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Abstract: Total phosphorus (TP) concentration is one of the indicators for surface water quality 
evaluation. In this study, an indirect algorithm was proposed to retrieve TP concentration. This 
algorithm retrieves the TP concentration in urban waters based on Gaofen-1 (GF-1) remote sensing 
data. The algorithm uses the correlation between remote-sensing reflectance, optically significant 
constituents of water (chlorophyll, suspended sediment, and organic matter (excluding algae)), and 
TP to establish a retrieval model. First, the concentrations of optically active components are 
retrieved using a semi-analytical model. Second, the correlation between TP and optically active 
components is used to retrieve the TP concentration in waters. The GF-1 remote sensing data for 7 
August 2015 were used to perform remote sensing retrieval of TP concentration in the Pearl River 
channels in Guangzhou, China. The results show that the TP concentration in most areas of the Front 
Channel, Western Channel, Guangzhou Channel, and the western part of the Back Channel was 
higher than 0.2 mg/L, while the TP concentration in the middle and eastern parts of the Back 
Channel was generally lower than 0.2 mg/L. The mean absolute percentage error of the retrieval is 
24.18%. The experimental results show that the model is suitable for remote sensing retrieval of TP 
in urban waters in Guangzhou. 

Keywords: Total phosphorus; Gaofen-1 (GF-1); water quality parameters; remote sensing  
retrieval model 

 

1. Introduction 

Recently, pollution in coastal waters and inland waters has become increasingly severe. 
Nitrogen and phosphorus nutrients that enter waters through various channels are important reasons 
for eutrophication [1–4]. Conventional water quality sampling and monitoring methods are time-
consuming and demand large efforts and costs. Only local water quality information about the 
monitored section can be obtained. Water quality status and changes in a large area cannot be 
accurately obtained. Remote sensing technology has the advantages of a broad monitoring range, fast 
speed, and low costs, which facilitate long-term continuous monitoring. Remote sensing technology 
can also be used to detect problems such as pollution sources and a pollutant diffusion status, which 
are hardly possible by using conventional monitoring methods. As a result, remote sensing 
technology is increasingly employed in water quality monitoring studies [5,6]. 
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Nutrients are not optically active substances. They have weak absorption and scattering energy 
of light in natural waters. Current remote sensing retrieval studies primarily retrieve nutrients using 
direct and indirect methods based on empirical models [7]. In general, models are only applicable to 
waters in a specific study area. Direct methods can be applied to obtain the relationship between 
nutrients and spectral data by using techniques such as regression analysis and the differential 
spectrum technique. For example, Huang et al. (2015) employed two bands of the Geostationary 
Ocean Color Imager (GOCI) remote sensing data to construct a total phosphorus (TP) retrieval model, 
and discovered that the TP concentration has a certain correlation with chlorophyll and suspended 
sediment (SS) (R2 > 0.52). Moses et al. (2014) established a regression equation between the TP 
concentration and the reflectance of the red band. The retrieval results showed that the predicted 
values were well correlated with the measured values (R2 = 0.76). Li et al. (2017) used the reflectance 
of four bands of Landsat 8 OLI to construct an empirical retrieval model for total nitrogen and TP, 
respectively. Gao et al. (2015) used corresponding combinations of reflectance of four bands of HJ-
1A CCD2 images to retrieve the TP in Chaohu Lake. Indirect methods generally establish retrieval 
models for nutrients based on the relationship between nutrients and chlorophyll, SS, water 
temperature, etc. For instance, Goes et al. (1999) established a regression model of sea surface 
temperature and chlorophyll-a (Chla) to retrieve the nitrate concentration of surface waters in the 
North Pacific. Ana et al. (2008) proposed using the difference between the estimated temperature of 
upwelling and the sea surface temperature to improve the method of Goes et al. Li et al. (2017) 
employed the monthly mean rainfall, wind speed, temperature, and cumulative sunshine duration 
to estimate the monthly mean total nitrogen concentration and TP concentration in the Xin'anjiang 
Reservoir. Baustian et al. (2018) estimated the TP retention in coastal wetlands around the Laurentian 
Great Lakes in North America. 

Currently, studies of remote sensing retrieval of TP primarily focus on coastal waters or large 
lakes and large reservoirs [4,6–13]. Relatively few studies address remote sensing retrieval of TP in 
rivers. Most retrieval models are directly established based on the relationship between TP and water 
reflectance or the relationship between TP and SS and chlorophyll. Previous studies have indicated 
that the TP concentration in waters has a strong correlation with optically active substances, such as 
SS and chlorophyll [6,8,13]. However, for rivers that flow through cities in Guangdong Province, 
China, organic pollution in urban river channels is usually severe. Therefore, when the indirect 
method is used to retrieve the TP concentration in urban river channels, the effects of SS, chlorophyll, 
and organic pollutants should be comprehensively considered. 

The purpose of this study is to construct an indirect algorithm suitable for TP concentration 
retrieval in urban rivers. First, based on the measured water leaving reflectance and water quality 
analysis results, a semi-analytical algorithm was used to retrieve the concentration of suspended 
sediment (SS), chlorophyll (Chl, in this study, represented by the chlorophyll-a, Chla), and organic 
matter (excluding algae, organic pollutants in water mainly refer to the complex organic materials 
dominated by oxygen-consuming organic matter in water, including dissolved organics and 
suspended organic particles, which are similar to the organic pollution characterized by Chemical 
Oxygen Demand (COD). Therefore, the permanganate index (CODMn) is used to characterize them in 
this study in urban river channels. Regression equations between TP concentration and other water 
quality parameters were then constructed, according to the laboratory test results of water quality. 
Second, a retrieval model of TP concentration was established. Last, Gaofen-1 (GF-1) remote sensing 
images were used to retrieve the TP in the Pearl River channels in Guangzhou, and the performance 
of the retrieval algorithm was evaluated. 

2. Materials and Methods  

2.1. Study Area 

The Pearl River channels in Guangzhou, Guangdong Province, China is selected as the study 
area, as shown in Figure 1. In Guangzhou City near the Pearl River, the urban population is large, 



Remote Sens. 2020, 12, 1420 3 of 27 

 

and industry and commerce are well developed. As a result, water pollution is severe in the Pearl 
River channels, which comprise a typical example of urban river channels. 

 
Figure 1. Map of the study area. 

2.2. Data 

2.2.1. Measured Water Leaving Reflectance Data 

In the two days prior to the GF-1 satellite imaging (5-6 August 2015), simultaneous water 
spectral measurement, water quality sampling, and an analysis experiment were performed. In the 
week prior to the satellite imaging, the weather conditions in Guangzhou were satisfactory with a 
gentle breeze and no precipitation. The sampling sites of the experiment are shown in Figure 2. The 
water leaving reflectance curves were measured with a spectrometer (ASD FieldSpec3 spectrometer 
manufactured by the U.S. Company ASD) with an effective measurement spectral range of 350-2500 
nm. Note that A1-A14 denotes the sampling sites on 5 August 2015, and B1-B7 denotes the sampling 
sites on 6 August 2015. At each sampling site, the measurement of the water spectrum by the Above-
Water Method [14] was repeated multiple times when performing the water spectrum measurement 
to eliminate random errors. 
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Figure 2. Distribution of the sampling sites during the simultaneous in situ observation experiment 
(5-6 August 2015). 

2.2.2. GF-1 Remote Sensing Data 

The remote sensing data used in this study is a multispectral remote sensing image of China’s 
GF-1 satellite, with a spatial resolution of 16 meters and an imaging date of 7 August 2015. The GF-1 
satellite was launched by the China Aerospace Science and Technology Corporation (CASC) in April 
2013. The wide field of view (WFV) imaging system is one of the key instruments operating onboard 
the GF-1 satellite, which includes four integrated cameras with a 16-m spatial resolution [15]. The 
satellite parameters of GF-1 are shown in Table 1 [16].  

Table 1. The satellite parameters of GF-1. 

Orbit Parameters  16-m Multispectral Data Parameters  

Items Parameters Bands Spectral  
Range (μm) 

Swath 
Width (km) 

Temporal 
 Resolution 

Orbit type Sun Synchronous orbit Band1 0.45–0.52 
800 (four 
cameras 

combined) 
2 (day) 

Orbit height 645 km Band2 0.52–0.59 
Orbit inclination 98.0506° Band3 0.63–0.69 
Descending node 10:30 AM at local time Band4 0.77–0.89 

Return period 41 (day)     
The steps to obtain GF-1 remote sensing data of the Pearl River channels in Guangzhou are shown 

in Figure 3. First, the remote sensing data were preprocessed. By using Equation (1) [17], radiometric 
calibration of the GF-1 multispectral remote sensing data was performed to convert the satellite-based 
observation values into radiance. 𝐿 𝜆 = 𝐺𝑎𝑖𝑛 ∙ 𝐷𝑁 + 𝑂𝑓𝑓𝑠𝑒𝑡 (1) 

where 𝑳𝒆(𝝀𝒆) is the converted radiance, DN is the satellite-based observation value, gain is the 
calibration slope, and offset is the offset of the absolute calibration coefficient. An image-based 
automatic inversion algorithm of aerosol optical density proposed by Qin et al. (2015) is employed 
for atmospheric correction to obtain multispectral reflectance data [18]. Second, water extraction is 
performed. The Multilayer Perceptron (MLP) neural network model is used to extract the water 
bodies in Guangzhou from the reflectance data in the study area obtained after data preprocessing 
[19]. The water extraction results are shown in Figure 4. 
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Figure 3. Flow chart of remote sensing retrieval of total phosphorus (TP). 

Figure 4. The GF-1 remote sensing data of the Guangzhou Pearl River channels (pseudo-color image). 

2.2.3. Water Quality Analysis Data 

During the experiment of the Guangzhou section of the Pearl River on 5-6 August 2015, water 
samples were collected at each sampling site of the experiment after the measurement of the water 
leaving reflectance spectrum of the water. Five liters of the surface water was collected at each 
sampling point and stored in a plastic sampling bottle, which was sent to the laboratory within 24 
hours for water quality detection and analysis. The detection methods of water quality parameters 
are shown in Table 2. (Note: The water quality test was performed by the China National Analytical 
Center, Guangzhou). 
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Table 2. The detection methods of water quality parameters. 

Items Measurement 
Units 

Detection 
Limits 

Detection Methods 

CODMn  mg/L 0.5 

Volumetric method, Water quality--Determination of 
permanganate index (GB/T 11892-1989) [This standard refers 
to the international standard ISO 8467:1986 (revised to ISO 
8467:1993): Water quality--Determination of permanganate 
index] 

Chla μg/L 0.025 

Photometry method, water and waste water monitoring and 
analysis method, 4th Edition (compiled by State 
Environmental Protection Administration, published by 
China Environmental Science Press, 2002), Chapter I, Section 
V (I), Part V 

SS mg/L 4 Gravimetric method  

TP mg/L 0.01 
Ammonium molybdate spectrophotometric method，Water 
quality--Determination of total phosphorus--Ammonium 
molybdate spectrophotometric method (GB/T 11893-1989) 

2.2.4. Optical Parameters of Water Components 

To establish semi-analytical models for retrieving concentrations of Chl, SS, and organic matter 
components, the inherent optical properties (IOPs) of each component are required. In the study of 
ocean color remote sensing, the optically active components in water are usually divided into 
suspended particles, photosynthetic pigments, and colored dissolved organic matter (CDOM or 
Gelbstoff, yellow substances) [20–23]. The IOPs of pure water, SS, Chl, CDOM, and other components 
can be obtained from relevant research literature [24–34]. However, for the urban reach of the Pearl 
River channels in Guangzhou, the organic pollution is usually serious and the composition of organic 
pollutants is complex. Li et al. (2002) used Gas Chromatography-Mass Spectrometry (GC-MS) to 
determine the Haiyin section water of the Pearl River channel in Guangzhou [35]. The results show 
that there were many kinds of organic pollutants in the water with a large concentration. Sixty 
organic compounds were separated and identified, including alkanes, alcohols, ketones, aromatics, 
polycyclic aromatic hydrocarbons, phenols, acids, and amines, which were from different pollution 
sources. Zheng et al. (2016) analyzed the water samples of the Back Channel of the Pearl River in 
Guangzhou and found that the dissolved organic matter (DOM) was more enriched in carbohydrate, 
amide, carboxylic, and aliphatic compounds [36]. CDOM (historically referred to as Gelbstoff, humic 
matter, or yellow substances due to its high humic matter content [33,37,38]) is a part of DOM. For 
the water body of the Back Channel of the Pearl River channel in Guangzhou, analysis results of 
Shong et al. (2013) show that only about 10% of DOM is humic matter (CDOM) [39]. The composition 
of organic pollutants in urban river channels in Guangzhou is complex and cannot be simply 
characterized by the optical parameters of CDOM. Therefore, it is necessary to measure the 
absorption coefficient and scattering coefficient of organic matter in urban water bodies with complex 
organic pollutants such as the water body of the Pearl River in Guangzhou. Brando et al. (2009) 
proposed a semi-analytical inversion method to estimate the concentration of optically active 
components (chlorophyll, CDOM, and non-algal particles (NAP)) in water. In this study, considering 
the serious organic pollution in the water body of the Pearl River in Guangzhou and the low content 
of CDOM in the dissolved organic matter, a semi-analytical inversion method for estimating the 
concentration of chlorophyll, organic matter, and non-algal particles (in this study, represented by 
the suspended sediment, SS) in the water is constructed based on the improved Brando algorithm. In 
the algorithm, the optical parameters of Chl are obtained from the results of Brando [27,28], and the 
optical parameters of pure water and SS are obtained from the results of Deng [30] and He [31]. The 
optical parameters of Chl, pure water, and SS are shown in Figure 5. The absorption coefficient and 
scattering coefficient of organic matter were measured using the measurement method proposed by 
He et al. (2011). Water samples from heavily polluted waters in the urban area of Guangzhou were 
collected, and then the optical parameters of organic matter were measured. 
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Figure 5. Inherent optical properties (IOPs) of SS, Chl, and pure water. 

2.3. Methods 

2.3.1. TP Regression Analysis 

Currently, the retrieval of TP in waters is primarily carried out by establishing a relationship 
between TP and remote-sensing reflectance or other water quality parameters (such as Chla and SS) 
[4,6–9,12]. In this study, regression analysis of TP concentration in the Pearl River channel in 
Guangzhou with the water sample quality analysis results and the measured spectral data shows that 
TP in the Pearl River channels in Guangzhou is well correlated with other water quality parameters. 
The correlation coefficient between TP concentration and a combination of CODMn, Chl, and SS is the 
highest (R2 = 0.9056, F value for F-test = 47.886). Therefore, the regression in Equation (2) is selected 
for TP retrieval. 𝐶 = 𝑐𝑜𝑒𝑓 ∗ 𝐶 + 𝑐𝑜𝑒𝑓 ∗ 𝐶 + 𝑐𝑜𝑒𝑓 ∗ 𝐶 + 𝑐𝑜𝑒𝑓  (2) 

where 𝐶 , 𝐶 , 𝐶 , and 𝐶  represent the concentration of TP, Chl, SS, and CODMn, respectively, in 
water. 𝑐𝑜𝑒𝑓 , 𝑐𝑜𝑒𝑓 , 𝑐𝑜𝑒𝑓 , and 𝑐𝑜𝑒𝑓  are the retrieval coefficients.  

2.3.2. Semi-Analytical Model for Water Quality Retrieval 

To retrieve TP concentration using Equation (2), the concentration of optically active components, 
such as Chl, SS, and DOM (organic pollutant composition, represented by the permanganate index, 
CODMn), must be obtained by the corresponding water quality retrieval models. Water quality 
retrieval models include empirical models, semi-analytical models, and analytical models [40]. 
Empirical models directly establish the relationship between water quality and remote sensing spectra, 
which cannot be directly used for water bodies with different water quality conditions. Analytical 
models are based on clear physical concepts. However, obtaining many parameters is difficult. Semi-
analytical models are based on radiative transfer theory and appropriately simplified for solution. Semi-
analytical models are highly adaptable and have been extensively investigated. In general, water 
reflectance can be expressed as a function of optical parameters, observation geometry, and bottom 
reflectance of the relevant components of water bodies [20]. 𝑅 (𝜆) = 𝑓 𝛼(𝜆),𝛽(𝜆),𝜌(𝜆),𝐻,𝜃 ,𝜃,φ  (3) 

where 𝑅 (𝜆) is the water-leaving reflectance, 𝛼(𝜆) is the absorption coefficient, 𝛽(𝜆) is the 
volume scattering function, 𝜌(𝜆) is the bottom albedo, H is the bottom depth, and 𝜃  is subsurface 
solar zenith angle. 𝜃 is the subsurface viewing angle from nadir, and φ is the viewing azimuth 
angle from the solar plane [20], respectively. Gordon constructed a semi-analytical model of water 
quality retrieval based on the IOPs of water quality components when studying ocean water color 
remote sensing [21–23,41]. 
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𝑅 (𝜆) = 𝑓 𝑏 (𝜆)𝛼(𝜆) + 𝑏 (𝜆) = 𝑓 𝑏 (𝜆)𝑘(𝜆)  (4) 

where 𝑓 = 0.0949 + 0.0794 ( )( ) ( )  [21,22,41,42], 𝛼(𝜆)  and 𝑏 (𝜆)  are the total absorption 

coefficient and the total backscattering coefficient, 𝑘  is the extinction coefficient, 𝑘(𝜆) = 𝛼(𝜆) +𝑏 (𝜆), respectively, and 𝜆 is the frequency of the corresponding spectral bands [27,42–44]. 

𝛼(𝜆) = 𝑎 (𝜆) + 𝑎 (𝜆) ∗ 𝐶  (5) 

𝑏 (𝜆) = 𝑏 (𝜆) + 𝑏 (𝜆) ∗ 𝐶  (6) 

where 𝑎 (𝜆) and 𝑏 (𝜆) represent the absorption coefficient and backscattering coefficient of 
pure water, respectively, and 𝑎 (𝜆), 𝑏 (𝜆), and 𝐶  represent the absorption coefficient, scattering 
coefficient, and concentration of the 𝑗  water quality component at unit concentration. Substituting 
Equations (5) and (6) into Equation (4) and disregarding the scattering effect of organic matter [21,28], 
the expression of the optical water-leaving reflectance 𝑅  can be obtained. 𝑅 (𝜆) = 𝑓 𝑏 (𝜆) + 𝐶 𝑏 (𝜆) + 𝐶 𝑏 (𝜆)𝛼 (𝜆) + 𝐶 𝛼 (𝜆) + 𝐶 𝛼 (𝜆) + 𝐶 𝛼 (𝜆) + 𝑏 (𝜆) + 𝐶 𝑏 (𝜆) + 𝐶 𝑏 (𝜆) (7) 

where 𝐶  is the concentration of the water components, The subscript 𝑐𝑜𝑚𝑝 can be 𝑊, 𝐶, 𝑆, and 𝑂 represent pure water, Chla, SS, and CODMn, respectively. 

2.3.3. TP Retrieval Model 

After the optical parameters of each water component are obtained, the remote sensing retrieval 
model of optical water-leaving reflectance can be solved. From Equation (7), in order to express 
conciseness, the frequency 𝜆 in Equation (7) and the subscript rs of the water leaving reflectance 𝑅  
are omitted, and the following equation can be established. 𝑅 𝑘 − 𝑓𝑏 𝐶 + 𝑅 𝑘 − 𝑓𝑏 𝐶 + 𝑅 𝛼 𝐶 = 𝑓𝑏 − 𝑅 𝑘  (8) 

where 𝑅 is the water leaving reflectance at the corresponding band, 𝑘 is the extinction coefficient, 𝑘 = 𝛼 + 𝑏 . The subscript 𝑐𝑜𝑚𝑝 can be 𝑊, 𝐶, 𝑆, and 𝑂, which represent pure water, 
Chl, SS, and organic matter (represented by the permanganate index, CODMn), respectively. The 
subscript 𝑖 corresponds to remote sensing data at the 𝑖  band. For the GF-1 multispectral remote 
sensing data, four multispectral bands exist. Selecting three of the four bands (in this study, band2-
band4, i.e., green, red, and near-infrared bands are selected) and, substituting relevant parameters 
into Equation (8), a set of equations for the concentration of three water quality components is 
established, namely, Chl, SS, and CODMn. The concentration of each water quality component in the 
water can be solved. 𝑅 𝑘 − 𝑓 𝑏 𝐶 + 𝑅 𝑘 − 𝑓 𝑏 𝐶 + 𝑅 𝛼 𝐶 = 𝑓 𝑏 − 𝑅 𝑘𝑅 𝑘 − 𝑓 𝑏 𝐶 + 𝑅 𝑘 − 𝑓 𝑏 𝐶 + 𝑅 𝛼 𝐶 = 𝑓 𝑏 − 𝑅 𝑘𝑅 𝑘 − 𝑓 𝑏 𝐶 + 𝑅 𝑘 − 𝑓 𝑏 𝐶 + 𝑅 𝛼 𝐶 = 𝑓 𝑏 − 𝑅 𝑘  (9) 

Equation (9) can be rewritten as a linear matrix inversion method proposed by Hoge & Lyon 
[42,45–47]. The Hoogenboom et al. (1998) study, which used the linear matrix inversion method for 
inland water study on the Dutch Lake Braassem, is referred to as the Matrix Inversion Method (MIM) 
[4647] : 



Remote Sens. 2020, 12, 1420 9 of 27 

 

𝑅 𝑘 − 𝑓 𝑏   𝑅 𝑘 − 𝑓 𝑏   𝑅 𝛼𝑅 𝑘 − 𝑓 𝑏   𝑅 𝑘 − 𝑓 𝑏   𝑅 𝛼𝑅 𝑘 − 𝑓 𝑏   𝑅 𝑘 − 𝑓 𝑏   𝑅 𝛼 𝐶𝐶𝐶 = 𝑓 𝑏 − 𝑅 𝑘𝑓 𝑏 − 𝑅 𝑘𝑓 𝑏 − 𝑅 𝑘  (10) 

To simplify the expression, let 

𝑹 = 𝑹𝟏 𝟎 𝟎𝟎 𝑹𝟐 𝟎𝟎 𝟎 𝑹𝟑  (11) 

𝑲𝒄𝒐𝒏 = 𝒌𝒄𝟏 𝒌𝒔𝟏 𝜶𝒐𝟏𝒌𝒄𝟐 𝒌𝒔𝟐 𝜶𝒐𝟐𝒌𝒄𝟑 𝒌𝒔𝟑 𝜶𝒐𝟑  (12) 

𝑭 = 𝒇𝟏 𝟎 𝟎𝟎 𝒇𝟐 𝟎𝟎 𝟎 𝒇𝟑  (13) 

𝑩𝒃 = 𝒃𝒃𝒄𝟏 𝒃𝒃𝒔𝟏 𝟎𝒃𝒃𝒄𝟐 𝒃𝒃𝒔𝟐 𝟎𝒃𝒃𝒄𝟑 𝒃𝒃𝒔𝟑 𝟎  (14) 

𝒃𝒃𝒘 = 𝒃𝒃𝒘𝟏 𝒃𝒃𝒘𝟐 𝒃𝒃𝒘𝟑  (15) 

𝑲𝒘 = 𝒌𝒘𝟏 𝒌𝒘𝟐 𝒌𝒘𝟑  (16) 

𝐀 = 𝑹𝑲𝒄𝒐𝒏 − 𝑭𝑩𝒃 (17) 

𝐗 = 𝑭𝒃𝒃𝒘 − 𝑹𝒌𝒘  (18) 

𝐘 = 𝑪𝑪 𝑪𝑺 𝑪𝑶  (19) 

𝑮 = 𝑮𝟏 𝑮𝟐 𝑮𝟑   (20) 

𝛆 = 𝜺𝟏 𝜺𝟐 𝜺𝟑  (21) 

where 𝑹 is a diagonal matrix of water leaving reflectance, and the main diagonal element 𝑹  
is the water leaving reflectance of remote sensing data at the 𝑖  band. 𝑲𝒄𝒐𝒏  and 𝑭  are 3 × 3 
matrices, where each column of the 𝑲𝒄𝒐𝒏  represents the extinction coefficient (or absorption 
coefficient for organic matter) of a water component (i.e., Chl, SS, organic matter). The element at the 𝑖  row and 𝑗  column is the extinction coefficient (or absorption coefficient for organic matter) of 
the 𝑗  water quality component for the remote sensing data at the 𝑖  band. The coefficient matrix 𝑭  is a diagonal matrix, and the main diagonal element in the 𝑖  line represents the inversion 
coefficient 𝒇𝒊 corresponding to the 𝑖  band of remote sensing data, which is calculated by Equation 
(7). 𝒃𝒃𝒘𝒊, 𝒃𝒃𝒄𝒊, and 𝒃𝒃𝒔𝒊 are the backscattering coefficients of the corresponding remote sensing data 
of the water components (i.e., pure water, Chl, SS) at the 𝑖  band. 𝒌𝒘𝒊 is the extinction coefficient of 
the corresponding remote sensing data of pure water at the 𝑖  band. The subscripts, 𝑊, 𝐶, 𝑆, and 𝑂  represent pure water, Chl, SS, and organic matter (represented by the permanganate index, 
CODMn), respectively. Taking into account the measurement errors of the relevant optical parameters 
and the influence caused by other factors, the comprehensive retrieval coefficient 𝑮 and correction 
coefficient 𝛆 of water components obtained by regression analysis of the measured water spectral in 
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the study area are introduced. The remote sensing retrieval model of the concentration of Chl, SS, 
and CODMn is obtained. 𝒀 =  𝑮𝑨 𝟏𝑿 + 𝜺 (22) 

Substituting Equation (22) into Equation (2), we obtain the retrieval model for the TP concentration 𝑪𝑻𝑷: 𝑪𝑻𝑷 = [𝒄𝒐𝒆𝒇𝒄 𝒄𝒐𝒆𝒇𝒔 𝒄𝒐𝒆𝒇𝒐](𝑮𝑨 𝟏𝑿 + 𝜺) + 𝒄𝒐𝒆𝒇𝜺 (23) 

2.3.4. Optical Parameters Measurement of Organic Matter  

The optical parameters of organic matter were measured using the method proposed by He [31]. 
The schematic diagram of the measuring device is shown in Figure 6. During the measurement, the 
light from a 65w constant light source passes through a set of lenses and filters to form a beam of 
parallel light that enters a certain height of the water sample to be measured in a high-transmittance 
glass container. After the parallel light passes through the bottom of the glass container, the 
downward scattered light is filtered by another group of lenses and filters, and the downward 
parallel light is irradiated onto the standard board. The radiance of the downward parallel light is 
measured by a spectrometer (ASD FieldSpec3 spectrometer manufactured by the U.S. Company ASD). 
The whole set of devices is installed in a closed multi-layer black cabinet, and the experiment is 
performed in a completely dark indoor environment, which makes the environment of each 
experiment almost unchanged and reduces the influence of external environmental factors.  

The radiance detected by the spectrometer shown in Figure 6 as follows: 𝐿 = 1𝜋𝐷 𝐸𝑇 𝑒 𝑇 𝑅  (24) 

where 𝐷  is the path attenuation factor, i.e., the proportion of the irradiance of the incident light 
decreasing with the increase of the distance, 𝐸 is the irradiance of the incident light source, 𝑇 , 𝑇  are the transmittance of the water surface and the bottom of the glass container, respectively, 𝑅  
is the reflectance of the standard board, 𝑒  is the transmittance of the water layer to be measured, 
and 𝜏 is the optical thickness of the water layer:. 𝜏 = 𝑑 ∗ 𝑘  (25) 

where 𝑑 is the thickness of the water layer and 𝑘 is the extinction coefficient of the measured water 
body. 
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Figure 6. Schematic diagram of an optical parameter measuring device. 

Equation (24) contains multiple unknown parameters. In order to eliminate systematic errors 
and avoid directly calculating 𝑇  and 𝑇 , the ratio method is used to solve the extinction coefficient. 
The concentration of high organic pollution water collected in the field is a certain value. During 
measurement, the radiance of water bodies of different thicknesses is obtained by changing the 
thickness of the water body, and then the extinction coefficient of the water body is obtained by 
comparing the radiance information of different thicknesses. The ratio of the radiance 𝐿  and 𝐿  
measured by two water layers with different thicknesses 𝑑  and 𝑑  is as follows:  𝐿𝐿 = 1𝜋𝐷 𝐸𝑇 𝑒 𝑇 𝑅1𝜋𝐷 𝐸𝑇 𝑒 𝑇 𝑅  (26) 

Equation (26) is sorted as follows. 𝑘 = 1𝑑 − 𝑑 ln(𝐿𝐿 ) (27) 

In Equation (27), 𝐿  and 𝐿  are directly measured by the spectrometer while 𝑑  and 𝑑  can be 
accurately measured in the experiment. Thereby, the extinction coefficient 𝑘 of the measured water 
body can be calculated. 

For a typical organic polluted water body, the total extinction coefficient 𝑘 = 𝛼 + 𝑏  , 
which is measured in the laboratory, includes the contributions of various water components such as 
suspended sediment, chlorophyll, organic matter, and pure water. By substituting the total extinction 
coefficient 𝑘  into Equation (4), the total scattering coefficient 𝑏  can be obtained.  𝑏 = 𝑘 ∗ 𝑅𝑓  (28) 

In Equation (28), the water leaving reflectance 𝑅  of the water body was obtained through a 
simultaneous measurement by spectrometer during field sampling, and the total extinction 
coefficient 𝑘  of the water body was calculated by Equation (27) after conducting a measurement 
of the water sample collected from the field in the laboratory. Then, the total absorption coefficient 𝛼  of the water sample is shown below. 𝛼 = 𝑘 − 𝑏 (29) 
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After the concentration of each component 𝐶  of the water body (subscript comp: c, s, and o 

represents Chl, SS, and organic matter) obtained through water sample analysis, the absorption 
coefficient 𝛼  and backscatter coefficient 𝑏  of the organic matter in the water sample can be 
obtained from Equations (5) and (6).  𝛼 = 𝛼 − (𝛼 + 𝐶 𝛼 + 𝐶 𝛼 )𝐶  (30) 

𝑏 = 𝑏 − (𝑏 + 𝐶 𝑏 + 𝐶 𝑏 )𝐶  (31) 

2.3.5. Model Verification and Error Analysis 

The accuracy of the retrieval model can be evaluated by calculating the mean absolute percentage 
error (MAPE) using the following equation [48]. 

𝑀𝐴𝑃𝐸 = 1𝑛 𝐶 − 𝐶𝐶 ∗ 100% (32) 

where 𝑛 is the number of the in situ measured samples, 𝐶  and 𝐶  are the retrieved value and the 
measured value of the concentration of the relevant water quality component of the 𝑗  sample. 

3. Results 

3.1. Water Quality Analysis Results and Measured Spectrum 

3.1.1. Water Quality Analysis Results 

The water quality analysis results of the water samples collected at each sampling site in the 
Pearl River channel experiment are shown in Table 3. The analysis results show that, among the 21 
sampling sites in the simultaneous measurement of the Pearl River channels in Guangzhou, 
compared with B3-B7 sampling sites in the east part of the back channel, the concentration values of 
the water quality components in the A1-A14, B1, and B2 sampling sites in the front channel, the west 
channel, and the west part of the back channel are much higher, among which the concentration 
differences of Chl and permanganate index (CODMn) are the most clear. The concentrations of Chla 
and permanganate index of A1-A14, B1, and B2 sampling sites were higher than 30 μg/L and 3.5 
mg/L, respectively, while those of B3-B7 were lower than 21 μg/L and 3.4 mg/L, respectively. 
 

Table 3. Water quality analysis results for each sampling site. 

Sampling Sites Longitude Latitude CODMn (mg/L) Chla(μg/L) SS (mg/L) TP (mg/L) 

A1 113.48527E  23.06805N  3.6 37.3 13 0.2 

A2 113.46309E  23.08804N  4.8 40.3 32 0.32 

A3 113.43014E  23.09443N  4.5 93.2 10 0.25 

A4 113.40438E  23.10433N  5.6 83.2 35 0.4 

A5 113.38273E  23.11063N  7 70.3 50 0.36 

A6 113.35436E  23.10951N  5.2 57.8 22 0.26 

A7 113.31902E 23.11102N 4.7 55.9 22 0.23 

A8 113.27800E 23.11368N 5.7 95.5 11 0.25 

A9 113.26353E  23.11598N  6.4 100 16 0.28 

A10 113.24763E  23.10958N  6.7 94.7 15 0.27 
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A11 113.23928E  23.10695N  7.2 93.2 14 0.28 

A12 113.22384E  23.11511N  6.4 93.2 14 0.28 

A13 113.22289E  23.13993N  7.2 83.2 21 0.38 

A14 113.21097E  23.15210N  7.2 70.3 30 0.37 

B1 113.23506E  23.10697N  5.5 81 10 0.22 

B2 113.25994E  23.06813N  3.7 31.1 9 0.13 

B3 113.29135E  23.05522N  2.8 16.3 11 0.13 

B4 113.32910E  23.04997N  2.8 16.7 8 0.11 

B5 113.36762E  23.03687N  3 20.1 9 0.12 

B6 113.41188E  23.05005N  2.9 14 8 0.12 

B7 113.43564E  23.07768N  3.3 16 12 0.12 

3.1.2. IOPs of Organic Matter in the Pearl River Channels in Guangzhou 

For the typical organic polluted water samples collected from the Pearl River channels in 
Guangzhou, the absorption coefficient and backscatter coefficient of organic matter calculated by 
Equations (30) and (31) are shown in Figure 7 after using the water leaving reflectance measured 
during sampling. The water quality analysis results and the extinction coefficient were measured in 
the laboratory. The scattering coefficient of organic matter is very low compared with its absorption 
coefficient, and its absorption spectrum decays exponentially with the increase of the wavelength. 
The absorption of organic matter includes the absorption of dissolved organic matter and the 
absorption of suspended organic particles, which has a strong absorption effect on visible light. 
Therefore, the reflectance of heavily organic polluted water is very low, and the water appears black. 

 

 
Figure 7. Absorption coefficient and backscatter coefficient of organic matter (represented by the 
permanganate index, CODMn). 

3.1.3. Measured Water Leaving Reflectance 

Figure 8 shows the water leaving reflectance curves of the waters at the sampling sites in the 
Pearl River channel experiment on 5-6 August 2015. The figure shows the measured water leaving 
reflectance spectra in a wavelength ranging from 400 to 900 nm at each sampling site because the 
direct sunlight is blocked by the clouds. No measured spectra were obtained for the sampling sites 
of A7 and A8. As shown in Table A1, by using the GF-1 satellite spectral response function [49], the 
measured water leaving reflectance spectra are integrated to obtain the water leaving reflectance 
values, which correspond to the four GF-1 spectral bands at each sampling site. As shown in Figure 
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8, for the water samples with a high concentration of Chla and CODMn, A1-A14, B1, and B2, there is 
a clear reflection valley near 670 nm and a clear reflection peak near 700 nm, which corresponds to 
the absorption peak near 670 nm of the Chla absorption coefficient curve and the absorption valley 
near 700 nm of the absorption coefficient curve of organic matter. For B3-B7, water samples with low 
Chla and CODMn concentrations, their spectral curves did not have clear absorption valleys and 
absorption peaks around 670 nm and 700 nm. 

 

Figure 8. In situ observed spectral curves of water leaving reflectance at the sampling sites. 

3.2. Verification of the TP Inversion Model 

3.2.1. TP Inversion Model  

The regression of TP concentration in the Pearl River channel in Guangzhou with the water 
sample quality analysis results and the measured spectral data are shown in Tables 4 and 5. In the 
regression analysis of various combinations of water sample quality parameters, which are shown in 
Table 4, the correlation coefficient between TP concentration and a combination of CODMn, Chla, and 
SS is the highest (R2 = 0.9055, F value for F-test = 47.886). Similarly, in the regression analysis of various 
combinations of measured spectral data shown in Table 5, the correlation coefficient between TP 
concentration and a combination of four bands is the highest (R2 = 0.7596, F value for F-test = 11.06). 
The two regression equations with the highest correlation in Tables 4 and 5 are used to calculate the 
TP concentration of 19 sampling sites in Table 3 (excluding A7 and A8). The results are shown in 
Figure 9. The MAPE of the combination of CODMn, Chla, and SS is 8.77%, which is better than that of 
the combination of four bands (the MAPE is 17.8%). 

 

Table 4. Regression analysis of total phosphorus (TP) and other water quality parameters. 

Water Quality 

Parameters 
Regression Equations R2 F 

CODMn CTP= 0.05063X - 0.0132 0.7437 49.333 

Chla CTP = 0.00228X + 0.10855 0.5636 21.953 

SS CTP = 0.00672X + 0.12229 0.5974 25.225 

CODMn + Chla CTP = 0.05029 × 1 + 0.000002X2 - 0.01264 0.7437 23.217 

CODMn + SS CTP = 0.03682X1 + 0.00373X2 - 0.01009 0.8727 54.828 
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Chla + SS CTP = 0.00174X1 + 0.005258X2 + 0.0462 0.8985 70.823 

CODMn + Chla + SS CTP = 0.0126X1 + 0.00124X2 + 0.0047X3 + 0.02296  0.9055 47.886 

Table 5. Regression analysis of TP and the measured water leaving reflectance（R2 > 0.3）. 

GF-1 Wavebands Regression Equations R2 F 

B1, B4 CTP = -7.4893RB1 +10.90179RB4 + 0.35623 0.5877 11.405 

B2, B4 CTP = -5.27644RB2 +10.34687RB4 + 0. 4109 0.6215 13.135 

B3, B4 CTP = -6.46467RB3 +12.76875RB4 + 0.38358 0.7507 24.084 

B1, B2, B3 CTP = 15.1327RB1 -12.7831RB2 -1.57399RB3 + 0.5503 0.3121 2.2681 

B1, B2, B4 CTP = 3.9819RB1 -7.8961RB2 +9.5857RB4 + 0.42982 0.6259 8.3647 

B1, B3, B4 CTP = -1.7354RB1 -5.5486RB3 +12.7926RB4 + 0.40073 0.7592 15.764 

B2, B3, B4 CTP = -1.2906RB2 -5.3924RB3 +12.5756RB4 + 0.4108 0.7595 15.794 

B1, B2, B3, B4 CTP = -0.531RB1-0.9224RB2 -5.4182RB3 +12.638RB4 + 0.4083 0.7596 11.06 

 

 
Figure 9. TP regression concentration of sampling sites. 

3.2.2. Inversion Results Based on Measured Data 

Figure 10 shows the retrieved concentration from the in situ measured spectra, measured 
concentration, and relative retrieval errors of TP, CODMn, SS, and Chla at the 19 sampling sites. First, 
by using the GF-1 satellite spectral response function, the measured spectra are integrated to obtain 
the water leaving reflectance values, which correspond to the four GF-1 spectral bands at each 
sampling site (Table A1). Using Equations (22) and (23), the concentration of the relevant water 
quality components is obtained, and the relative retrieval error at each sampling site and MAPE of 
the model are calculated. For the in situ measured data, the MAPEs of the retrieved concentrations 
TP, CODMn, SS, and Chla relative to the measured values are 17.98%, 30.98%, 54.06%, and 51.2%, 
respectively. 
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Figure 10. Measured and retrieved concentrations (using measured spectral data) and the mean 
absolute percentage error (MAPE) of water quality components at each sampling site: (a) TP, (b) 
CODMn, (c) SS, (d) Chla. 

3.3. Remote Sensing Retrieval of Water Quality Parameters in the Pearl River Channels 

3.3.1. Water Leaving Reflectance of Remote Sensing Data 

The remote sensing retrieval process of TP in the Pearl River Channels is shown in Figure 3. By 
using Equation (1), radiometric calibration of the GF-1 multispectral remote sensing data was 
performed to convert the satellite-based observation values into radiance. Then, an image-based 
automatic inversion algorithm of aerosol optical density proposed by Qin et al. (2015) was used for 
atmospheric correction. First, partition the entire image to select the dark pixels of shady vegetation, 
and estimate the phase function and scattering ratio of aerosol in the red and blue channels based on 
the path radiance. Second, on the basis of Gilabert's algorithm [50], the consideration of diffuse 
reflection on the surface is added, and the simplified radiative transfer equation is used to calculate 
the aerosol optical density of shading vegetation and dense vegetation dark pixels. Lastly, Kriging 
interpolation is used to calculate the aerosol optical density of multiple dark image elements for the 
distribution of the entire scene image, and then an atmospheric correction is carried out. The remote 
sensing water leaving reflectance corresponding to each sampling site is shown in Figure 11 and 
Table A2. As an example, Figure 12 shows the water leaving reflectance curves of the A1 sampling 
site. According to the atmospheric correction results, the Qin’s algorithm is similar to the Fast Line-
of-Sight Atmospheric Analysis of Hypercubes (FLAASH) algorithm. In the blue and green bands, the 
water leaving reflectance of Qin’s algorithm is slightly lower than the FLAASH algorithm, while, in 
the red and near-infrared bands, it is the opposite. The water leaving reflectance of the algorithm is 
higher than that of the FLAASH algorithm. Compared with the measured water leaving reflectance, 
the results of the two atmospheric correction algorithms are higher than the measured values. Except 
for the green band, the MAPE of the other bands exceeds 100%, especially in the near infrared band. 
The MAPE of the two algorithms are more than 500%. 
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Figure 11. Water leaving reflectance (𝑅𝑟𝑠 (𝜆)) of GF-1 remote sensing data at each sampling site. 

 
Figure 12. Water leaving reflectance of the A1 sampling site. 

3.3.2. Remote Sensing Retrieval Result of TP in the Pearl River Channels 

By substituting the remote sensing water leaving reflectance of the three bands of water pixels 
and the IOPs of each water quality component in Equations (22) and (23), the TP concentration of 
each water pixel is retrieved (Figure 13). The details of five areas with high TP concentration indicated 
in Figure 13(a) are shown in Figure 14. 

Figure 15 shows the retrieved concentration from the GF-1 remote sensing data, measured 
concentration, and relative retrieval errors of TP, CODMn, SS, and Chla at the 19 sampling sites. First, 
by using the geographical coordinates of each sampling site, the remote sensing water leaving 
reflectance of each band corresponding to each pixel of sampling sites is extracted from the GF-1 
remote sensing image (Table A2). Second, using Equations (22) and (23), the concentration of the 
relevant water quality components is obtained, and the relative retrieval error at each sampling site 
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and MAPE of the model are calculated. For the GF-1 remote sensing data, the MAPEs of the retrieved 
concentrations TP, CODMn, SS, and Chla are 24.18%, 31.45%, 42.21%, and 71.99%, respectively. 
  

Figure 13. Remote sensing retrieval results of TP concentration in the Pearl River channels: (a) Imaging date: 
2015-08-07, (b) Imaging date: 2015-10-24. 

(a) 

(b) 
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Figure 14. Local details of areas with high TP inversion concentration: (a1,a2) Shuikuo Channel 
(Nanhai District, Foshan), (b1,b2) Shijing River (Baiyun District, Guangzhou), (c1,c2) Dongshan Lake 
(Yuexiu District, Guangzhou), (d1,d2) Huangpu Stream (Haizhu District, Guangzhou), (e1,e2) Haizhu 
Lake and Shiliugang Stream (Haizhu District, Guangzhou). 
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Figure 15. Measured and retrieved concentrations (using GF-1 remote sensing data) and the mean 
absolute percentage error (MAPE) of water quality components at each sampling site: (a) TP, (b) 
CODMn, (c) SS, (d) Chla. 

Figure 13(a) shows the inversion results on 7 August 2015. The MAPE is 24.18% based on the 
measured values. The retrieval results show that the TP concentration of most waters in the Front 
Channel, Western Channel, Guanzhou Channel, and western part of the Back Channel of the Pearl 
River is larger than 0.2 mg/L. The TP concentration of waters in the east part of the Back Channel is 
primarily less than 0.2 mg/L. This concentration distribution is attributed to the notion that the 
Western Channel and the western parts of the Front and Back Channels are administered by the 
Baiyun District of Guangzhou and Foshan City (Figure 14(a1,a2,b1,b2)), while the middle part of the 
Front Channel and Guanzhou Channel are located in Guangzhou's downtown area (Figure 
14(c1,c2,d1,d2,e1,e2)). There are numerous industrial enterprises and a dense urban population 
around these areas. Industrial pollution, and urban sewage increase the TP concentration of these 
waters. There are also some vegetable planting areas around the Shuikou Channel and Shiliugang 
Stream. The phosphorus emission caused by fertilization may also be one of the reasons for the high 
concentration of TP in these two areas. The possibility of the increase of the TP concentration in the 
water body caused by such fertilization is based on the fact that, at present, in the vegetable planting 
in South China, almost no vegetable growers will carry out "soil testing and formula fertilization." 
Over fertilization is a common phenomenon. Moreover, in Guangzhou, the temperature is very high 
in August, so the vegetable planting must be frequently watered to ensure the normal growth of 
vegetables, but part of the phosphorus in the artificial fertilizer will also be leached and lost due to 
watering and enter the nearby water body. Due to the dilution effect of the Sanzhixiang channel with 
low TP concentration, the TP concentration of waters in the middle and rear part of the back channel 
is relatively low. The TP retrieval’s statistical results show that the TP concentration of most waters 
(approximately 66%) of the Pearl River channels in Guangzhou ranges between 0.1 mg/L and 0.3 
mg/L, and the TP concentration of approximately 32% of the waters is larger than 0.3 mg/L.  

Figure 13(b) shows the inversion results on 24 October 2015. The results show that the TP 
concentration in most water bodies of the Pearl River channels in Guangzhou at the time of imaging 
is greater than 0.4 mg/L. Because there are no synchronized measured values, the inversion accuracy 
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evaluation corresponding to the water quality monitoring data of Guangzhou in October 2015 
queried in the Guangzhou Environmental Protection Geographic Information System was used [51]. 
The MAPE was 22.34%. 

4. Discussion  

4.1. Error Analysis of the Retrieval Results 

The retrieval error analysis of the model is shown in Figure 16. The retrieval of TP is affected by 
a combined effect of Chla, SS, and CODMn, but is insensitive to the retrieval accuracy of the individual 
components. As shown in Figure 16, when the inversion error of any water quality component in 
Chla, SS, and CODMn increases to 60% or 70%, or the inversion error of any two components exceeds 
± 35%, or the inversion error of three components exceeds ± 20%, the MAPE of TP will increase from 
8.7% to 20%. Therefore, as shown in Figures 10 and 15, when the retrieval MAPE of Chla, SS, and 
CODMn change by 20.79%, 11.85%, and 0.47%, respectively, the MAPE of TP increases by 6.38%. The 
relative errors of Chla, CODMn, and TP retrieved from the remote sensing data were larger than those 
of the in situ measured data, among which the retrieved errors of Chla at B2-B7 sites are all more than 
100%, which produces a sharp increase in the retrieval of the MAPE of Chla. When B2-B7 are 
disregarded, the MAPE of Chla based on the in situ measured data and the GF-1 remote sensing data 
decreases to 19.18% and 25.01%, respectively. It is found that the measured concentrations of Chla, 
SS, and CODMn in B2-B7 sites are much lower than those in other sites in Table 3. However, the 
comprehensive inversion coefficient introduced in this study will overestimate the concentration of 
water components in the site with low measured concentration (Figures 10 and 15), which makes the 
relative retrieval errors of the site with low measured concentration become larger. How to improve 
the inversion accuracy of water with low concentration of Chla and SS needs further study. 

 

Figure 16. The mean absolute percentage error (MAPE) analysis of the TP retrieval results. 

4.2. Applicability of the Model  

Figures 13(a) and 13(b) show the results of TP inversion of the Pearl River channels in Guangzhou 
by GF-1 remote sensing image with imaging time of 7 August 2015 and 24 October 2015, respectively. 
It can be seen from the figure that, on 24 October 2015, the TP concentration of the Pearl River channels 
in Guangzhou was mostly higher than 0.4 mg/L, while on 7 August 2015, the TP concentration was 
relatively low, with the concentration of most water bodies less than 0.4 mg/L. This is because August 
is the wet season of the Pearl River. The replenishment of a large number of clean water bodies in the 
main stream of the Pearl River, Xijiang River, and Beijiang River has diluted the TP concentration of 
the water body. However, October has entered the normal water period, and the replenishment of 
clean water bodies in the middle and upper reaches has been continuously reduced and the dilution 
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effect has been weakened, so that the TP concentration in the water body of the Pearl River channels 
in Guangzhou remains at a high level. 

As shown in Figure 17, compared with the TP inversion model established by directly using the 
reflectance of four bands, the inversion accuracy of the TP indirect inversion model proposed in this 
study is higher, and CODMn, which is another water quality index for the surface water environmental 
quality assessment, can also be obtained by inversion. The TP indirect inversion model is an empirical 
inversion model based on the measured data of the water body in the Pearl River channels in 
Guangzhou. This kind of model is usually only applicable to specific water bodies. When applying it 
to other types of water bodies, the measured data should be used for model calibration to obtain 
appropriate inversion parameters. According to the analysis results of Zheng et al. (2016), the 
proportion of the dissolved organic matter (DOM) in the water bodies of the Pearl River channels in 
Guangzhou in different seasons is somewhat similar. The category of DOM in the water bodies does 
not change much, except that the concentration is low in the summer during the wet season. 
Therefore, it is feasible to use this model to retrieve the TP concentration in the water bodies of the 
Pearl River channels in Guangzhou in different seasons. The water quality analysis results of each 
sampling site used to build the model in this study show that the concentration of Chla has a high 
correlation with the concentration of CODMn (R2 = 0.75), but the concentration distribution is uneven, 
which accounts for 52.63% of Chla > 70μg/L and CODMn > 4.5mg/L, 36.84% of Chla < 40μg/L and 
CODMn < 4mg/L. The number of samples with medium concentration distribution is small, with only 
A2 and A6, which accounts for 10.53% (Figure 18). It can be seen that the inversion error of Chla and 
CODMn for low-concentration water bodies in the model constructed from these samples will be 
higher, which, thereby, increases the TP inversion error (Figures 10 and 16). In the following work, 
attention should be paid to the reasonable selection of sampling sites and the study of constructing 
the TP inversion model, according to the concentration distribution of water quality components. 

 
Figure 17. MAPE analysis of the TP retrieval results. 
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Figure 18. Chla and CODMn concentrations of the sampling sites. 
 

It can be seen from Figures 10 and 11 that the atmospheric correction algorithm used in this 
paper is similar to the FLAASH algorithm in atmospheric correction, and the corrected water leaving 
reflectance is very different from the measured value. Although Qin et al. applications of this 
algorithm have achieved good results in retrieving the aerosol optical thickness of Hong Kong, China 
using the multispectral remote sensing image of Ziyuan-3 [18], to be successfully applied to GF-1 
remote sensing image, the selection of dark pixels and the inversion algorithm of aerosol optical 
thickness in urban areas need to be further optimized. 

5. Conclusions 

TP concentration is one of the indicators for surface water quality evaluation. In this study, an 
indirect retrieval algorithm for TP concentration was proposed. Based on the GF-1 remote sensing 
data, the TP concentration in urban waters was retrieved. The algorithm establishes a retrieval model 
that is based on the relationship among remote-sensing reflectance, optically significant constituents 
of water (chlorophyll, SS, organic matter), and TP. First, the concentration of optically active 
components was obtained by retrieval analysis using a semi-analytical model. Second, the TP 
concentration of waters is retrieved by using the correlation between TP and optically active 
components. The retrieval results of TP using GF-1 remote-sensing water leaving reflectance on 7 
August 2015 illustrated the distribution of TP concentration in the Pearl River channels in Guangzhou 
on this day. The TP concentration of most waters in the Front Channel, the Western Channel, the 
Guanzhou Channel, and the western part of the Back Channel of the Pearl River was larger than 0.2 
mg/L. The TP concentration of waters in the east part of the back channel was generally less than 0.2 
mg/L. Using TP concentration as an evaluation index, most waters in Guangzhou’s river channels are 
classified as Class III and Class IV water bodies, according to the Environmental Quality Standards for 
Surface Water (GB 3838-2002). These waters satisfy the standards for general industrial water and 
entertainment water, which does not directly contact human bodies. The retrieval MAPE of TP 
concentration is 24.18%. This model is suitable for the retrieval of TP concentration in Guangzhou’s 
urban waters. 
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Appendix A 

Table A1. The integral value of measured water leaving reflectance of GF-1 multispectral bands. 

Sampling Sites 
 Integral Value of Measured Water Leaving Reflectance  

band1 band2 band3 band4 

A1 0.04064 0.06152 0.05667 0.01759 

A2 0.03656 0.06358 0.05995 0.01702 

A3 0.03079 0.05039 0.03994 0.01003 
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A4 0.03220 0.05427 0.05264 0.02059 

A5 0.03412 0.05628 0.05765 0.02996 

A6 0.03873 0.06205 0.05350 0.01857 

A9 0.05585 0.08819 0.05753 0.02525 

A10 0.03671 0.05863 0.03938 0.01090 

A11 0.03018 0.05501 0.03781 0.01133 

A12 0.02930 0.04644 0.03401 0.00835 

A13 0.03937 0.06086 0.05056 0.02361 

A14 0.03048 0.05200 0.04170 0.01420 

B1 0.02568 0.04692 0.03729 0.01070 

B2 0.03566 0.06258 0.05010 0.01017 

B3 0.03319 0.05866 0.05566 0.01121 

B4 0.04270 0.07186 0.05841 0.00809 

B5 0.04354 0.07140 0.06928 0.01715 

B6 0.05271 0.08434 0.06819 0.01068 

B7 0.05030 0.08101 0.07788 0.01944 

Table A2. The remote sensing reflectance of GF-1 image corresponding to sampling sites. 

Sampling Sites 
 Remote Sensing Reflectance of GF-1 Image 

band1 band2 band3 band4 

A1 0.07740  0.10619  0.120927 0.07999  

A2 0.0756208 0.101952 0.12474  0.0894474 

A3 0.07205  0.09242  0.09709  0.0711984 

A4 0.080971 0.103542 0.121404 0.109048 

A5 0.0881046 0.115195 0.130462 0.118511 

A6 0.0791876 0.101423 0.11330  0.0948545 

A9 0.0845378 0.09930  0.109008 0.101613 

A10 0.09762  0.11096  0.12617  0.11716  

A11 0.0940492 0.109898 0.120927 0.106345 

A12 0.0993994 0.114135 0.119497 0.107021 

A13 0.088699 0.104601 0.11378  0.112428 

A14 0.0964271 0.112546 0.11711  0.104993 

B1 0.0964271 0.116784 0.12617  0.112428 

B2 0.113666 0.13056  0.14476  0.134732 

B3 0.0958326 0.12526  0.14095  0.09350  

B4 0.0863212 0.115725 0.12522  0.0820126 

B5 0.08692  0.121022 0.139043 0.0995858 

B6 0.0875101 0.121022 0.141427 0.106345 

B7 0.08038  0.10884  0.12808  0.09485  
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