alone [4,23,24].

The sharpened Trad can be used as input to land-surface energy flux models. The latent heat
flux λE (or energy used for ET) can be estimated as the residual of the surface energy budget, using
estimates of the net radiation (Rn), soil heat flux (G) and sensible heat flux (H). The thermal-based
ET models were originally formulated for computing H, which is governed by the bulk resistance
equation for heat transfer [25], and is driven by the gradient between an ensemble surface temperature,
called the “aerodynamic surface temperature” (T0), and the surface layer air temperature. Besides of
the estimation of that surface-to-air temperature gradient, the estimation of H requires the modelling
of an aerodynamic resistance term, which can be viewed as a simplification of the complex turbulent
transport of heat, momentum and water vapour, by using a similarity with Ohm’s law for electric
transport. These resistances therefore represent how efficiently a scalar (heat, momentum or water
vapour) is transported from one point to another following a gradient (i.e., vertical differences of
temperature and/or vapour pressure). Several formulations and/or parametrizations have been
proposed to describe these turbulent transport processes but generally they include variables related
to surface aerodynamic roughness, wind speed as well as wind attenuation through the canopy, and
atmospheric stability [26]

The challenge in resistance energy balance models is that T0 cannot be directly estimated by
remote sensing [27,28]. Hence, remote sensing ET models differ from each other on how the existing
difference between the radiometric temperature (Trad) observed by satellite sensors and T0 is considered.
Single-source or bulk transfer schemes for modelling H treat soil and canopy as a single flux source
and often employ an additional resistance term (RAH , usually dependent on the Stanton number kB−1)
because heat transport is less efficient than momentum transport from land surface (see e.g., Garratt
and Hicks [29] or Verhoef et al. [30]). Appropriately calibrated, one-source energy balance (OSEB)
models have shown satisfactory estimates of surface energy fluxes in heterogeneous landscapes [31–34].
However, due to the difficulty in robustly and parsimoniously parametrizing RAH for OSEB schemes
at different landscapes, climates, and observational configurations [35], the two-source energy balance
(TSEB) modelling approach was developed [36]. TSEB models partition the surface energy fluxes and
the radiometric temperature between nominal soil and canopy sources, and include a more physical
representation of processes related to Trad and T0 without requiring any additional input information
beyond that needed by single-source models using more sophisticated kB−1 parametrizing. However,
because direct measurements of canopy (TC) and soil (TS) temperatures rarely are available, in most
applications these component temperatures are derived from a measurement of the bulk surface
radiometric temperature Trad. Partitioning of Trad between TC and TS requires some assumptions
related to the evaporative efficiency of soil or canopy [36–38].
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Finally, like all remote sensing retrievals, satellite radiometric temperature is prone to uncertainty
due to sensor noise, surface emissivity and atmospheric effects. To overcome this issue in ET estimation,
several methods have been proposed based on either contextual models [39–41], by constraining the
ET range between hot (no ET) and cold (potential ET) pixels [31,32], or using time-differenced morning
temperature rise [42,43]. Regarding the contextual methods, all of them require homogeneous forcing
and coupling between land surface/atmosphere which is a disadvantage when applied at large scales.
In addition, those models assume that the coldest pixel in the image means potential transpiration,
and the hottest pixel means zero transpiration which is not always the case (e.g., in humid and
sub-humid areas).

In this study we will evaluate three different ET models driven by Sentinel-2 and Sentinel-3
imagery: METRIC [32] is a one source energy balance model that is less sensitive to heat transfer
coefficient parametrizing than other OSEB model such as SEBS [33]; TSEB-PT [36] as a widely used two
source energy balance model; and ESVEP [44] as a hybrid contextual-two source energy balance model.

2. Materials and Methods

In this section we first describe the evaluated ET models (Section 2.1), before presenting the
validation sites (Section 2.2) and the input data sources (Section 2.3).

2.1. Description of ET Models

The energy balance can be expressed as (1)

Rn ≈ G + H + λE (1)

where net radiation Rn is a key element in the energy budget of the land surface as it determines
the available energy that the land utilises for water evapotranspiration (latent heat flux, λE) and for
heating up the overlying air layer (sensible heat flux, H). Equation (1) assumes that other energy terms
(heat advection, heat storage in the canopy layer, and energy for photosynthesis) are negligible. Since
ET is the combined process of soil evaporation and canopy transpiration, Rn can be also be partitioned
into soil (Rn,S) and canopy net radiation (Rn,C), with both sensible and latent heat flux also partitioned
between soil (i.e., evaporation process) and canopy (transpiration).

Using remote sensing data to derive Rn has proven to be a sound alternative to ground-based
measurements of both shortwave and longwave net radiation. Different approaches have been
proposed to estimate surface albedo, ranging from empirical relationships between ground measured
albedo and the different reflective bands in satellite [45] to more physically based methods relying on
modeling the surface anisotropic effects [46,47]. Indeed, one of the major challenges when estimating
albedo with satellite remote sensing data is that such sensors typically measure the outgoing radiance
at a given direction while the estimation of albedo needs to account for the outgoing radiance in all the
directions of the hemisphere [48,49]. Methods based on the modelling of those bidirectional effects
have proven to be effective to overcome this challenge. In this study, we use a method for retrieving
soil and canopy shortwave net radiation, proposed by Kustas and Norman [50], based on the different
spectral behaviour of soil and vegetation for the photosynthetically active radiation (PAR) and near
infrared (NIR) regions of the spectrum. Such approach is based on the radiative transfer model (RTM)
described in Campbell and Norman [51] to obtain estimates of soil and canopy albedo as well as
canopy transmittance in the PAR and NIR. This approach requires as inputs Leaf Area Index and leaf
inclination distribution [52], the different bihemispherical reflectances and transmittances of soil and a
single leaf, and the proportion of diffuse irradiance. However, this approach assumes homogeneous
canopies and it requires some corrections when dealing with clumped canopies [53], which were also
used in this study.

On the other hand, longwave net radiation is primarily driven by the thermal radiation emitted by
the surface, which depends on surface emissivity and skin temperature following the Stefan-Boltzman
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law. Besides, Kirchoff’s law can be applied to derive the atmospheric longwave radiation that is
absorbed by the surface. When running OSEB models (i.e., METRIC), only those two components are
taken into account. However, when using TSEB models (i.e., TSEB-PT and ESVEP), surface anisotropy
can also be accounted for when estimating the net longwave radiation, considering that leaves and soil
have different temperatures and hence emit different amounts of thermal radiation [50].

Soil heat flux G is usually assumed to be a ratio of the soil net radiation. Choudhury et al. [54],
Bastiaanssen et al. [31] suggested that G is ca. 35% of net radiation of the soil around midday hours
and this is the approach used in this study by TSEB models. Since net radiation of the soil cannot
be computed when using OSEB models, a specific equation suggested by Bastiaanssen et al. [31] is
used instead.

In all three evaluated models, λE is estimated as residual of Equation (1). The main difference
between the models is in the way in which H is calculated, as briefly described in the sections below.

2.1.1. Mapping Evapotranspiration at High Resolution with Internalized Calibration, METRIC

Sensible heat flux in METRIC [32] is derived in a contextual manner by finding hot and cold
pixels (Equation (2)).

H = ρCp
δT

RAH
(2a)

δT = c + m Trad (2b)

where δT is the estimated gradient between aerodynamic and air temperature, estimated as a linear
equation function of Trad with c and m parameters are linearly solved from expressing Equation (2b)
from two cold and hot endpoints:

m =
δThot − δTcold
Thot − Tcold

(3a)

c = δThot − m Thot (3b)

METRIC scales λE between these two hot (Thot) and cold (Tcold) endmembers based on a linear
relationship between actual ET and reference ET using the standardised ASCE Penman-Monteith
equation for an ideal alfalfa field [55]. Therefore, METRIC, as opposed to SEBAL [31], does not assume
zero sensible heat flux at the cold pixel, which can have a positive impact on model accuracy at well
watered areas under large vapour pressure deficit conditions. According to Allen et al. [32], cold pixels
yield a 5% larger ET than the reference ET (λEcold = 1.05λEre f ), but earlier in the season and off-season,
cold pixel ET is instead a function of fractional cover or NDVI: λEcold/λEre f = f (NDVI). On the
other hand, METRIC overcomes the issue of estimating kB−1 by computing RAH using the profile at
two different heights above z0H . Finally the authors stated the need for either computing an “excess
resistance” in aerodynamically rough and dry surfaces when using the δT calibration performed
over agricultural areas, or calibrating different δT slopes at different land covers/environmental
conditions [32].

For Equation (2) to hold true, δT and H require constant wind speed at the application domain,
so the model uses wind speed at blending height to overcome this issue. It also requires constant
irradiance and air temperature, i.e., δT changes are only either due to root-zone soil moisture or
aerodynamic roughness. Furthermore, the model requires heterogeneity in hydrologic and vegetation
conditions and therefore we applied METRIC over two different vegetation domains, short vegetation
(crops, grass and shrubs) and tall vegetation (broadleaved and conifer forests as well as wooded
savannas). Finally, METRIC is sensitive to the definition of hot and cold pixels. Several different
methodologies to find those endmember values were proposed, which can be especially challenging in
heterogeneous areas where pixels become mixed at coarse spatial resolution. In our case we adopted
the Exhaustive Search Algorithm solution proposed by Bhattarai et al. [56].
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2.1.2. Priestley-Taylor Two-Source Energy Balance Model, TSEB-PT

Two-source energy balance models treat the land surface as two layers, soil and canopy,
contributing to the energy and water fluxes (Equation (4))

Rn,C = HC + λEC (4a)

Rn,S = HS + λES + G (4b)

where soil (canopy) sensible heat flux is computed from the gradient between the soil
(canopy) temperature (TS and TC respectively) and the air temperature at the sink-source height
(equivalent to T0). In the TSEB-PT model [28,36,53], an electrical circuit analogy is used in which H
from soil and canopy are estimated based on three aerodynamic resistances to heat transport arranged
in a series network. Since TC and TS are unknown a priori, they are estimated in an iterative process in
which it is first assumed that green canopy (expressed as the fraction of LAI that is green, fg) transpires
a potential rate based on Priestley–Taylor formulation [36]:

λEC = αPT fg
∆

∆ + γ
Rn,C, αPT = 1.26 (5)

where αPT is the Priestley and Taylor [57] coefficient, ∆ is the slope of the vapour pressure to air
temperature curve and γ is the psychrometric constant. Then the canopy transpiration is sequentially
reduced (i.e., αPT < 1.26) until realistic fluxes are obtained (λEC ≥ 0 and λES ≥ 0)

TSEB-PT probably is the model that requires most accurate retrievals of physical inputs (LAI
and Trad), and studies already reported larger uncertainty in senescent vegetation (i.e., fg < 1) and
very dense (high LAI) or tall vegetation [43,58]. It is more complex than METRIC and therefore has
a large number of parameters and modelling options. Finally, the Priestley–Taylor formulation was
shown to produce larger uncertainty in high advection conditions, cases in which initializing λEC
with a Penman-Monteith formulation showed better results [37]. Combining TSEB-PT model with the
disaggregation approach (described in Section 1) results in a disTSEB model [23].

2.1.3. End-Member-Based Soil and Vegetation Energy Partitioning, ESVEP

ESVEP is based on a trapezoid Trad − fcover framework, in which it considers fluxes acting in a
“parallel” soil and canopy system [44]. As in TSEB-PT, ESVEP partitions Trad as a linear weight of
emitted radiance. Other similar models to ESVEP are HTEM [59] and TTEM [60], but ESVEP solves
the trapezoid in a pixel-per-pixel basis overcoming the need for homogeneous weather forcing and
roughness (Equation (6a)).

TS,max =
ra (Rn,S − G)

ρaCp
+ TA (6a)

TC,max =
raRn,C

ρaCp

γ
(

1 + rb,dry/ra

)
∆ + γ

(
1 + rb,dry/ra

) − vpd

∆ + γ
(

1 + rb,dry/ra

) + TA (6b)

TS,min =
ra (Rn,S − G)

ρaCp

γ

∆ + γ
− vpd

∆ + γ
+ TA (6c)

TC,min =
raRn,C

ρaCp

γ (1 + rb,wet/ra)

∆ + γ (1 + rb,wet/ra)
− vpd

∆ + γ (1 + rb,wet/ra)
+ TA (6d)

where ra is the aerodynamic resistance, rb,dry and rb,wet are resistances of dry and wet canopy
respectively, ρa is the density or air, Cp is specific heat capacity at constant pressure, γ is psychrometric
constant and vpd is vapour pressure deficit of the air.
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2.2. Validation Sites

Year 2017 measurements from eleven eddy covariance (EC) sites were used in this study, covering a
wide range of land cover types and climates. Sites are summarised in Table 1 and data used in validation
included the four components of net radiation Rn(shortwave/longwave downwelling/upwelling), soil
heat flux G, sensible heat flux H, and latent heat flux λE. In addition, friction velocity, Monin-Obukhov
length, and wind direction data from the EC system was used to estimate the satellite pixel footprint
contribution [61,62] to the turbulent fluxes at the satellite overpass. Validation sites comprise
5 agricultural sites, both irrigated and rainfed, including row crops (e.g., Sierra Loma vineyard) and
an olive grove (Taous). In addition, two sites over grassland, one humid meadow (Grillenburg) and
a semi-arid steppe (Kendall Grassland), one in conifer (Hyltemossa) and one in broadleaved forests
(Harvard Forest) are also included in the validation list. Finally, complex heterogeneous landscapes
are represented by two wooded savannas (Dahra and Majadas de Tiétar). From all these sites, 3 are in
Mediterranean climate, and two more in semi-arid climates, whereas the rest of the sites are located in
temperate climates.

Table 1. Description of eddy covariance sites used for validation. Sites are listed in alphabetic order. Z
shows the EC measurement height in meters, while the contact person for the EC tower is credited in
PI column.

Site (Abrevation) Land Cover Climate Location Z (m) PI/Reference

Choptank (CH) Cropland, irrigated
(rotation of corn and
soybean)

Temperate United States
39.058743 N
75.851282 W

5 William P. Kustas
(ARS-USDA)

Dahra (DA) Savanna Semi-arid Senegal
15.40278 N
15.43222 W

9 Torbern
Tagesson (Univ.
Copenhagen) [63]

Grillenburg (GR) Grassland, meadow Temperate Germany
50.950013 N
13.512583 E

3 Christian Bernhofer
(T.U. Dresden)

Harvard Forest (HF) Broadleaved forest Temperate United States
42.536874 N
72.172578 W

30 J. William Munger
(Harvard Univ.)

Hyltemossa (HTM) Conifer forest
(spruce)

Temperate Sweden
56.097584
N 13.419056 E

27 Michal Heliasz (Lund
Univ.)

Kendall Grassland
(KG)

Grassland, steppe Semi-arid United States
31.73652 N
109.94185 W

6.4 Russell Scott
(ARS-USDA) [64,65]

Klingenberg (KL) Cropland (spring
barley and catch
crops)

Temperate Germany
50.8931 N
13.5224 E

3.5 Christian Bernhofer
(T.U. Dresden)

Majadas de Tieétar
(MT)

Savanna Mediterranean Spain
39.940332
N 5.774647 W

15.5 Arnaud Carrara
(CEAM)

Selhausen (SE) Cropland (sugar beets
and winter barley)

Temperate Germany
50.870623 N
6.449653 E

2.3 Marius Schmidt
(Jülich)

Sierra Loma (SL)
(previously known as
Borden)

Cropland, irrigated
(vineyard)

Mediterranean United States
38.289355 N
121.11779 W

5 William P. Kustas
(ARS-USDA) &
Joseph Alfieri
(ARS-USDA) [66,67]

Taous (TA) Cropland, rainfed
(olive)

Mediterranean Tunisia
34.93111 N
10.60153 E

9.5 Gilles Boulet
(CESBIO) & Dalenda
Boujnah (Institut de
l’Olivier)

Error metrics included mean bias error (∑ (Obs. − Pred.)/N), root mean squared error (RMSE =√
∑ (Obs. − Pred.)2/N), relative RMSE (RMSE/Obs), and Pearson correlation coefficient between
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observed and predicted. Due to the lack of energy closure in the eddy covariance data, unless
otherwise stated all metrics were computed after adding the energy balance residual (residual =

Rn,EC − GEC − λEEC − HEC) to the latent heat flux, taking the assumption that errors in measurements
of λE are larger than errors in the measurements of H [68].

2.3. Input Data Sources

The input data required to run the evapotranspiration models came from three main and
two ancillary sources. The main sources were: Sentinel-2 shortwave observations, Sentinel-3
thermal observations and European Center for Medium-range Weather Forecasts (ECMWF) ERA-5
meteorological reanalysis data. The ancillary sources were: a digital elevation model (DEM) from the
Shuttle Radar Topography Mission (SRTM) satellite, and land cover map created as part of the ESA
Climate Change Initiative (CCI).

2.3.1. Satellite Data

The main satellite data inputs come from the Sentinel-2 (both A and B) and Sentinel-3 (A only)
satellites. Sentinel-2 and Sentinel-3 were chosen as the primary satellite data sources for this study for
a number of reasons. Firstly, as mentioned previously, when treated as a constellation those satellites
are able to satisfy the need for temporally dense observations at high spatial resolution and with good
radiometric accuracies. Secondly, they are part of the Copernicus programme, meaning that there is a
guaranteed long-term continuity of data into the future. Thirdly, the data from those satellites is free
and open and will remain so, again due to being part of the Copernicus programme.

High-resolution shortwave observations needed to characterise the state of vegetation in the
evapotranspiration model as well as to sharpen TIR data were obtained by the MultiSpectral Instrument
(MSI) on board of the Sentinel-2A & 2B satellites. MSI acquires reflectance information in 13 spectral
bands (with central wavelength ranging from 444 nm to 2202 nm) with a spatial resolution of 10 m,
20 m, or 60 m (depending the spectral band) and global geometric revisit of at least 5 days when both
satellites are considered [6]. The MSI sensor has 3 spectral bands in the leaf-pigment sensitive red-edge
part of the electromagnetic spectrum and two bands in water-content sensitive shortwave-infrared part
of the spectrum, in addition to the more traditional visible and near-infrared bands, which makes it
well suited for vegetation mapping and monitoring [69]. For each of the validation sites, all Sentinel-2
images for year 2017 were visually scanned and the ones which were cloud, fog and shadow free in
the closest vicinity of the flux towers locations were selected for processing.

L1C top of the atmosphere images were converted to bottom-of-atmosphere (BOA) reflectances
(L2A) using the Sen2Cor atmospheric correction processor [70] v2.5.5. BOA reflectance values were then
used as input to the Biophysical Processor [71] available in the SNAP software v6.0.1 (step.esa.int—last
accessed 28 November 2018) in order to obtain effective values of green Leaf Area Index (LAI),
Fractional Vegetation Cover (FVC), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR),
Canopy Chlorophyll Content (CCC) and Canopy Water Content (CWC). The outputs of the SNAP
Biophysical Processor have been validated in a number of studies, with good performance in
herbaceous crops [72,73] but overestimation of LAI in bare-soil cases and underestimation of LAI in
forests [74]. Those inaccuracies could have an impact on the results of this study in semi-arid and
forested areas.

The fraction of vegetation which is green and transpiring ( fg) was estimated
based on Fisher et al. [75] (Equation (7)):

fg = FAPAR/FIPAR (7)

where FIPAR is the fraction of photosynthetically active radiation intercepted by green and brown
vegetation. FAPAR was obtained from the biophysical processor as described above, while FIPAR was
derived iteratively from Equation (8) of Campbell and Norman [51]:

step.esa.int
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FIPAR = 1 − exp
−0.5PAI

cos θ
(8)

where θ is the solar zenith angle at the time of the S2 overpass, and PAI is the plant area index with
initial PAI equal to LAI and in subsequent iterations

PAI = LAI/ fg (9)

until fg converges. Two assumptions made in Equation (8) are that all intercepted PAR comes from
the solar beams, and that both FAPAR and FIPAR are computed from a canopy with a spherical
leaf inclination distribution. Indeed, from the the average leaf angle histogram, from which the
training database was built in Weiss and Baret [71], most training cases in the Biophysical processor
correspond to a spherical distribution (mode at 60◦ leaf angle). Equation (9) was subsequently used
within the land surface models to convert LAI, which was assumed to represent green LAI [71], into
PAI. Afterwards, PAI, leaf bi-hemispherical reflectance and transmittance, together with constant
values for soil reflectance in the visible (VIS = [400–700] nm, ρsoil,VIS = 0.15) and near infrared
(NIR = [700–2500] nm, ρsoil,NIR = 0.25) were used to quantify the shortwave net radiation of the
soil and canopy. Leaf chlorophyll concentration (i.e., Ca+b = CCC/LAI) was used to derive the leaf
bihemispherical reflectance and transmittance in the visible spectrum after a curve fitting of 45,000
ProspectD [76] simulations. Likewise, equivalent water thickness (i.e., Cw = CWC/LAI) was used to
retrieve leaf bihemispherical reflectance and transmittance in the NIR spectral region.

The thermal data needed to drive the evapotranspiration model was obtained from the Sea and
Land Surface Temperature Radiometer (SLSTR) on board of the Sentinel-3A satellite [5]. SLSTR contains
3 thermal infrared (TIR) channels (with two dynamic range settings—for fire monitoring and for
sea/land surface temperature monitoring) with 1 km spatial resolution and less than two days temporal
resolution with one satellite (less than one day with both A and B satellites) at the equator. For each
selected S2 scene, all the S3 scenes falling on the day of S2 overpass or within ten days before and after,
were selected for processing. In the current study we used the L2A Land Surface Temperature (LST)
product as downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/—last
accessed 10 September 2019). The accuracy of this product is reported to be below 1 K when comparing
against in situ radiometer measurements and independent operational reference products [77].

Finally, the parameters in the ET models that could not be directly retrieved from shortwave
observations (e.g., vegetation height or leaf inclination angle) were set based on a land cover map and a
look-up table (see Table 2). The CCI landcover map from 2015 [78], which was produced with a global
coverage and 300 m spatial resolution, was used as the initial input layer before being reclassified
into the smaller number of classes as shown in Table 2. Out of the parameters set according to the
look-up table, the vegetation height (hC) has the largest influence on the modelled fluxes as it effects
aerodynamic roughness [79,80]. Therefore in herbaceous classes where it can change throughout the
growing season (grasslands and croplands) it was scaled with PAI using a power law, with maximum
value hC,max indicated in Table 2 reached at a prescribed maximum PAI PAImax (5 in croplands and 4
in grasslands) and a minimum value set to 10% of the maximum value.

https://scihub.copernicus.eu/
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Table 2. Land cover based Look-Up-Table for ancillary parameters used in ET models. CCI-LC is
the land cover code for the ESA’s CCI land cover legend (http://maps.elie.ucl.ac.be/CCI/viewer/
download/CCI-LC_Maps_Legend.pdf—last accessed 13 April 2020); hC,max is the maximum canopy
height occurring when PAI reaches PAImax; fC is fraction of the ground occupied by a clumped canopy
( fC = 1 for a homogeneous canopy); wC is canopy shape parameter, representing the canopy width to
canopy height ratio; lw is the average leaf size; χ Campbell [52] leaf angle distribution parameter.

CCI-LC hC,max (m) PAImax (–) fC (–) wC /hC (–) lw (m) χ

0 0 0 0 0 0 0
10 1.2 5 1 1 0.02 0.5
11 1 5 1 1 0.02 0.5
12 2 5 0.5 2 0.1 1
20 1.2 5 1 1 0.02 0.5
30 1.2 5 0.5 1 0.05 0.5
40 1.2 5 0.5 1 0.1 0.5
50 10 5 1 1 0.15 1
60 10 5 1 1 0.15 1
61 10 5 1 1 0.15 1
62 10 5 0.4 1 0.15 1
70 20 5 1 2 0.05 1
71 20 5 1 2 0.05 1
72 20 5 0.4 2 0.05 1
80 20 5 1 2 0.05 1
81 20 5 1 2 0.05 1
82 20 5 0.4 2 0.05 1
90 15 5 1 1.5 0.1 1

100 8 5 0.75 1.5 0.15 0.8
110 8 5 0.25 1 0.02 0.5
120 1.5 4 1 1 0.05 1
121 1.5 4 1 1 0.05 1
122 1.5 4 1 1 0.05 1
130 0.5 4 1 1 0.02 0.5
140 0.05 1 1 1 0.001 1
150 2 2 0.15 1 0.05 1
151 10 5 0.15 1 0.1 1
152 1.5 4 0.15 1 0.05 1
153 0.5 4 0.15 1 0.02 0.5
160 10 5 1 1 0.1 1
170 10 5 1 1 0.1 1
180 1 5 1 1 0.02 0.5
190 20 0 0 0 0 0
200 0 0 0 0 0 0
201 0 0 0 0 0 0
202 0 0 0 0 0 0
210 0 0 0 0 0 0
220 0 0 0 0 0 0

2.3.2. Meteorological Data Source

The meteorological data used in this study consists of air temperature at 2 m, dew point
temperature at 2 m, wind speed at 100 m, surface pressure, total column water vapour (TCWV),
aerosol optical thickness (AOT) at 550 nm and surface geopotential. Those inputs are obtained from
the ECMWF ERA5 reanalysis ensemble means dataset [81]. The only exception was AOT which come
from the Copernicus Atmosphere Monitoring Service (CAMS) forecast dataset [82], since it is not
included in ERA5. Inputs at the time of the satellite overpass are computed by linear interpolation
between the previous and posterior reanalysis timestep. Due to the low spatial resolution of the air
temperature and wind speed fields (tens of kilometers) they are assumed to represent the surface
conditions derived from conditions above the blending height (100 m above the surface) rather then

http://maps.elie.ucl.ac.be/CCI/viewer/download/CCI-LC_Maps_Legend.pdf
http://maps.elie.ucl.ac.be/CCI/viewer/download/CCI-LC_Maps_Legend.pdf
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the actual surface conditions. Therefore, air temperature at 100 m is calculated using the 2 m estimate,
ECMWF surface geopotential, SRTM DEM and lapse rate for moist air. Those 100 m estimates are then
used as inputs into the land surface flux models. AOT together with TCWV, surface pressure, SRTM
DEM elevation and solar zenith angle at the time of Sentinel-3 satellite overpass were used to estimate
the instantaneous shortwave irradiance on a horizontal surface at the satellite overpass [83,84].

2.4. Thermal Data Sharpening Approach

The thermal data sharpening approach used in this study is based on ensemble of modified
decision trees. The basic scheme of the method (Figure 1) is based on Gao et al. [8] and has
been previously applied by Guzinski and Nieto [4] to sharpen thermal data to be used as input
to evapotranspiration models. Each S3 scene is matched with an S2 scene acquired at most ten days
before or after the S3 acquisition and the regression model used for sharpening is derived specifically
for each scene pair.

Figure 1. General thermal sharpening workflow. Explanatory variables include both shortwave bands
as well any other ancillary explanatory variable, such as elevation, land cover type or exposure. Model
could be any regression model, such as multivariate linear regression or machine learning techniques.

Briefly, the atmospherically corrected Sentinel-2 shortwave data (all the 10 m and 20 m spectral
bands) with a spatial resolution of 20 m is resampled to match the pixel sampling of the SLSTR sensor
(around 1 km spatial resolution). Concurrently, the SRTM DEM is used to derive slope and aspect
maps which, together with S3 overpass time, are used to estimate the solar irradiance incident angle of
a flat tilted surface. The DEM and the solar angle maps are also resampled to the SLSTR resolution. A
multivariate regression model is then trained with the three resampled datasets used as predictors and
the Trad used as the dependent variable. The selection of training samples is performed automatically
by estimating the coefficient of variation (CV) of all the high-resolution pixels falling within one
low-resolution pixel and selecting 80% of pixels with lowest CV. The regression model is based on
bagging ensemble [85] of decision trees. The decision trees are additionally modified such that all
samples within a regression tree leaf node are fitted with a multivariate linear model, as proposed
by [8].

The regression models are trained on the whole S2 tile (100 km by 100 km) as well as on subsets of
30 by 30 S3 pixels in a moving window fashion. Once they are trained they are also applied on the whole
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scene and on each window. The bias between the predicted high-resolution Trad pixels aggregated to
the low-resolution and the original low-resolution Trad is calculated and the outputs of the whole-scene
and moving-window regressions are combined based on a weight inversely proportional to the bias [8].
Finally, the Trad predicted by the regression model is corrected by comparing the emitted longwave
radiance of the sharpened fine Trad versus the original coarse Trad. A bias-corrected Trad is therefore
re-calculated by adding an offset all fine scale pixels falling within coarse scale pixel in order to remove
any residual bias. This is done to ensure the conservation of energy between the two thermal images
with different spatial resolutions [8]. The output of the sharpening is a 20 m representation of the LST.

This image sharpening approach relies on the direct or indirect relationship that different regions
of the shortwave spectrum have with the radiometric temperature and/or the ET process. For instance
the temperature of denser canopies, with higher contrast between visible and near-infrared bands,
is lower than the temperature of bare soils [86,87]. In addition, surfaces with higher water content
(i.e., larger absorption in the short-wave infrared) have a larger evaporative capability and hence lower
temperature [88]. Likewise, higher chlorophyll concentrations (i.e., larger absorption in the red and
red-edge regions) might lead to higher light and water use efficiency and hence lower temperatures.
The information contained in the DEM (i.e., the altitude and solar illumination conditions) also has a
direct relationship with radiometric temperature, with sunlit areas having higher temperatures than
shaded ones and lower altitude sufraces having higher temperatures than higher altitude surfaces.

3. Results

The overall performance of the tested models using sharpened temperatures from Decision Trees
regressor (hereinafter Trad,DT) is shown in Table 3. Scatter plots of modelled versus measured fluxes
for all the validation sites are in the Supplement. We removed all the cases in which the S3 image
was contaminated by clouds in the vicinity of the flux towers or in which the SLSTR view zenith
angle was larger than 45 degrees. In addition, we filtered all cases where estimated Rn ≤ 50 W m−2,
assuming that noisy outputs will be produced under low available energy, as well as those yielding
unrealistic fluxes during daytime (≤−500 W m−2 and ≥1000 W m−2). After filtering the data, more
than 400 cases were available overall for the following analyses. However, it is worth noting that
ESVEP yielded significantly fewer valid retrievals. This issue might be due to the fact that ESVEP’s
end-member estimation equations were designed and parametrised for herbaceous crops [44] while
in this study they were applied to varied land-covers. All models returned a similar performance
regarding the estimation of Rn, with mean bias between −10 and −24 W m−2, RMSE ranging between
49 and 59 W m−2 and r above 0.91. This similar behaviour is explained by the fact that all models share
the same approach and same inputs in modelling net shortwave radiation, which is the component
with larger magnitude of Rn. Likewise, G showed similar behaviour as well, but in this case GMETRIC
is computed differently as it is a function of surface Rn [31,32] as opposed to TSEB and ESVEP where,
as two-source models, G is computed from Rn,S [36,44].

The main differences in model performance are therefore in the estimation of turbulent fluxes
(i.e., sensible and latent heat fluxes), and TSEB (TSEB-PT and disTSEB) usually produced most accurate
estimates in terms of RMSE (≈80 W m−2, 45% relative error, in H; and ≈90 W m−2, 45% relative error,
in λE) and higher correlation between observed and predicted values (≈0.67 for H and ≈0.76 for λE).
disTSEB performs slightly better than TSEB-PT but the difference is not significant. For METRIC and
ESVEP, the RMSE values are in all cases higher than 120 W m−2 (going as high as 220 W m−2 in case of
H modelled with ESVEP) and with lower correlation (≤0.47).

The choice of closing the energy balance gap in field measurements by assigning it to λE has
influence on the above results. Therefore, in Table 4 we also present the accuracy statistics of the
turbulent fluxes when Bowen ratio is preserved during the energy gap closure procedure. The overall
ranking of the models is preserved with the TSEB models still obtaining the lowest RMSE and highest
correlation coefficients. However, the differences between the models (particularly in case of RMSE) are
not as large as in Table 3. In particular the RMSE of the TSEB models increases significantly while there
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is a decrease in r, while the influence of closure method on the other two models is much weaker with
the RMSE of ESVEP even decreasing slightly. In subsequent analysis we always assign the residual
energy to λE.

Table 3. Error metrics for METRIC, TSEB-PT, disTSEB (TSEB-PT with flux disaggregation) and ESVEP
modelled fluxes using Decision Tree sharpened temperatures and closing the energy balance gap in
field measurements by assigning residual energy to latent heat flux. N, number of valid cases; Obs.;
mean of observed values (W m−2); bias, mean difference between predicted and observed (W m−2);
MAE, Mean Absolute Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative
RMSE (–); r, Pearson correlation coefficient (–).

Variable Model N Obs. Bias MAE RMSE rRMSE r

H

METRIC 450 177 49 103 156 0.885 0.238
TSEB-PT 467 178 −47 65 81 0.454 0.670
disTSEB 452 178 −38 62 76 0.429 0.671
ESVEP 386 166 81 140 220 1.323 0.380

λE

METRIC 417 201 −29 100 128 0.637 0.472
TSEB-PT 459 194 22 72 89 0.457 0.756
disTSEB 442 196 24 72 88 0.451 0.769
ESVEP 326 221 −51 111 140 0.635 0.420

Rn

METRIC 505 446 −10 39 51 0.113 0.920
TSEB-PT 505 446 −14 44 56 0.125 0.908
disTSEB 480 449 −10 40 49 0.110 0.927
ESVEP 496 446 −24 46 59 0.132 0.907

G

METRIC 498 76 −1 40 50 0.668 0.497
TSEB-PT 498 76 14 44 54 0.718 0.452
disTSEB 473 77 3 41 50 0.657 0.505
ESVEP 491 76 22 47 60 0.790 0.410

Table 4. Error metrics for METRIC, TSEB-PT, disTSEB (TSEB-PT with flux disaggregation) and ESVEP
modelled fluxes using Decision Tree sharpened temperatures and closing the energy balance gap in
field measurements by preserving the Bowen ratio. N, number of valid cases; Obs.; mean of observed
values (W m−2); bias, mean difference between predicted and observed (W m−2); MAE, Mean Absolute
Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative RMSE (–); r, Pearson
correlation coefficient (–).

Variable Model N Obs. Bias MAE RMSE rRMSE r

H

METRIC 450 231 −6 115 164 0.709 0.151
TSEB-PT 467 235 −103 118 145 0.618 0.417
disTSEB 452 233 −93 111 138 0.592 0.422
ESVEP 386 225 22 157 219 0.972 0.254

λE

METRIC 417 141 31 92 125 0.885 0.477
TSEB-PT 459 134 82 94 124 0.919 0.698
disTSEB 442 137 83 95 125 0.916 0.699
ESVEP 326 158 12 102 134 0.847 0.388

In order to evaluate the model sensitivity and uncertainty to different vegetation types, we have
split the results of Table 3 into four main vegetation types, depending on differences in aerodynamic
roughness, horizontal homogeneity and/or seasonal dynamics/senescence (i.e., croplands, grasslands,
savannas and forests, Table 5). Similar to the overall results, the TSEB models output most accurate
turbulent fluxes across all four vegetation types. They obtain the best results for H in grassland
(RMSE ≈ 70 W m−2, r ≈ 0.8) and for λE in cropland (RMSE ≈ 80 W m−2, r ≈ 0.75). In grassland and
cropland TSEB-PT and disTSEB produce very similar fluxes while in savanna disTSEB improves the
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accuracy of modelled H and λE by up to 10 W m−2. METRIC has its best overall performance in
savanna (RMSE of 132 W m−2 and r of 0.43 for H; RMSE of 99 W m−2 and r of 0.61 for λE) followed
by cropland while ESVEP produces inaccurate H in all vegetation types (rRMSE > 1) and its best
overall λE in grassland. It should also be noted that RMSE of Rn is for all models double in savanna
(≈65 W m−2) than in the other land cover types. This is due to vegetation being most sparse at those
sites meaning that uncertainties in estimation of albedo and emissivity of soil have the biggest influence
on shortwave and longwave net radiation respectively. Finally, very few valid cases are available to
evaluate the forest sites and hence the results are not very conclusive, with the TSEB models again
outperforming the METRIC and ESVEP.

Table 5. Error dependence on land cover for METRIC, TSEB-PT, disTSEB (TSEB-PT with flux
disaggregation) and ESVEP modelled fluxes using Decision Trees sharpened temperatures. N, number
of valid cases; Obs.; mean of observed values (W m−2); bias, mean difference between predicted and
observed (W m−2); MAE, Mean Absolute Error (W m−2), RMSE, Root Mean Square Error (W m−2);
rRMSE, Relative RMSE (–); r, Pearson correlation coefficient (–).

Variable Land Cover Model N Obs. Bias MAE RMSE rRMSE r

H

cropland

METRIC 187 158 61 92 115 0.726 0.285
TSEB-PT 189 158 −57 71 86 0.546 0.503
disTSEB 177 157 −48 68 83 0.532 0.440
ESVEP 166 147 78 125 190 1.292 0.309

grassland

METRIC 103 195 18 132 204 1.050 0.164
TSEB-PT 110 197 −24 58 73 0.369 0.788
disTSEB 108 196 −26 58 71 0.365 0.792
ESVEP 92 185 50 120 198 1.070 0.437

savanna

METRIC 148 189 37 83 132 0.700 0.425
TSEB-PT 151 187 −50 62 78 0.416 0.671
disTSEB 150 187 −35 55 68 0.364 0.701
ESVEP 114 176 107 177 275 1.564 0.364

forest

METRIC 12 160 260 278 370 2.306 −0.030
TSEB-PT 17 202 −45 74 98 0.485 0.661
disTSEB 17 202 −35 76 94 0.468 0.657
ESVEP 14 193 110 156 184 0.953 0.692

λE

cropland

METRIC 179 256 −80 105 135 0.527 0.550
TSEB-PT 183 254 11 67 82 0.322 0.748
disTSEB 169 261 13 69 83 0.320 0.738
ESVEP 145 269 −83 111 142 0.527 0.525

grassland

METRIC 91 136 88 122 147 1.079 0.491
TSEB-PT 108 128 55 79 92 0.718 0.786
disTSEB 106 127 64 82 96 0.756 0.794
ESVEP 79 134 31 93 110 0.825 0.446

savanna

METRIC 140 165 −38 78 99 0.602 0.610
TSEB-PT 151 160 8 71 88 0.549 0.642
disTSEB 150 161 5 63 79 0.490 0.723
ESVEP 89 215 −67 117 151 0.702 0.131

forest

METRIC 7 337 −64 121 173 0.512 0.763
TSEB-PT 17 282 55 109 138 0.488 0.909
disTSEB 17 282 51 118 143 0.509 0.899
ESVEP 13 256 −93 177 198 0.774 0.770
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Table 5. Cont.

Variable Land Cover Model N Obs. Bias MAE RMSE rRMSE r

Rn

cropland

METRIC 222 441 −4 27 38 0.086 0.955
TSEB-PT 222 441 −10 32 42 0.096 0.950
disTSEB 200 450 −6 29 37 0.081 0.962
ESVEP 218 444 −22 37 49 0.111 0.942

grassland

METRIC 113 475 −15 36 45 0.094 0.929
TSEB-PT 113 475 −9 34 43 0.090 0.936
disTSEB 111 472 −7 33 42 0.089 0.937
ESVEP 110 474 −12 34 42 0.089 0.939

savanna

METRIC 153 425 −15 62 69 0.163 0.815
TSEB-PT 153 425 −23 72 79 0.187 0.763
disTSEB 152 424 −17 60 68 0.159 0.830
ESVEP 153 425 −36 69 80 0.189 0.790

forest

METRIC 17 511 −5 20 27 0.053 0.994
TSEB-PT 17 511 −1 18 24 0.047 0.995
disTSEB 17 511 −1 18 24 0.047 0.995
ESVEP 15 486 −6 17 24 0.049 0.996

G

cropland

METRIC 222 43 28 41 50 1.166 0.303
TSEB-PT 222 43 46 56 64 1.509 0.253
disTSEB 200 43 34 48 56 1.297 0.228
ESVEP 218 42 55 62 74 1.754 0.255

grassland

METRIC 113 144 −66 68 75 0.518 0.799
TSEB-PT 113 144 −43 49 60 0.419 0.677
disTSEB 111 143 −46 50 61 0.429 0.710
ESVEP 110 147 −42 49 59 0.403 0.647

savanna

METRIC 153 78 2 19 23 0.293 0.792
TSEB-PT 153 78 12 25 30 0.381 0.622
disTSEB 152 78 −3 27 32 0.418 0.472
ESVEP 153 78 23 28 34 0.435 0.724

forest

METRIC 10 −2 25 25 32 21.275 0.959
TSEB-PT 10 −2 9 9 11 6.989 0.905
disTSEB 10 −2 8 8 9 6.083 0.770
ESVEP 10 −2 13 13 14 9.383 0.981

The agriculture class was further split into herbaceous and woody types, with results shown
in Table 6. The former sub-class represents crops such as corn, soybean or wheat while the latter
represents olive groves and vineyards. TSEB models produce the most consistent results for both
types of crops, although somewhat surprisingly the RMSE of λE in woody crops (76–79 W m−2) is
significantly lower than in herbaceous crops (91–93 W m−2), while opposite is the case for RSME of H
(69–71 W m−2 in herbaceous crops and 91–94 W m−2). rRMSE of λE in both agricultural sub-classes
was 0.32 which is of the same magnitude as energy closure gap at the validation sites (e.g., the mean
value at CH was 0.34 at the times at which fluxes were modelled). METRIC is very clearly performing
better in woody crops, while ESVEP obtains better results for H in herbaceous crops and better results
for λE in woody crops. It is also worth noting that Rn and G showed larger relative errors in woody
crops than in herbaceous crops, since woody canopies are more complex and therefore more difficult
to capture by the models and/or parametrizations used [89,90].
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Table 6. Crop type dependent errors for METRIC, TSEB and ESVEP modelled fluxes using Decision Tree
sharpened temperatures. N, number of valid cases; Obs.; mean of observed values (W m−2); bias, mean
difference between predicted and observed (W m−2); MAE, Mean Absolute Error (W m−2), RMSE,
Root Mean Square Error (W m−2); rRMSE, Relative RMSE (–); r, Pearson correlation coefficient (–).

Variable Land Cover Model N Obs. Bias MAE RMSE rRMSE r

H

herbaceous

METRIC 66 135 115 120 144 1.068 0.452
TSEB-PT 67 134 −39 55 71 0.528 0.509
disTSEB 67 134 −31 55 69 0.517 0.470
ESVEP 62 133 46 78 107 0.805 0.440

woody

METRIC 121 171 31 77 96 0.558 0.320
TSEB-PT 122 172 −67 80 94 0.547 0.515
disTSEB 110 171 −58 75 91 0.533 0.424
ESVEP 104 155 98 152 225 1.452 0.258

λE

herbaceous

METRIC 58 289 −151 157 189 0.656 0.215
TSEB-PT 59 288 −42 78 93 0.324 0.662
disTSEB 59 288 −33 77 91 0.316 0.676
ESVEP 55 285 −118 126 149 0.523 0.605

woody

METRIC 121 241 −46 80 99 0.411 0.738
TSEB-PT 124 238 36 61 76 0.318 0.840
disTSEB 110 247 38 65 79 0.321 0.823
ESVEP 90 259 −62 101 137 0.529 0.522

Rn

herbaceous

METRIC 68 461 −23 30 38 0.082 0.976
TSEB-PT 68 461 −36 40 47 0.102 0.975
disTSEB 68 461 −29 35 42 0.091 0.976
ESVEP 67 460 −36 39 47 0.102 0.975

woody

METRIC 154 433 5 26 38 0.087 0.952
TSEB-PT 154 433 1 29 40 0.092 0.952
disTSEB 132 444 6 26 33 0.075 0.968
ESVEP 151 437 −16 36 50 0.115 0.929

G

herbaceous

METRIC 68 48 7 42 51 1.062 0.447
TSEB-PT 68 48 34 55 64 1.351 0.296
disTSEB 68 48 22 49 60 1.261 0.234
ESVEP 67 46 34 51 62 1.328 0.395

woody

METRIC 154 40 38 41 49 1.221 0.507
TSEB-PT 154 40 51 57 64 1.591 0.472
disTSEB 132 40 41 48 53 1.314 0.490
ESVEP 151 41 64 67 79 1.955 0.458

Finally, Table 7 lists the model performance depending on whether sites are under Mediterranean
and semi-arid climate (i.e., water limited sites), or sites under temperate climate (i.e., energy limited
sites). First of all it is worth noting that due to cloud coverage conditions, more valid cases are obtained
over semi-arid conditions than in temperate areas. TSEB models showed similar range of errors in
both climatic conditions, with RMSE in λE at around 85 W and 99 W m−2 for semi-arid and temperate
conditions, and correspondingly around 80 and 70 W m−2 for H. ESVEP and METRIC yielded more
varying results between climates, with METRIC producing more accurate estimates of both H and λE
in semi-arid conditions and ESVEP showing better performance for H in temperate climates and better
performance for λE in semi-arid climates.
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Table 7. Climate dependence of errors for METRIC, TSEB and ESVEP modelled fluxes using Decision
Trees sharpened temperatures. N, number of valid cases; Obs.; mean of observed values (W m−2); bias,
mean difference between predicted and observed (W m−2); MAE, Mean Absolute Error (W m−2), RMSE,
Root Mean Square Error (W m−2); rRMSE, Relative RMSE (–); r, Pearson correlation coefficient (–).

Variable Climate Model N Obs. Bias MAE RMSE rRMSE r

H

semi arid

METRIC 354 190 28 95 149 0.780 0.270
TSEB-PT 365 191 −51 69 84 0.438 0.676
disTSEB 350 191 −41 64 78 0.411 0.670
ESVEP 296 177 87 155 242 1.370 0.337

temperate

METRIC 96 126 126 133 182 1.441 0.356
TSEB-PT 102 134 −32 53 71 0.530 0.635
disTSEB 102 134 −26 52 69 0.513 0.637
ESVEP 90 132 62 92 122 0.927 0.586

λE

semi arid

METRIC 335 178 -6 90 114 0.641 0.534
TSEB-PT 366 170 32 71 86 0.504 0.763
disTSEB 349 171 33 70 85 0.498 0.776
ESVEP 245 202 −30 103 134 0.665 0.391

temperate

METRIC 82 295 −123 140 174 0.589 0.419
TSEB-PT 93 289 −19 79 99 0.343 0.739
disTSEB 93 289 −10 79 98 0.341 0.750
ESVEP 81 278 −115 135 157 0.564 0.646

Rn

semi arid

METRIC 401 442 −9 42 53 0.121 0.893
TSEB-PT 401 442 −11 47 59 0.133 0.877
disTSEB 376 446 −8 42 52 0.116 0.902
ESVEP 398 444 −23 48 62 0.140 0.876

temperate

METRIC 104 462 −13 29 38 0.082 0.976
TSEB-PT 104 462 −23 35 43 0.093 0.975
disTSEB 104 462 −17 31 40 0.086 0.976
ESVEP 98 453 −26 35 43 0.094 0.977

G

semi arid

METRIC 401 84 −3 41 52 0.616 0.431
TSEB-PT 401 84 11 44 54 0.643 0.398
disTSEB 376 86 0 41 50 0.582 0.467
ESVEP 398 84 21 49 61 0.727 0.316

temperate

METRIC 97 40 7 36 45 1.104 0.480
TSEB-PT 97 40 26 43 55 1.362 0.399
disTSEB 97 40 16 38 51 1.272 0.358
ESVEP 93 39 29 42 53 1.355 0.477

4. Discussion

4.1. ET Model Intercomparison

Overall results listed in Table 3 show that TSEB models produced more robust estimates
of both sensible and latent heat fluxes, with lower errors around 80 to 90 W m −2 and larger
correlation coefficient, while at the same time returning more valid cases than the other two
models, METRIC and ESVEP. Those errors are within the expected and reported errors in literature,
e.g., Kalma et al. [2] showed errors in λE ranging between 24 and 105 W m −2 for a wide range of
models, Chirouze et al. [58] reported errors for TSEB > 100 W m −2 in a semi-arid area of Mexico, and
50 W m −2 errors are reported in Tang et al. [35]. Choi et al. [91] found TSEB-PT and METRIC produced
similar errors of 54 W m −2 in a watershed in Iowa, US. However it is worth noting that most of the
reported errors in these studies [35,58,91,92] used actual surface temperature at high spatial resolution
(e.g., Landsat or ASTER), whereas in this study we used low resolution temperature sharpened to
high spatial resolution, which provides an additional input uncertainty to the models. For that reason,
Section 4.2 is dedicated to this issue in depth.

TSEB-PT was developed trying to solve some of the issues in sparse vegetation and semi-arid
conditions previously raised by less complex models [36], and therefore it adapts better to a wider
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range of climatic and vegetation conditions [1] as it was shown in Tables 5 and 7. METRIC, on the other
hand, was primarily designed for standard crops and requires concomitant presence of stressed and
well watered-full vegetation conditions within the scene itself. This more often happens in semi-arid
climate where irrigated crops and rainfed crops and natural vegetation are present. Those cases in
which, either due to the increased presence of clouds (i.e., fewer available pixels in the scene) or in
regions where these hot and cold pixels cannot be simultaneously found, METRIC would produce
more uncertain retrieval, as already pointed by Choi et al. [91] and Tang et al. [35] (in humid or
sub-humid areas), or even would not produce any valid data. Similarly, ESVEP was designed and
tested in an agricultural area located in a subhumid and monsoon climate [44] and therefore certain
assumptions and parameterizations taken in that model might not transfer well to other vegetation or
climatic conditions.

Despite of TSEB being the model with the largest required amount of input data, this study
proposed several new approaches to retrieve some of those inputs operationally, with special focus on
exploiting the spectral capabilities of Sentinel-2, in particular the bands in the red-edge region that
is sensitive to leaf pigments. A simple empirical approach relating leaf bihemispherical reflectance
and transmittance with the leaf biochemical properties resulted in accurate estimates of net radiation.
More importantly, due to the larger uncertainty of TSEB models over senescent vegetation, we derived
a method to obtain both total LAI and its green fraction based on Fisher et al. [75] FAPAR/FIPAR
relationship. Nevertheless, more research is needed to systematically derive other vegetation properties
such as canopy height/aerodynamic roughness or vegetation clumping.

Finally, it is worth pointing out that even in situ EC measurements are prone to uncertainty as is
confirmed for instance by the usual energy imbalance in those systems. Particularly we found a larger
disagreement between observed and predicted net radiation in Dahra (see Figures in the Supplement).
We hypothesise that this could be due to two possible reasons. Firstly, our modelled irradiance, with
depends on TCWV and aerosol optical thickness, could be more noisy at Dahra than the other sites, due
to unaccounted dust aerosols in that site placed over the Sahel. The second issue might be the actual
Rn measurements, as in this site only a NR-lite (Kipp & Zonen, Netherlands) is available to measure
global Rn that might be less accurate than the radiometers at the other sites, which are measuring the
four components of radiation. In addition, Harvard Forest site lacks in situ G measurements, which
effects the energy balance closure correction. This issue together with the fact that very few cases are
available in forests (Table 5), leads us to avoid strong conclusions regarding the performance of the
models in forested areas.

4.2. Sharpening and Disaggregation

As was previously mentioned, thermal sharpening relates empirically or semi-empirically coarse
resolution surface temperature with fine resolution multispectral and other ancillary data. This
technique could be a sound alternative to the lack high resolution thermal imagery for operational
activities. However, previous studies in thermal sharpening have reported some uncertainties when
compared to actual Trad temperatures, with errors ranging up to 3.5 K [7–9,11,12,14]. Therefore, for
some applications requiring ET estimates at higher accuracy (i.e., precision agriculture), sharpening
might not be considered as a suitable substitute of Trad but complementary to it, such as in the fusion
approach by Knipper et al. [93].

In order to reduce flux retrieval errors with sharpened Trad inputs, we also tested a flux
disaggregation method [10,23]. Our results listed in Tables 3–7 show that disTSEB model, i.e., coarse
S3 TSEB-PT fluxes disaggregated with fluxes derived with TSEB-PT and fine resolution sharpened Trad,
yielded only modest improvement (5 W m −2 reduction in RMSE in case of H and only 1 W m −2 in
case of λE) to the TSEB-PT model, i.e., running TSEB directly on the sharpened Trad imagery. The one
exception was at the savanna sites (see Table 5) where using disaggregation reduced the errors in H by
around 12% and errors in λE by around 10%. However, previous studies have shown the robustness
of this approach to overcome limitations of the likely less reliable fine resolution Trad images [4,93,94].
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Furthermore, coarse input data must be produced beforehand for thermal sharpening and hence it
is readily available for running the models at coarse resolution, which indeed is computationally
inexpensive given the much lower number of pixels within a scene. Therefore, flux disaggregation
would still be recommended when running TSEB-PT with sharpened temperatures.

In addition, the sharpening of a coarse resolution Trad image using fine resolution images acquired
on different days, with a maximum of 10 days offset, might lead to additional uncertainties. This is
caused by the fact that some changes in either land cover properties, (e.g., vegetation growth, harvests,
fires) or moisture conditions (e.g., rainfall or irrigation) might happen between the Sentinel 2 and 3
acquisitions. Figure 2 shows that at a general level (all validation sites taken together) this does not
appear to be a significant issue as the error does not increase as the day offset between thermal and
shortwave acquisitions gets larger. Particularly relevant in this analysis is H since it is the energy
component that is directly related to Trad, and hence more prone to errors in sharpening. However,
more studies should be conducted to look at the effect of the day offset in particular situations, e.g., in
crops during senescence or with localized irrigation patterns. It might be also worth to investigate
using high-resolution radar data (e.g., from Sentinel-1), which is sensitive to soil moisture, in the
thermal data sharpening approach [95]. Furthermore, the Landsat family of satellites could also be
utilised during the sharpening since they acquire thermal data at around 100 m spatial resolution
although at 8 days (two satellites) to 16 days (single satellite) temporal resolution. Using observations
from those satellites would both increase the temporal density of the high-resolution data but also
capture physical processes and properties which are not reflected in the shortwave data, such as near
soil surface soil moisture and soil evaporative efficiency.

Finally, some studies have reported larger errors than in this study, but they were using coarser
resolution imagery [43]. This is probably due to the scale mismatch between the coarse pixel estimate
and the footprint of the EC towers’ measurements. We evaluated this by comparing fluxes modelled at
Sentinel-2 (i.e., with sharpened Trad) and Sentinel-3 spatial resolutions against measurements form
towers. This was done for all the sites put together and also for the validation sites split into two
categories: those in which the tower is located in a landscape feature too small to have significant
effect on the original resolution Sentinel-3 Trad (category “small” containing CH, KL, GR and SE sites),
and those where the opposite is true (category “large” containing SL, DA, HF, HTM, MT TA and KG
sites). The results (Table 8) indicate that using sharpened Trad is most important when modelling H in
the “small” category. However, the correlation of high-resolution fluxes against tower measurements
is in almost all the cases higher than that of low-resolution fluxes and rRMSE is lower or the same in
case of turbulent fluxes. Therefore, even though sharpened Trad might be more prone to errors than
actual high-resolution Trad, it is still a good option for downscaling fluxes for model validation [4],
addressing therefore the vegetation cover variability within coarse resolution pixels. Nevertheless,
there is still an open question on how feasible thermal sharpening is for early detection of water stress
at small scales, compared to using high resolution thermal imagery. This issue is especially relevant
for precision irrigation tasks and therefore future studies should address this topic.
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Figure 2. Error (modelled–measured) distribution of fluxes modelled with TSEB-PT and disTSEB
models using sharpened Trad depending on offset days between a Sentinel-3 Trad image and the
fine-scale Sentinel-2 multispectral image. Error computed for all sites together.

Table 8. Landscape feature size dependence of errors for low and high resolution TSEB-PT modelled
fluxes using Decision Trees sharpened temperatures. N, number of valid cases; Obs.; mean of observed
values (W m−2); bias, mean difference between predicted and observed (W m−2); MAE, Mean Absolute
Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative RMSE (–); r, Pearson
correlation coefficient (–).

Feature Size Variable Resolution N Obs. Bias MAE RMSE rRMSE r

all

H Sentinel-2 467 178 −47 65 81 0.454 0.670
Sentinel-3 456 176 −38 73 89 0.509 0.548

λE Sentinel-2 459 194 22 72 89 0.457 0.756
Sentinel-3 446 196 13 71 92 0.467 0.726

Rn Sentinel-2 505 446 −14 44 56 0.125 0.908
Sentinel-3 481 446 −12 42 56 0.126 0.902

G Sentinel-2 498 76 14 44 54 0.718 0.452
Sentinel-3 474 74 13 43 51 0.690 0.491

small

H Sentinel-2 85 121 −29 48 65 0.534 0.514
Sentinel-3 88 120 4 65 88 0.736 0.186

λE Sentinel-2 76 290 −35 73 88 0.303 0.706
Sentinel-3 79 290 −26 70 88 0.303 0.694

Rn Sentinel-2 87 452 −27 38 46 0.101 0.964
Sentinel-3 90 451 −11 30 37 0.083 0.970

G Sentinel-2 87 45 28 47 58 1.283 0.301
Sentinel-3 90 46 8 45 57 1.250 0.016

large

H Sentinel-2 382 191 −51 69 84 0.441 0.673
Sentinel-3 368 189 −49 75 90 0.475 0.620

λE Sentinel-2 383 175 33 72 89 0.507 0.770
Sentinel-3 367 176 21 72 93 0.525 0.719

Rn Sentinel-2 418 445 −11 45 58 0.130 0.897
Sentinel-3 391 445 −13 45 60 0.135 0.884

G Sentinel-2 411 82 11 43 53 0.652 0.444
Sentinel-3 384 81 15 42 50 0.614 0.515
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4.3. Effects of Ancillary Inputs

Ancillary data is required to characterise the canopy structure, since it affects both the radiation
transmission through the canopy [53], and hence albedo and radiation partitioning, as well as the
surface aerodynamic properties [79]. In this study we have used a static land cover map at global scale
to assign some standard values to each land cover type (Table 2). However, the large difference in
spatial resolution between the S2 data and CCI map can lead to visible artefacts in the output fluxes
when modelled at 20 m resolution, especially on the edges of two classes with different vegetation
properties (e.g., croplands and forests). However, those spatial artefacts seem not to have any influence
on the validation results. Nevertheless, some discrepancies were found between the land cover type
flagged by the map and the actual type at the validation sites. In Majadas de Tiétar, CCI-LC flagged
the site as cropland (CCI-LC = 11), thus hc,MAX = 0.5 m, fc = 1 and lw = 0.02 m, but actually this
site is a savanna with 8 m tress at 20% coverage (CCI-LC = 30). In addition, the prescribed values
that were assigned in Table 2 are very general, as they are trying to fit a global-based land cover
legend. Therefore they can significantly deviate from the site’s actual values. Indeed, all croplands
were assumed to be not clumped ( fc = 1) although row crops, like the vineyard in Sierra Loma, or
orchards like the olive grove in Taous have very different canopy structure compared to a standard crop.
Therefore, a significant improvement could be expected if a more area-specific surface characteristics
parametrization was used, either using some ancillary remote sensing like SAR imagery or LiDAR or a
regional/local oriented land cover classification.

To conclude, atmospheric forcing from numerical weather prediction models might add some
uncertainty to the ET model compared to using local meteorological data, specially for precision
agriculture where access to local agrometeorological stations is possible. In this study we relied
on ERA5 reanalysis data and despite large discrepancy between spatial resolution of ERA5 (tens
of kilometres) and point scale measurements from the towers there is a strong agreement for the
most important meteorological parameters (Figure 3). Instantaneous shortwave irradiance, which
was computed at the Sentinel 3 overpass time using ECMWF AOT and TCWV dataset, showed no
systematic bias but a RMSE of 29 W m−2. This in turns directly effects on the accuracy of Rn (Tables 3–7),
and indirectly that of λE since it is estimated as a residual of the energy balance. Therefore, errors
in λE could be significantly reduced if more accurate inputs of irradiance were used, especially over
temperate areas (i.e., radiation limited) which are more sensitive to uncertainty in available energy. On
the other hand, the errors in both air temperature (RMSE = 1.8 K) and windspeed (RMSE = 1.3 m s−1)
affect mainly on the retrievals of sensible heat flux. This issue become more relevant in the estimation
of λE over semi-arid (i.e., water limited) areas. For near-real-time applications it is necessary to use
forecast or analysis data, instead of the ensemble mean reanalysis data, and those issues could become
more evident.

Figure 3. Scatterplot between the input ERA5 ensemble meant reanalysis data and in situ measurements
for the main atmospheric forcings. Data from all validation sites is shown on the same plot.
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5. Conclusions

The multispectral shortwave images acquired by the Sentinel-2 satellites at 10–20 m spatial
resolution are highly suitable for characterizing vegetation in order to derive inputs required for
evapotranspiration models. At the same time, thermal data acquired daily by Sentinel-3 satellites is
also suitable as input to the ET models. However, its low spatial resolution (1 km) needs to be increased
if the models are to be run at the scale of predominant landscape features, which is usually on the
order of tens of meters. This study evaluated three thermal-based remote sensing ET models (METRIC,
ESVEP and TSEB-PT) and a thermal sharpening method (ensembles of modified Decision Trees) in
order to derive methodology for operational estimates of water and energy fluxes using Sentinel data
and applicable for the whole globe. Further evolution of the thermal sharpening methodology by
using other data sources with high spatial resolution and variable temporal resolutions, e.g., Sentinel-1
radar [95] or Landsat thermal observations [96], is planned.

TSEB-PT produced overall the most accurate estimates in terms of sensible heat and latent
heat (i.e., evapotranspiration) fluxes, being robust in different land covers and climates. Additional
disaggregation step further improved TSEB-PT output accuracy in savanna ecosystems. Without any
site-specific tuning and relying only on global datasets the methodology achieved RMSE of 80–90 W
m−2 for modelled instantaneous H and λE across eleven validation sites located in different land cover
classes and climatic conditions. In an agricultural setting the modelled fluxes were more accurate with
rRMSE of λE of around 0.3 which is of the same magnitude as uncertainty of the measured turbulent
fluxes from the validation dataset. Until a new generation of thermal satellites are launched [97], the
proposed methodology will be useful solution for overcoming the lack of thermal data with high
spatio-temporal resolution required for operational ET modelling at field scale.

Supplementary Materials: The following are available at http://www.mdpi.com/2072-4292/12/9/1433/s1,
Figure S1: Model scatterplot of predicted vs. EC observed using sharpened Trad with Decision Trees for Sierra
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Trees for Hyltemossa, Figure S7: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Klingenberg, Figure S8: Model scatterplot of predicted vs. EC observed using sharpened Trad
with Decision Trees for Majadas, Figure S9: Model scatterplot of predicted vs. EC observed using sharpened Trad
with Decision Trees for Selhausen, Figure S10: Model scatterplot of predicted vs. EC observed using sharpened
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Trad with Decision Trees for Kendall Grassland.
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